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Abstract
The transition to a fully renewable energy grid
requires better forecasting of demand at the low-
voltage level to increase efficiency and ensure a
reliable control. However, high fluctuations and
increasing electrification cause huge forecast er-
rors with traditional point estimates. Probabilistic
load forecasts take future uncertainties into ac-
count and thus enables various applications in
low-carbon energy systems. We propose an ap-
proach for flexible conditional density forecasting
of short-term load based on Bernstein-Polynomial
Normalizing Flows where a neural network con-
trols the parameters of the flow. In an empirical
study with 363 smart meter customers, our density
predictions compare favorably against Gaussian
and Gaussian mixture densities and also outper-
form a non-parametric approach based on the pin-
ball loss for 24h-ahead load forecasting for two
different neural network architectures.

1. Introduction
The energy sector is the major contributor to greenhouse gas
emissions (World Resources Institute, 2020). The take-up
of renewable and distributed energy resources transforms
the electric energy system to be more decentralized. This
increases the role of low-voltage (LV) grids that typically
make up the largest part of distribution systems but are still
the least monitored and controlled. Accurate short-term
load and generation forecasts at the LV level ranging from
minutes to days ahead are becoming essential for grid op-
erators, utilities, building- and district operators, and the
customers themselves for many applications. Forecasts
impact greenhouse gas emissions directly by making the
energy systems more efficient and indirectly by enabling
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a reliable carbon-free energy supply with high utilization
of fluctuating renewable energy sources and increasingly
unpredictable consumption patterns through electrification
of the heating and mobility sectors. Such applications in-
clude, for instance, peak load reduction (Rowe et al., 2014)
and voltage control (Zufferey et al., 2020). Accurate load
forecasts can be used for grid state estimation (Hermanns
et al., 2020) rendering a completely measured, hence expen-
sive grid unnecessary. They can also be used for anomaly
detection to increase resilience (Fadlullah et al., 2011) or
detect energy theft (Fenza G., 2019). Short-term forecasts
can inform different participants of services like local and
peer-to-peer energy markets (Morstyn et al., 2018), real-
time pricing schemes (He et al., 2019) or flexibility applica-
tions (Ponoćko & Milanović, 2018) that are emerging with
the energy transition. Haben et al. (2021) provide a recent
review of LV load forecasting methods and applications.
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Figure 1. Exemplary load forecast in Christmas week based on
data from (Commission for Energy Regulation (CER), 2012).

LV demand typically exhibits higher volatility than the high
voltage or more aggregated system demand. For this rea-
son, probabilistic forecasts are more appropriate than point
forecasts due to their representation of the underlying uncer-
tainty. Whereas point forecasts model the expected value,
probabilistic forecasts estimate the distribution for more
informed decision-making (see Hong & Fan, 2016, for a
review). The distribution can be modeled fully continu-
ous (Pinto et al., 2017; Arora & Taylor, 2016) or be approx-
imated by quantile estimates (Wang et al., 2019; Gerossier
et al., 2018; Elvers et al., 2019). Figure 1 gives an exam-
ple of a probabilistic forecast for a household that had an
extraordinary high consumption during the Irish Christmas
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holidays. The plot displays the uncertainty information in
the form of confidence intervals for 60% and 90%. It still
underestimates the unusual high load on the 26th, however,
once this observation is processed, it can be incorporated in
the forecasts of the following days. This way probabilistic
forecast can reflect future uncertainty.

Probabilistic forecasts at the LV level are challenging, as
the time series are multivariate, and the marginal distribu-
tions are typically skewed and multi-modal. Other studies
proposed parametric approaches like Kernel Density Estima-
tion (Arora & Taylor, 2016; Pinto et al., 2017), a Gaussian
distribution (Haben et al., 2019; Wijaya et al., 2015; Salinas
et al., 2020) or a Gaussian Mixture Model (GMM) (Vossen
et al., 2018) and non-parametric deep architectures mini-
mizing the pinball loss (Elvers et al., 2019; Wang et al.,
2019). Normalizing Flows (NFs) are flexible parameterized
transformations from simple distributions (e.g. Gaussian) to
complex ones (cf. (Papamakarios et al., 2019)).

In Section 2 we propose Bernstein-Polynomial Normaliz-
ing Flow (BNF) for short-term density forecasting of LV
loads. In Section 3 we use public data from 363 smart me-
ter customers of the CER dataset (Commission for Energy
Regulation (CER), 2012) to compare variants of the Neu-
ral Network (NN) architecture used to estimate the BNF
parameters, and we compare it to both parametric and non-
parametric benchmark approaches in 24h-ahead forecasting.
Finally, we conclude this study in Section 4.

