
Learning Neural Models for End-to-End
Clustering

Benjamin Bruno Meier1,2, Ismail Elezi1,3, Mohammadreza Amirian1,4,
Oliver Dürr1,5, and Thilo Stadelmann1

1 ZHAW Datalab & School of Engineering, Winterthur, Switzerland
2 ARGUS DATA INSIGHTS Schweiz AG, Zurich, Switzerland

3 Ca’ Foscari University of Venice, Venice, Italy
4 Institute of Neural Information Processing, Ulm University, Germany

5 Institute for Optical Systems, HTWG Konstanz, Germany

Abstract. We propose a novel end-to-end neural network architecture
that, once trained, directly outputs a probabilistic clustering of a batch of
input examples in one pass. It estimates a distribution over the number of
clusters k, and for each 1 ≤ k ≤ kmax, a distribution over the individual
cluster assignment for each data point. The network is trained in advance
in a supervised fashion on separate data to learn grouping by any percep-
tual similarity criterion based on pairwise labels (same/different group).
It can then be applied to different data containing different groups. We
demonstrate promising performance on high-dimensional data like images
(COIL-100) and speech (TIMIT). We call this “learning to cluster” and
show its conceptual difference to deep metric learning, semi-supervise
clustering and other related approaches while having the advantage of
performing learnable clustering fully end-to-end.

Keywords: perceptual grouping · learning to cluster · speech & image clustering

1 Introduction

Consider the illustrative task of grouping images of cats and dogs by perceived
similarity: depending on the intention of the user behind the task, the similarity
could be defined by animal type (foreground object), environmental nativeness
(background landscape, cp. Fig. 1) etc. This is characteristic of clustering percep-
tual, high-dimensional data like images [15] or sound [24]: a user typically has
some similarity criterion in mind when thinking about naturally arising groups
(e.g., pictures by holiday destination, or persons appearing; songs by mood, or
use of solo instrument). As defining such a similarity for every case is difficult, it
is desirable to learn it. At the same time, the learned model will in many cases
not be a classifier—the task will not be solved by classification—since the number
and specific type of groups present at application time are not known in advance
(e.g., speakers in TV recordings; persons in front of a surveillance camera; object
types in the picture gallery of a large web shop).

2 Meier, Elezi, Amirian, Dürr & Stadelmann

Fig. 1: Images of cats (top) and dogs (bottom) in urban (left) and natural (right)
environments.

Grouping objects with machine learning is usually approached with clustering
algorithms [16]. Typical ones like K-means [25], EM [14], hierarchical clustering
[29] with chosen distance measure, or DBSCAN [8] each have a specific inductive
bias towards certain similarity structures present in the data (e.g., K-means:
Euclidean distance from a central point; DBSCAN: common point density). Hence,
to be applicable to above-mentioned tasks, they need high-level features that
already encode the aspired similarity measure. This may be solved by learning
salient embeddings [28] with a deep metric learning approach [12], followed by
an off-line clustering phase using one of the above-mentioned algorithm.

However, it is desirable to combine these distinct phases (learning salient
features, and subsequent clustering) into an end-to-end approach that can be
trained globally [19]: it has the advantage of each phase being perfectly adjusted to
the other by optimizing a global criterion, and removes the need of manually fitting
parts of the pipeline. Numerous examples have demonstrated the success of neural
networks for end-to-end approaches on such diverse tasks as speech recognition
[2], robot control [21], scene text recognition [34], or music transcription [35].

In this paper, we present a conceptually novel approach that we call “learning
to cluster” in the above-mentioned sense of grouping high-dimensional data by
some perceptually motivated similarity criterion. For this purpose, we define
a novel neural network architecture with the following properties: (a) during
training, it receives pairs of similar or dissimilar examples to learn the intended
similarity function implicitly or explicitly; (b) during application, it is able to
group objects of groups never encountered before; (c) it is trained end-to-end in a
supervised way to produce a tailor-made clustering model and (d) is applied like
a clustering algorithm to find both the number of clusters as well as the cluster
membership of test-time objects in a fully probabilistic way.

