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Abstract— Implicit Wiener series are a powerful tool to build
Volterra representations of time series with any degree of non-
linearity. A natural question is then whether higher order
representations yield more useful models. In this work we
shall study this question for ECoG data channel relationships
in epileptic seizure recordings, considering whether quadratic
representations yield more accurate classifiers than linear ones.
To do so we first show how to derive statistical information on
the Volterra coefficient distribution and how to construct seizure
classification patterns over that information. As our results
illustrate, a quadratic model seems to provide no advantages
over a linear one. Nevertheless, we shall also show that the
interpretability of the implicit Wiener series provides insights
into the inter-channel relationships of the recordings.

I. INTRODUCTION

Epilepsy is a chronic disorder of the brain that affects
around 50 million people worldwide, and is characterized
by recurrent seizures provoked by excessive electrical dis-
charges in a group of brain cells [1]. Although in some
cases patients suffering from epilepsy can be treated with
medication, in others neurosurgery needs to be applied,
where the region of the brain producing the seizure activity
(epileptogenic focus) is removed or separated from the rest
of the brain [2]. In order to detect the location of the focus,
single photon emission computed tomography (SPECT) can
be used if an intravenous injection of a radiopharmaceutical
is applied shortly after a seizure onset. However, this is no
easy task as usually the seizure is noticed when clinical
manifestations appear, which could take place long after
the onset of the seizure [3]. A better way of detecting
seizure onsets is electroencephalography (EEG) analysis,
as alterations in the neuronal activity happen immediately
before and during the onset. Unfortunately an experienced
electroencephalographer is often required to detect seizure
signs in EEG recordings, and so there has been medical
interest in developing automatic tools for the analysis and
detection of seizure onsets in EEG data.

Previous work in this topic has applied methods from
the fields of time series analysis and pattern recognition
in an attempt to solve the problem, the former used to
obtain relevant features from segments or epochs of raw
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66862 and Cátedra UAM–IIC en Modelado y Predicción. The first author
is kindly supported by the FPU–MEC grant reference AP2006–02285.

2 HTWG Konstanz
3 University of Chicago, Department of Pediatrics.
4 Max Planck Institute for Biological Cybernetics.
∗ Corresponding author: alvaro.barbero@uam.es

EEG data, the latter to classify them as seizure or non-
seizure periods. Webber et al. [4] extract features as relevant
measurements of the raw EEG data and use them as input of
a multilayer perceptron, taking its outputs as a discriminative
set of features used in a simple rule-based decision method.
Another approach from Gabor et al. [5] preprocesses the
data using a wavelet filter, and then a self-organizing map is
used to learn the location of onsets in an unsupervised way,
using a vector of values obtained by Fast Fourier Transform
(FFT) as explanatory features. A similar method proposed
by Shoeb et al. [3] applies the wavelet transform to obtain
a feature vector and a support vector machine is used as the
classification method. The work by Faul et al. [6] reviews
and evaluates the performance of three seizure detection
methods applied in neonatal EEG: analysis of frequency
and bandwidth of the main peak in the frequency (FFT)
spectrum, analysis of cross-correlations, and examination of
the complexity of the EEG data via the use of the Rissanen
Minimum Description Length. It is concluded that there is a
lack of a reliable detection scheme for clinical use. Finally,
in the paper by Osorio et al. [7] an algorithm for detecting
seizures in electrocorticography (ECoG) data is presented.
ECoG is known to provide a better spatial resolution than
EEG [8], although it is an invasive method and hence not
applied so frequently.

In this work we present a preliminary study on the use of
implicit Wiener series to obtain a relevant vector of features
from epochs of ECoG data, so as to be able to train a simple
classifier with them. The main motivation behind the use of
these models is their ability to fit the data to the desired
degree of non-linearity, so that the influence of the model
complexity in the classification accuracy can be studied. The
paper is structured as follows. In Section II we provide a
brief introduction to implicit Wiener series. In Section III
we present our proposed method. In Section IV we show
the results of our experiments with linear and quadratic
implicit Wiener series. Finally in Section V we conclude
that quadratic models do not provide additional benefits over
linear ones for the task of classification, and that the inherent
interpretability of these models might prove to be useful to
gain insights of the underlying inter-channel relationships.

II. IMPLICIT WIENER SERIES

Implicit Wiener series are based on the theory of the
Volterra series [9]. Suppose that a system receives an input
function x(t), which depends on the time t, and outputs
another function y(t). Then the system can be described as
an operator T which transforms x into y: y = T [x]. In its



simplest form T is supposed to have no memory, i.e. the
output value of the system at a certain time t0 is only a
function of its input value: y(t0) = f(x(t0)). If that is the
case the Taylor series can be used to represent T . However,
if the system does have memory, i.e., the output function y is
dependent on past values of x, Volterra series must be used.