2. Normalizing Flows using
Bernstein-Polynomials

We tackle the load forecasting problem in the framework of
deep probabilistic regression. For the covariates x such as
lagged power consumption at earlier time steps, holiday indi-
cator, or temperature, the marginal Conditional Probability
Distributions (CPDs) py(yt|x), of the electric load at time-
step t are predicted. We have used three well established
probabilistic models beside our Bernstein normalizing flow
model, which is described in the following.

The main idea of NF is to fit a parametric bijective function
that transforms between a complex target distribution py(y)
and a simple distribution pz(z), often pz(z) = N(0, 1). The
change of variable formula allows us to calculate the proba-
bility py(y) from the simple probability pz(z) as follows:

py(y) = pz(f(y)) |det∇f(y)|−1 (1)

with the Jacobian determinant det∇f(y) ensuring that the
probability integrates to one after the transformation (hence
the name normalizing flow). Using Eq. 1 the parameters
of f can be tuned such that the likelihood of the observed
training samples is maximized. Often a combination of K

simple transformation functions fi is used to compose more
expressive transformations f(z) = fK ◦ fK−1 ◦ · · · ◦ f1(y),
while staying computational efficient (Papamakarios et al.,
2019).

Up to now NF models have gained the most attention in ap-
plications where complex high-dimensional unconditional
distributions py(y) are modeled, for example for image
generation (Kingma & Dhariwal, 2018) or speech synthe-
sis (van den Oord et al., 2017). Probabilistic regression
models based on NF, modeling the CPD py(y|x) have
gained only little attention. However, recent research ap-
plied NF for probabilistic regression with very promising
results (Rothfuss et al., 2020; Rasul et al., 2020; Trippe &
Turner, 2018; Sick et al., 2020; Ramasinghe et al., 2021).
Our implementation is based on Sick et al. (2020), but has
some significant improvements, to allow a stable inversion
of the flow from the latent variable z to the observed y,
which are described in the following and illustrated in Fig-
ure 2. The core of the transformation are the Bernstein
polynomials of order M , which can approximate any func-
tion in y ∈ [0, 1] for M → ∞ but empirically M = 10
polynomials are often sufficient (Hothorn et al., 2018). Us-
ing higher degree polynomials, however, can increase the
expressiveness at no cost to the training stability (Ramas-
inghe et al., 2021).

Our implementation uses Bernstein polynomials as the
second transformation in a chain of three transformations
f3 ◦ f2 ◦ f1 (see Figure 2).
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Figure 2. Visual representation of the normalizing flow. The flow
transforms a bimodal distribution p(y|x) in the upper left side, via
a chain of flows to a standard Gaussian p(z) lower right side. The
dependence on the covariate x stems from the x-dependence of
the NN controlled flows f1, f2, f3. The flow f2 uses Bernstein
polynomials for maximal flexibility.
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The first transformation f1 scales and shifts y. The second
transformation f2 consists of a Bernstein polynomial with
M + 1 parameters θ = (ϑ0, ϑ1, . . . ϑM ). The last transfor-
mation in the chain, f3 is the scale of the base distribution.

All the parameters a1, b1, ϑi and a2 are controlled by the
outputs of a NN with input x. To ensure the invertibility
of the complete flow the individual components need to be
strictly monotonous. For f1 and f3 we need to ensure that
the scale parameters a1 and a2 are positive, this is done by
applying a softplus activation function to the output of the
network. In order to ensure the strict monotonicity of the
Bernstein polynomial f2 the parameters ϑi need to be in-
creasing. Moreover, we restricted the transformation f2(z2)
to be at least in the range [c = −3, d = 3] to be within ±3σ
of the standard Gaussian. To achieve the required restric-
tions we apply the following procedure to the unconstrained
outputs ϑ′i of the network. We first use the softmax function
to get positive values ϑ′′ = softmax(ϑ′1, . . . , ϑ

′
M−1) and

from these values we determine the coefficients in the Bern-
stein polynomial as ϑ0 = c and ϑi = c+

∑
j<i ϑ

′′
j · (d− c)

for i = 1, . . . ,M − 1. This ensures that the ϑis are increas-
ing in [c, d] and leads to M − 1 parameters in total. Finally,
we allow that the transformation is smaller than c and larger
than d by subtracting and adding the softplus of the outputs
ϑ′0 and ϑ′M of the network to c, and d.