Our approach builds upon ideas from deep metric embedding, namely to
learn an embedding of the data into a representational space that allows for
specific perceptual similarity evaluation via simple distance computation on
feature vectors. However, it goes beyond this by adding the actual clustering
step—grouping by similarity—directly to the same model, making it trainable
end-to-end. Our approach is also different from semi-supervised clustering [4],
which uses labels for some of the data points in the inference phase to guide
the creation of groups. In contrast, our method uses absolutely no labels during
inference, and moreover doesn’t expect to have seen any of the groups it encounters
during inference already during training (cp. Fig. 2). Its training stage may be

Learning Neural Models for End-to-End Clustering 3

Training

Testing

Proposed Model:
Training

Proposed Model:
Training

Proposed Model:
Evaluation

switch to a disjunct set of classes

P(k=1)=0.20 P(k=2)=0.75 P(k=3)=0.05

P(k=1)=0.05 P(k=2)=0.15 P(k=3)=0.80

P(k=1)=0.10 P(k=2)=0.80 P(k=3)=0.10

Fig. 2: Training vs. testing: cluster types encountered during application/inference
are never seen in training. Exemplary outputs (right-hand side) contain a partition
for each k (1–3 here) and a corresponding probability (best highlighted blue).

compared to creating K-means, DBSCAN etc. in the first place: it creates a
specific clustering model, applicable to data with certain similarity structure,
and once created/trained, the model performs “unsupervised learning” in the
sense of finding groups. Finally, our approach differs from traditional cluster
analysis [16] in how the clustering algorithm is applied: instead of looking for
patterns in the data in an unbiased and exploratory way, as is typically the case
in unsupervised learning, our approach is geared towards the use case where
users know perceptually what they are looking for, and can make this explicit
using examples. We then learn appropriate features and the similarity function
simultaneously, taking full advantage of end-to-end learning.

Our main contribution in this paper is the creation of a neural network
architecture that learns to group data, i.e., that outputs the same “label” for
“similar” objects regardless of (a) it has ever seen this group before; (b) regardless
of the actual value of the label (it is hence not a “class”); and (c) regardless of
the number of groups it will encounter during a single application run, up to a
predefined maximum. This is novel in its concept and generality (i.e., learn to
cluster previously unseen groups end-to-end for arbitrary, high-dimensional input
without any optimization on test data). Due to this novelty in approach, we
focus here on the general idea and experimental demonstration of the principal
workings, and leave comprehensive hyperparameter studies and optimizations
for future work. In Sec. 2, we compare our approach to related work, before
presenting the model and training procedure in detail in Sec. 3. We evaluate our
approach on different datasets in Sec 4, showing promising performance and a
high degree of generality for data types ranging from 2D points to audio snippets
and images, and discuss these results with conclusions for future work in Sec. 5.

2 Related Work

Learning to cluster based on neural networks has been approached mostly as
a supervised learning problem to extract embeddings for a subsequent off-line

4 Meier, Elezi, Amirian, Dürr & Stadelmann

clustering phase. The core of all deep metric embedding models is the choice of the
loss function. Motivated by the fact that the softmax-cross entropy loss function
has been designed as a classification loss and is not suitable for the clustering
problem per se, Chopra et al. [7] developed a “Siamese” architecture, where
the loss function is optimized in a way to generate similar features for objects
belonging to the same class, and dissimilar features for objects belonging to
different classes. A closely related loss function called “triplet loss” has been used
by Schroff et al. [32] to get state-of-the-art accuracy in face detection. The main
difference from the Siamese architecture is that in the latter case, the network
sees same and different class objects with every example. It is then optimized to
jointly learn their feature representation. A problem of both approaches is that
they are typically difficult to train compared to a standard cross entropy loss.

Song et al. [37] developed an algorithm for taking full advantage of all
the information available in training batches. They later refined the work [36]
by proposing a new metric learning scheme based on structured prediction,
which is designed to optimize a clustering quality metric (normalized mutual
information [27]). Even better results were achieved by Wong et al. [38], where
the authors proposed a novel angular loss, and achieved state-of-the-art results
on the challenging real-world datasets Stanford Cars [17] and Caltech Birds [5].
On the other hand, Lukic et al. [23] showed that for certain problems, a carefully
chosen deep neural network can simply be trained with softmax-cross entropy loss
and still achieve state-of-the-art performance in challenging problems like speaker
clustering. Alternatively, Wu et al. [26] showed that state-of-the-art results can
be achieved simply by using a traditional margin loss function and being careful
on how sampling is performed during the creation of mini-batches.