The Volterra series representation of a system has the form
y(t) =

∑∞
i=0Hi[x(t)], where the Hi are functionals defined

as

Hn[x(t)] =
∫ ∞
−∞

. . .

∫ ∞
−∞

hn(τ1, · · · , τn) (1)

x(t− τ1) · · ·x(t− τn)dτ1 · · · dτn,

with H0[x(t)] = h0 constant and hn(τ1, · · · , τn) a function
that returns 0 if any τi < 0. In this way, the Volterra series
provide a representation of any possible interaction among
input values at different points of time in the past and at any
degree of non-linearity. A large and well-understood class
of nonlinear systems can be described by using these series.
Furthermore, if input and output time series measurements
of a system are available, a discrete version of the Volterra
functionals can be formulated as

Hn[x(t)] =
m∑

i1=1

. . .

m∑
in=1

hn(i1,...,in)x(t)i1 . . . x(t)in
, (2)

where each input pattern x(t) = (x(t)1, . . . , x(t)m) repre-
sents a set of input values previous to time t. Note that the
memory of the approximation is limited to m past values.
Here the system can be described by finding the values of
the hn(i1,...,in) (which are the so called Volterra coefficients)
through the minimization of the error obtained by a p degree
approximation ŷ(t) =

∑p
i=0Hi[x(t)] and the output value

y(t) at time t.
Unfortunately, the computation of the hn is complex.

However, an alternative representation known as the Wiener
series can alleviate this problem. The Wiener series are a
particular case of the Volterra series in which the functionals
are forced to be orthogonal and the input is assumed to be
white Gaussian noise. In this case it can be shown [9] that
there is a procedure, known as the cross-correlation method,
which finds a Volterra representation that produces the best
approximation in the least squares sense.

An alternative approach to compute these coefficients is
presented in [10] and [11] as the implicit Wiener series. It
is based on the observation that a Volterra functional can
be expressed as Hn[x] = ηn · φn(x), where ηn is a vector
containing the hn(i1,...,in) coefficients and φn(x) is another
one including all the possible products of input values from
x of degree n: φ0(x) = 1, φ1(x) = (x1, . . . , xm), φ2(x) =
(x2

1, x1x2, x2x1, x
2
2, x1x3, . . . , x

2
m), . . . and so on. In this

way the whole Volterra series approximation up to degree
p can be written as

p∑
i=0

Hi[x(t)] = η(p) · φ(p)(x), (3)

where η(p) is a vector in which all the ηn up to degree p
have been stacked, and φ(p)(x) a vector in which all the
φn(x) up to degree p are contained. Therefore, finding the
Volterra coefficients is equivalent to solving a least squares
regression problem in the feature space induced by φ(p)(x),
which can be easily done in a kernel setting by defining the
kernel function

K(x, x′)(p) = φ(p)(x) · φ(p)(x′) =
p∑

n=0

(xTx′)n (4)

as shown in [10], and applying one of the available kernel
methods for least squares regression. Furthermore, this kind
of regression guarantees an optimal solution when the input
data is Gaussian, which is one of the base assumptions for
the Wiener series. Hence, the obtained coefficients provide
in fact the Wiener series representation of the system.
Apart from being simpler, this method has been shown to
provide better estimations of the coefficients than the cross-
correlation method [10].

III. EXTRACTING DISCRIMINATIVE FEATURES

Implicit Wiener series are designed to provide a charac-
terization of the input-output behaviour of a system, and
hence they are not suitable for a direct application to the
classification of a given ECoG recording segment as seizure
or non-seizure. On the other hand, if we believe channel
activity during a seizure onset to be noticeably different
from the one observed during non-seizure periods, we might
reasonably expect to find different implicit Wiener series
in seizure and non-seizure situations and, hence, different
Volterra coefficients too; moreover, the Volterra coefficients
may turn out to be discriminative features of a patient’s state.
However, we must find first some way to turn coefficient
values into classification patterns; we discuss next a way to
do so.

ECoG data are generally presented as an ensemble of time
series where each one represents the brain activity of one
electrode or channel. In order to apply implicit Wiener series,
we consider pairwise relationships among channels, that is,
we build models taking the recordings from one channel as
input signal and the recordings from another one as output
signal. In other words, we will build first temporal patterns
of the form [Xt−K−D+1 . . . Xt−K ;Yt] with D being the
amount of memory considered for the approximation and X
and Y the input and output channels respectively. Note that
a delay K is introduced in the output values as the activity
from the input channel should take some time to propagate
to the output one.