Training of our probabilistic BNF model is done by tuning
the parameters of the chained transformations f3 ◦ f2 ◦ f1 to
minimize the negative log-likelihood −∑N

i ln(py(yi)) of
the N training data points, using Equation 1. The training
data has been transformed to [0, 1]. In the case of (equally
transformed test-data) being outside this range, the Bern-
stein polynomials are linearly extrapolated. For simulating
scenarios of possible energy consumption time series, we
need to sample from the learned model, what requires the
inversion of the fitted chain of transformations f−1. Be-
cause there is no closed-form solution for the inversion of
higher-order Bernstein polynomials, we use a root finding
algorithm to determine the inverse (Chandrupatla, 1997).

3. Load Forecasting Simulation Study
This section evaluates the use of BNF approach for load
forecasting in an empirical study. First, the forecasting
approach and benchmark methods are introduced, then the
dataset is described, and finally the results are discussed.

3.1. Probabilistic Forecasting Models

In the study we compare the combinations of two different
NN architectures with four different methods to model the
CPDs. The networks control the parameters θ needed for the
different CPDs (see Figure 3). For the NNs, we compare:

A fully connected neural network (FC) with three hidden

xh
∣∣ load ∈ [0, 1]

xm

∣∣∣∣∣∣

day of year (sin/cos) ∈ [0, 1]
weekday (sin/cos) ∈ [0, 1]
Is holiday ∈ {0, 1}

Neural
Network

θ(x) = NN(x, ω)

Conditional
Probability
Distribution

p(y|θ(x))

p̂(y1|x)
...

p̂(y48|x)
x

θ(x)

Figure 3. Overall model: The variables on the left side are the
input to a NN (FC or 1DCNN). The NN controls the parameters
θ(x) for the respective model (BNF, GM, GMM, or QR) yielding
the marginal CPD p(yt|θ(X)) for 48 time steps t.

layers, with 100 units, the ELU activation function (Clevert
et al., 2016), and batch normalization (Ioffe & Szegedy,
2015). The historical data was flattened and concatenated
with the metadata. This model is not ideal for processing
the sequential data but serves as a simple baseline model to
compare against the more sophisticated CNN model.

A dilated 1D-Convolution Network architecture (1DCNN)
inspired by the WaveNet architecture (van den Oord et al.,
2016). The model was build by stacking 8 1D convolutional
layers with doubling dilatation rates 1, 2, 4, . . . , 128. This
results in a model with a receptive field capturing 256 input
values. Hence, almost the whole input sequence, consisting
of one week of historical load data with a total of 348 input
features, can be processed. Each of these dilated convolu-
tions uses the ReLU activation function and has 20 filters.
Finally, a regular 1D convolutional layer without dilatation,
again ReLU activation and ten filters. The output of this last
convolutional layer is then flattened and concatenated with
the meta data before it is fed into a final fully connected
layer with ELU activation function followed by a last layer
without activation function to generate the output. Batch
normalization was not used in this model.

For predicting the CPDs this study proposes the Bernstein-
Polynomial Normalizing Flow (BNF) in which θ are the
parameters of the Bernstein polynomial of order M = 20
as well as the additional linear transformations making up
the flow f (see Figure 2).

We compare the BNF with the following benchmarks:

A simple Gaussian Model (GM) as a probabilistic extension
of regular regression, predicting not only the conditioned
mean µ(x), but also the conditional variance σ2(x) (e.g.,
Haben et al., 2019; Wijaya et al., 2015; Salinas et al., 2020).

To model more complex distribution shapes, a Gaussian
Mixture Model (GMM) mixing three normal distributions
was implemented. The output vector θ contains the mean
and variance µk(x), σ

2
k(x) and the mixing coefficients

αk(x) for k = 1, 2, 3 (see, e.g., Vossen et al., 2018).

A Quantile Regression (QR) predicting 100 quantiles has
been implemented as a typical baseline in probabilistic load
forecasting (cf., e.g., Elvers et al., 2019; Wang et al., 2019).
The 100 quantiles for each time step have been constrained
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to be monotonically increasing by applying a softplus ac-
tivation function and then calculating the cumulative sum.
Note that strictly speaking the QR is not a continuous CPD,
hence the NLL is not tractable, and instead the pinball loss
is minimized.