On the other hand, attempts have been made recently that are more similar
to ours in spirit, using deep neural networks only and performing clustering
end-to-end [1]. They are trained in a fully unsupervised fashion, hence solve a
different task then the one we motivated above (that is inspired by speaker- or
image clustering based on some human notion of similarity). Perhaps first to
group objects together in an unsupervised deep learning based manner where Le
et al. [18], detecting high-level concepts like cats or humans. Xie et al. [40] used
an autoencoder architecture to do clustering, but experimental evaluated it only
simplistic datasets like MNIST. CNN-based approaches followed, e.g. by Yang
et al. [42], where clustering and feature representation are optimized together.
Greff et al. [10] performed perceptual grouping (of pixels within an image into
the objects constituting the complete image, hence a different task than ours)
fully unsupervised using a neural expectation maximization algorithm. Our work
differs from above-mentioned works in several respects: it has no assumption on
the type of data, and solves the different task of grouping whole input objects.

3 A model for end-to-end clustering of arbitrary data

Our method learns to cluster end-to-end purely ab initio, without the need to
explicitly specify a notion of similarity, only providing the information whether

Learning Neural Models for End-to-End Clustering 5

(b) (c)

(d)

(a)

FC

...

xn

x1

x2 FC

FC

...

z(x1)

z(xn)

z(x2)

...

P (· | x2, k)

P (k)

R
B
D
L
S
T
M

1

R
B
D
L
S
T
M

m
−
1

R
B
D
L
S
T
M

m
B
D
L
S
T
M

...

FC

k = 1

k = 2
k = ...

k = kmax...

P (·| x1, k)

P (·| xn, k)

O
p
tion

al: M
etric L

earn
in
g

Fig. 3: Our complete model, consisting of (a) the embedding network, (b) clus-
tering network (including an optional metric learning part, see Sec. 3.3), (c)
cluster-assignment network and (d) cluster-count estimating network.

two examples belong together. It uses as input n ≥ 2 examples xi, where n
may be different during training and application and constitutes the number of
objects that can be clustered at a time, i.e. the maximum number of objects in a
partition. The network’s output is two-fold: a probability distribution P (k) over
the cluster count 1 ≤ k ≤ kmax; and probability distributions P (· | xi, k) over all
possible cluster indexes for each input example xi and for each k.

3.1 Network architecture

The network architecture (see Fig. 3) allows the flexible use of different input types,
e.g. images, audio or 2D points. An input xi is first processed by an embedding
network (a) that produces a lower-dimensional representation zi = z(xi). The
dimension of zi may vary depending on the data type. For example, 2D points
do not require any embedding network. A fully connected layer (FC) with
LeakyReLU activation at the beginning of the clustering network (b) is then used
to bring all embeddings to the same size. This approach allows to use the identical
subnetworks (b)–(d) and only change the subnet (a) for any data type. The goal
of the subnet (b) is to compare each input z(xi) with all other z(xj 6=i), in order
to learn an abstract grouping which is then concretized into an estimation of the
number of clusters (subnet (d)) and a cluster assignment (subnet (c)).

To be able to process a non-fixed number of examples n as input, we use
a recurrent neural network. Specifically, we use stacked residual bi-directional
LSTM-layers (RBDLSTM), which are similar to the cells described in [39] and
visualized in Fig. 4. The residual connections allow a much more effective gradient
flow during training [11] and avoid vanishing gradients. Additionally, the network
can learn to use or bypass certain layers using the residual connections, thus
reducing the architectural decision on the number of recurrent layers to the
simpler one of finding a reasonable upper bound.

The first of overall two outputs is modeled by the cluster assignment network
(c). It contains a softmax-layer to produce P (` | xi, k), which assigns a cluster
index ` to each input xi, given k clusters (i.e., we get a distribution over possible

6 Meier, Elezi, Amirian, Dürr & Stadelmann

LSTMLSTM

LSTM LSTM

LSTM

LSTM

LSTM

LSTM

sumsum sum

concatconcatconcatconcat

sum

x1 x2 xn

y1 y2 yn

...

...

Fig. 4: RBDLSTM-layer: A BDLSTM with residual connections (dashed lines).
The variables xi and yi are named independently from the notation in Fig. 3.

cluster assignments for each input and every possible number of clusters). The
second output, produced by the cluster-count estimating network (d), is built
from another BDLSTM-layer. Due to the bi-directionality of the network, we
concatenate its first and the last output vector into a fully connected layer of
twice as many units using again LeakyReLUs. The subsequent softmax-activation
finally models the distribution P (k) for 1 ≤ k ≤ kmax. The next subsection shows
how this neural network learns to approximate these two complicated probability
distributions [20] purely from pairwise constraints on data that is completely
separate from any dataset to be clustered. No labels for clustering are needed.

3.2 Training and loss

In order to define a suitable loss-function, we first define an approximation
(assuming independence) of the probability that xi and xj are assigned to the
same cluster for a given k as

Pij(k) =

k∑
`=1

P (` | xi, k)P (` | xj , k).

By marginalizing over k, we obtain Pij , the probability that xi and xj belong to
the same cluster:

Pij =

kmax∑
k=1

P (k)

k∑
`=1

P (` | xi, k)P (` | xj , k).

Let yij = 1 if xi and xj are from the same cluster (e.g., have the same group
label) and 0 otherwise. The loss component for cluster assignments, Lca, is then
given by the weighted binary cross entropy as

Lca =
−2

n(n− 1)

∑
i<j

(ϕ1yij log(Pij) + ϕ2(1− yij) log(1− Pij))

Learning Neural Models for End-to-End Clustering 7

with weights ϕ1 and ϕ2. The idea behind the weighting is to account for the
imbalance in the data due to there being more dissimilar than similar pairs (xi, xj)
as the number of clusters in the mini batch exceeds 2. Hence, the weighting is
computed using ϕ1 = c

√
1− ϕ and ϕ2 = c

√
ϕ, with ϕ being the expected value

of yij (i.e., the a priori probability of any two samples in a mini batch coming
from the same cluster), and c a normalization factor so that ϕ1 + ϕ2 = 2. The
value ϕ is computed over all possible cluster counts for a fixed input example
count n, as during training, the cluster count is randomly chosen for each mini
batch according to a uniform distribution. The weighting of the cross entropy
given by ϕ is then used to make sure that the network does not converge to a
sub-optimal and trivial minimum. Intuitively, we thus account for permutations in
the sequence of examples by checking rather for pairwise correctness (probability
of same/different cluster) than specific indices.

The second loss term, Lcc, penalizes a wrong number of clusters and is given
by the categorical cross entropy of P (k) for the true number of clusters k in the
current mini batch:

Lcc = − log(P (k)).

The complete loss is given by Ltot = Lcc + λLca. During training, we prepare
each mini batch with N sets of n input examples, each set with k = 1 . . . kmax

clusters chosen uniformly. Note that this training procedure requires only the
knowledge of yij and is thus also possible for weakly labeled data. All input
examples are randomly shuffled for training and testing to avoid that the network
learns a bias w.r.t. the input order. To demonstrate that the network really learns
an intra-class distance and not just classifies objects of a fixed set of classes, it is
applied on totally different clusters at evaluation time than seen during training.

3.3 Implicit vs. explicit distance learning

To elucidate the importance and validity of the implicit learning of distances in our
subnetwork (b), we also provide a modified version of our network architecture for
comparison, in which the calculation of the distances is done explicitly. Therefore,
we add an extra component to the network before the RBDLSTM layers, as can
be seen in Figure 3: the optional metric learning block receives the fixed-size
embeddings from the fully connected layer after the embedding network (a) as
input and outputs the pairwise distances of the data points. The recurrent layers
in block (b) then subsequently cluster the data points based on this pairwise
distance information [6,3] provided by the metric learning block.

We construct a novel metric learning block inspired by the work of Xing et al.
[41]. In contrast to their work, we optimize it end-to-end with backpropagation.
This has been proposed in [33] for classification alone; we do it here for a clustering
task, for the whole covariance matrix, and jointly with the rest of our network.
We construct the non-symmetric, non-negative dissimilarity measure d2A between
two data points xi and xj as

d2A(xi, xj) = (xi − xj)TA(xi − xj)

8 Meier, Elezi, Amirian, Dürr & Stadelmann

and let the neural network training optimize A through Ltot without intermediate
losses. The matrix A as used in d2A can be thought of as a trainable distance
metric. In every training step, it is projected into the space of positive semidefinite
matrices.