3.2. Dataset Description

The models were trained on a dataset containing electricity
demand information for smart meter customers in Ireland,
recorded in the period from 2009/07/14 until 2010/12/31,
in a resolution of 30 Minutes (Commission for Energy Reg-
ulation (CER), 2012). All non-residential buildings were
dropped, since the stochastic behavior of residential cus-
tomers was from explicit interest in this study. Additionally,
all incomplete records have been removed. A random subset
of 10% (363 customers) was extracted. All records until
2010/10/31 23:30:00 have been used for training1, the re-
maining readings were left out for testing. The scripts used
to preprocess the data set and conduct the experiments are
available at GitHub2. At runtime, the data is shuffled and
batched into mini batches of size 32. Each sample consists
of an input tuple x = (xh, xm) containing the historical
data xh, with the lagged electric load of the past seven days
and meta data xm, with trigonometric encoded time infor-
mation as done by Andrich van Wyk (2018) and a binary hol-
iday indicator as indicated in Figure 3. The prediction target
y is the load for the next day, with resolution of 30 minutes.
Hence, the model predicts 48 CPDs p(y1|x), . . . , p(y48|x)
for every future time step.

3.3. Discussion of Results

Table 1 summarized our results for the different architec-
tures and probabilistic models. All models were trained
with early stopping for maximal 300 epochs with the Adam
optimizer (Kingma & Ba, 2017).

Arch CPD CRPS NLL MAE MSE

FC

BNF 0.021 −123.2 0.413 9.430
GMM 0.024 −116.0 0.368 0.438
GM 0.951 −77.0 0.742 23.464
QR 0.026 − 0.390 0.615

1DCNN

BNF 0.017 −132.089 0.342 0.429
GMM 0.019 −125.933 0.384 0.45
GM 0.018 −101.29 0.347 0.366
QR 0.017 − 0.321 0.399

Table 1. Results of empirical experiments, for both architectures
and all four CPD models (subsection 3.1). The table shows the
Continous Ranked Probability Score (CRPS), the Negative Loga-
rithmic Likelihood (NLL), the Mean Absolute Error (MAE) and
the Mean Squared Error (MSE). Lower is better.

1the last 10% were used for validation during the development
2https://github.com/MArpogaus/stplf-bnf

Probabilistic models should be evaluated by a score that
takes the whole CPD into account, like the strictly proper
scores Continous Ranked Probability Score (CRPS) or Nega-
tive Logarithmic Likelihood (NLL) (Bröcker & Smith, 2007;
Gneiting & Raftery, 2007). These scores are reported in
Table 1, in addition, we also included the common point
scores MAE and MSE. We observe two things: First, using
dilated convolutional layers helps to process sequential data.
For all CPDs the CRPS and the NLL are superior in the
1DCNN architecture compared to the FC network. Second,
the scores are better the more flexible the CPD. In general,
the GMM is better than the GM and the flexible BNF and
QR are always better than the GMM. We speculate that the
performance gain of the BNF compared to the QR in the FC
case is because the BNF is less prone to overfitting since us-
ing the Bernstein basis is smoother compared to estimating
100 quantiles, only restricted by the order. An additional
benefit of the BNF over the QR is that it naturally provides
a continuous distribution.

4. Conclusion
Forecasting at the LV level is becoming essential for many
stakeholders, while more and more applications in low car-
bon energy systems are explored. Due to high volatility of
load profiles, probabilistic load forecasts are an emerging re-
search topic, as they are capable of expressing uncertainties
introduced by the fluctuations caused by the increasing pen-
etration of renewable and distributed energy sources. The
majority of probabilistic load forecasting literature focuses
on parametric or QR approaches for estimating marginal dis-
tributions. The conditioned probability distribution remains
unknown. Parametric methods estimate the distribution by
making assumptions of the underlying distribution, while
QR can only provide a discrete approximation of the full dis-
tribution. Instead, the proposed probabilistic deep learning
model uses a cascade of transformation functions, known as
normalizing flows, to directly model the conditioned proba-
bility density. Model parameters are obtained by minimizing
the NLL directly through gradient descent.

We demonstrated that BNFs are a very powerful and stable
method to express complex non-Gaussian distributions, with
almost no regularization or special tuning. This makes them
a preferential choice over the QRs or Gaussian approaches
for probabilistic load forecasts. BNFs are also applicable
for other use cases like anomaly detection or generation of
synthetic scenarios for grid planning. A possible enhance-
ment might be to take the multivariate nature of the forecast
more directly into account. Instead of predicting multiple
marginal CPDs for a fixed forecast horizon, a future imple-
mentation could benefit from autoregressive architectures
for non-fixed forecast horizons or extending the BNF to
multivariate versions.

https://github.com/MArpogaus/stplf-bnf
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