4 Experimental results

To assess the quality of our model, we perform clustering on three different
datasets: for a proof of concept, we test on a set of generated 2D points with a high
variety of shapes, coming from different distributions. For speaker clustering, we
use the TIMIT [9] corpus, a dataset of studio-quality speech recordings frequently
used for pure speaker clustering in related work. For image clustering, we test on
the COIL-100 [30] dataset, a collection of different isolated objects in various
orientations. To compare to related work, we measure the performance with
the standard evaluation scores misclassification rate (MR) [22] and normalized
mutual information (NMI) [27]. Architecturally, we choose m = 14 BDLSTM
layers and 288 units in the FC layer of subnetwork (b), 128 units for the BDLSTM
in subnetwork (d), and α = 0.3 for all LeakyReLUs in the experiments below.
All hyperparameters where chosen based on preliminary experiments to achieve
reasonable performance, but not tested nor tweaked extensively. The code and
further material and experiments are available online1.

We set kmax = 5 and λ = 5 for all experiments. For the 2D point data, we use
n = 72 inputs and a batch-size of N = 200 (We used the batch size of N = 50 for
metric learning with 2D points). For TIMIT, the network input consists of n = 20
audio snippets with a length of 1.28 seconds, encoded as mel-spectrograms with
128 × 128 pixels (identical to [24]). For COIL-100, we use n = 20 inputs with
a dimension of 128 × 128 × 3. For TIMIT and COIL-100, a simple CNN with
3 conv/max-pooling layers is used as subnetwork (a). For TIMIT, we use 430
of the 630 available speakers for training (and 100 of the remaining ones each
for validation and evaluation). For COIL-100, we train on 80 of the 100 classes
(10 for validation, 10 for evaluation). For all runs, we optimize using Adadelta
[43] with a learning rate of 5.0. Example clusterings are shown in Fig. 5. For all
configurations, the used hardware set the limit on parameter values: we used the
maximum possible batch size and values for n and kmax that allow reasonable
training times. However, values of n ≥ 1000 where tested and lead to a large
decrease in model accuracy. This is a major issue for future work.

The results on 2D data as presented in Fig. 5a demonstrate that our method
is able to learn specific and diverse characteristics of intuitive groupings. This
is superior to any single traditional method, which only detects a certain class
of cluster structure (e.g., defined by distance from a central point). Although
[24] reach moderately better scores for the speaker clustering task and [42] reach
a superior NMI for COIL-100, our method finds reasonable clusterings, is more
flexible through end-to-end training and is not tuned to a specific kind of data.

1 See https://github.com/kutoga/learning2cluster.

https://github.com/kutoga/learning2cluster

Learning Neural Models for End-to-End Clustering 9

(a) (b) (c)

Fig. 5: Clustering results for (a) 2D point data, (b) COIL-100 objects, and (c)
faces from FaceScrub (for illustrative purposes). The color of points / colored
borders of images depict true cluster membership.

Table 1: NMI ∈ [0, 1] and MR ∈ [0, 1] averaged over 300 evaluations of a trained
network. We abbreviate our “learning to cluster” method as “L2C”.

2D Points (self generated) TIMIT COIL-100
MR NMI MR NMI MR NMI

L2C (=our method) 0.004 0.993 0.060 0.928 0.116 0.867
L2C + Euclidean 0.177 0.730 0.093 0.883 0.123 0.884
L2C + Mahalanobis 0.185 0.725 0.104 0.882 0.093 0.890
L2C + Metric Learning 0.165 0.740 0.101 0.880 0.100 0.880
Random cluster assignment 0.485 0.232 0.435 0.346 0.435 0.346

Baselines (related work) k-Means: MR = 0.178, NMI = 0.796
DBSCAN: MR = 0.265, NMI = 0.676

[24]: MR = 0 [42]: NMI = 0.985

Hence, we assume, backed by the additional experiments to be found online, that
our model works well also for other data types and datasets, given a suitable
embedding network. Tab. 1 gives the numerical results for said datasets in the
row called “L2C” without using the explicit metric learning block. Extensive
preliminary experiments on other public datasets like e.g. FaceScrub [31] confirm
these results: learning to cluster reaches promising performance while not yet
being on par with tailor-made state-of-the-art approaches.

We compare the performance of our implicit distance metric learning method
to versions enhanced by different explicit schemes for pairwise similarity com-
putation prior to clustering. Specifically, three implementations of the optional
metric learning block in subnetwork (b) are evaluated: using a fixed diagonal
matrix A (resembling the Euclidean distance), training a diagonal A (resembling
Mahalanobis distance), and learning the entire coefficients of the distance matrix
A. Since we argue above that our approach combines implicit deep metric em-
bedding with clustering in an end-to-end architecture, one would not expect that
adding explicit metric computation changes the results by a large extend. This
assumption is largely confirmed by the results in the “L2C+. . . ” rows in Tab. 1:
for COIL-100, Euclidean gives slightly worse, and the other two slightly better
results than L2C alone; for TIMIT, all results are worse but still reasonable. We
attribute the considerable performance drop on 2D points using all three explicit
schemes to the fact that in this case much more instances are to be compared
with each other (as each instance is smaller than e.g. an image, n is larger). This
might have needed further adaptations like e.g. larger batch sizes (reduced here
to N = 50 for computational reasons) and longer training times.

10 Meier, Elezi, Amirian, Dürr & Stadelmann

5 Discussion and conclusions

We have presented a novel approach to learn neural models that directly output
a probabilistic clustering on previously unseen groups of data; this includes a
solution to the problem of outputting similar but unspecific “labels” for similar
objects of unseen “classes”. A trained model is able to cluster different data types
with promising results. This is a complete end-to-end approach to clustering that
learns both the relevant features and the “algorithm” by which to produce the
clustering itself. It outputs probabilities for cluster membership of all inputs as well
as the number of clusters in test data. The learning phase only requires pairwise
labels between examples from a separate training set, and no explicit similarity
measure needs to be provided. This is especially useful for high-dimensional,
perceptual data like images and audio, where similarity is usually semantically
defined by humans. Our experiments confirm that our algorithm is able to
implicitly learn a metric and directly use it for the included clustering. This is
similar in spirit to the very recent work of Hsu et al. [13], but does not need and
optimization on the test (clustering) set and finds k autonomously. It is a novel
approach to learn to cluster, introducing a novel architecture and loss design.

We observe that the clustering accuracy depends on the availability of a
large number of different classes during training. We attribute this to the fact
that the network needs to learn intra-class distances, a task inherently more
difficult than just to distinguish between objects of a fixed amount of classes
like in classification problems. We understand the presented work as an early
investigation into the new paradigm of learning to cluster by perceptual similarity
specified through examples. It is inspired by our work on speaker clustering
with deep neural networks, where we increasingly observe the need to go beyond
surrogate tasks for learning, training end-to-end specifically for clustering to
close a performance leak. While this works satisfactory for initial results, points
for improvement revolve around scaling the approach to practical applicability,
which foremost means to get rid of the dependency on n for the partition size.

The number n of input examples to assess simultaneously is very relevant
in practice: if an input data set has thousands of examples, incoherent single
clusterings of subsets of n points would be required to be merged to produce a
clustering of the whole dataset based on our model. As the (RBD)LSTM layers
responsible for assessing points simultaneously in principle have a long, but still
local (short-term) horizon, they are not apt to grasp similarities of thousands
of objects. Several ideas exist to change the architecture, including to replace
recurrent layers with temporal convolutions, or using our approach to seed some
sort of differentiable K-means or EM layer on top of it. Preliminary results on
this exist. Increasing n is a prerequisite to also increase the maximum number of
clusters k, as k � n. For practical applicability, k needs to be increased by an
order of magnitude; we plan to do this in the future. This might open up novel
applications of our model in the area of transfer learning and domain adaptation.

Acknowledgements: We thank the anonymous reviewers for helpful feedback.

Learning Neural Models for End-to-End Clustering 11

References

1. Aljalbout, E., Golkov, V., Siddiqui, Y., Cremers, D.: Clustering with deep learning:
Taxonomy and new methods. arXiv preprint arXiv:1801.07648 (2018)

2. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C.,
Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al.: Deep speech 2: End-to-end
speech recognition in English and Mandarin. In: ICML. pp. 173–182 (2016)

3. Arias-Castro, E.: Clustering based on pairwise distances when the data is of mixed
dimensions. IEEE Transactions on Information Theory pp. 1692–1706 (2011)

4. Basu, S., Banerjee, A., Mooney, R.: Semi-supervised clustering by seeding. In:
ICML. pp. 19–26 (2002)

5. Branson, S., Horn, G.V., Wah, C., Perona, P., Belongie, S.J.: The ignorant led by
the blind: A hybrid human-machine vision system for fine-grained categorization.
IJCV pp. 3–29 (2014)

6. Chin, C.F., Shih, A.C.C., Fan, K.C.: A novel spectral clustering method based on
pairwise distance matrix. J. Inf. Sci. Eng. pp. 649–658 (2010)

7. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: CVPR. pp. 539–546 vol. 1 (2005)

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: KDD. pp. 226–231
(1996)

9. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., Dahlgren,
N.L.: DARPA TIMIT acoustic phonetic continuous speech corpus CDROM (1993)

10. Greff, K., van Steenkiste, S., Schmidhuber, J.: Neural expectation maximization.
In: NIPS. pp. 6694–6704 (2017)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

12. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: International
Workshop on Similarity-Based Pattern Recognition. pp. 84–92 (2015)

13. Hsu, Y., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains
and tasks. In: ICLR (2018), [accepted]

14. Jin, X., Han, J.: Expectation maximization clustering. In: Encyclopedia of Machine
Learning, pp. 382–383. Springer (2011)

15. Kampffmeyer, M., Løkse, S., Bianchi, F.M., Livi, L., Salberg, A.B., Robert, J.:
Deep divergence-based clustering. In: IEEE Int’l Workshop on Machine Learning
for Signal Processing (MLSP) (2017)

16. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster
Analysis. John Wiley & Sons (1990)

17. Krause, J., Stark, M., Deng, J., Li, F.F.: 3D object representations for fine-grained
categorization. In: Workshop on 3D Representation and Recognition at ICCV (2013)

18. Le, Q.V., Ranzato, M., Monga, R., Devin, M., Corrado, G., Chen, K., Dean, J.,
Ng, A.Y.: Building high-level features using large scale unsupervised learning. In:
ICML. pp. 8595–8598 (2012)

19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE pp. 2278–2324 (1998)

20. Lee, H., Ge, R., Ma, T., Risteski, A., Arora, S.: On the ability of neural nets to
express distributions. In: COLT. pp. 1271–1296 (2017)

21. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. JMLR 17(1), 1334–1373 (2016)

22. Liu, D., Kubala, F.: Online speaker clustering. In: ICASSP. pp. I–333–6 vol.1 (2003)

12 Meier, Elezi, Amirian, Dürr & Stadelmann

23. Lukic, Y., Vogt, C., Dürr, O., Stadelmann, T.: Speaker identification and clustering
using convolutional neural networks. In: IEEE Int’l Workshop on Machine Learning
for Signal Processing (MLSP) (2016)

24. Lukic, Y., Vogt, C., Dürr, O., Stadelmann, T.: Learning embeddings for speaker
clustering based on voice equality. In: Machine Learning for Signal Processing
(MLSP), 2017 IEEE 27th International Workshop on (2017)

25. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley symp. on math. statist. and prob. pp. 281–297 (1967)

26. Manmatha, R., Wu, C., Smola, A.J., Krähenbühl, P.: Sampling matters in deep
embedding learning. In: ICCV. pp. 2840–2848 (2017)

27. McDaid, A.F., Greene, D., Hurley, N.: Normalized mutual information to evaluate
overlapping community finding algorithms. arXiv preprint arXiv:1110.2515 (2011)

28. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781 (2013)

29. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. The
Computer Journal pp. 354–359 (1983)

30. Nayar, S., Nene, S., Murase, H.: Columbia object image library (COIL 100). De-
partment of Comp. Science, Columbia University, Tech. Rep. CUCS-006-96 (1996)

31. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In:
ICIP. pp. 343–347 (2014)

32. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face
recognition and clustering. In: CVPR. pp. 815–823 (2015)

33. Schwenker, F., Kestler, H.A., Palm, G.: Three learning phases for radial-basis-
function networks. Neural networks 14(4-5), 439–458 (2001)

34. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. PAMI pp. 2298–
2304 (2017)

35. Sigtia, S., Benetos, E., Dixon, S.: An end-to-end neural network for polyphonic
piano music transcription. IEEE/ACM TASLP 24(5), 927–939 (2016)

36. Song, H.O., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility
location. In: CVPR. pp. 5382–5390 (2017)

37. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: CVPR. pp. 4004–4012 (2016)

38. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular
loss. In: ICCV. pp. 2593–2601 (2017)

39. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

40. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: ICML. pp. 478–487 (2016)

41. Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with
application to clustering with side-information. In: NIPS. pp. 521–528 (2003)

42. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations
and image clusters. In: CVPR. pp. 5147–5156 (2016)

43. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

	Learning Neural Models for End-to-End Clustering