Once the whole recordings have been transformed into
multidimensional temporal patterns, if we consider a record-
ing interval containing L such patterns (we implicitly assume
stationarity in the interval), we can build the implicit Wiener
series by solving a least squares regression problem on
this interval. In our experiments we have done so using a
Gaussian Process [12] with an inhomogeneous polynomial
kernel K(x1, x2) = (1 + x1 · x2)p, which is a special case



of (4) [11]. We have built the models following a two step
strategy in which we first fit the model parameters using
Geisser’s surrogate predictive probability method [12] and
then fine–tune the model by means of leave-one-out Mean
Squared Error estimates.

If we compute the Wiener series over different intervals, it
turns out that the Volterra coefficients are highly dependent
on the concrete recording segment used. This suggests that
statistical information on the coefficient structure may be
useful for discrimination purposes. To get a coefficient
sample, we first separate the recorded data into different
large epochs which we label as ictal or non–ictal according
to the state of the patient when the epoch was recorded. We
consider for each epoch Ei a number of consecutive and
partially overlapping intervals upon which we build concrete
Wiener series for selected pairs of nodes; these models will
capture the effect of one node on the other. More precisely,
we work with intervals It of lenght l and build the next
interval It+1 by removing the first s samples from It and
adding s new ones at its end (see algorithm 1 for more
details). In this way we get for epoch Ei a number Ni of
Volterra coefficients samples upon which we compute their
mean, variance, skewness, kurtosis, min and max. Thus, each
epoch Ei yields a classification pattern (Ci, yi) with Ci the
statistical parameters computed over Ei and yi the label
associated to the patient’s state during the epoch. We have
used these classification patterns in our experiments, which
we report next.

Algorithm 1 Volterra coefficients distributions extraction
1: Given a preprocessed data X ...
2: for each epoch of L samples in X do
3: train = the first l samples of L.
4: while there are still at least l samples in train do
5: Train the implicit Wiener series for each pairwise relationship

using train, and compute their Volterra coefficients, stacking
them all in vol.

6: Add vol to an array of estimations V .
7: Discard the first s samples of train, and add to train the next

s samples from L (if any).
8: end while
9: Compute the statistical measurements of the distribution of the

Volterra coefficients by using the estimates in V , and build a
classification pattern p using these as input values and the state of
L (ictal or non-ictal) as output value (class).

10: Add p to a pattern matrix P .
11: end for
12: Return P .

IV. EXPERIMENTAL RESULTS

As mentioned before, one of the advantages of the implicit
Wiener series is that we can obtain higher order, non-linear
Volterra representations by only changing the degree of the
polynomial kernel used. In this section we study whether
higher order representations can better capture channel in-
teraction. A simple way of putting this to test is to check
whether seizure classifiers built over higher order models
have a better performance.

We used intracranially recorded seizure data from the
Pediatric Epilepsy Center at The University of Chicago. They

Fig. 1. Layout of the right frontal grid electrodes, containing the two
focal nodes. The relationships modelled involved those focal nodes and their
neighbours, and are represented as directed arrows. The numbers under the
nodes stand for their corresponding channel in the data provided.

consist of 15 hours and 20 minutes of continuous EEG
and ECoG recordings of a single patient suffering 7 seizure
onsets. It is known that there are two focal nodes, i.e., nodes
originating the seizures, and that they are both located in two
of the ECoG nodes belonging to the right frontal grid (RFG),
namely those numbered 59 and 64. A layout of this grid
is depicted in Fig. 1. In our experiments we only analysed
ECoG channels that correspond to focal nodes or nodes
adjacent to them. As it can be seen in the figure, node 59
has four adjacent nodes for which recordings were available,
while node 64 has only one adjacent recording node. In other
words, there were five 5 focal node neighbours, i.e., 10 node
pairs.

A sixth order forward-reverse Butterworth filter letting
pass frequencies between 2 Hz and 50 Hz was applied over
the whole data to remove recording artifacts. The parameters
used for the pattern construction were D = 10, K = 10.
We worked with epochs of L = 5000 samples, intervals
of lenght l = 100 and changing s = 10 samples when
moving from one interval to the next. This resulted in 2292
classification patterns, only 85 of them belonging to seizure
onsets. Although under-sampling could have tackled this
class imbalance, we have used the whole dataset to avoid
an increase in the number of false positives in our results,
as in a real scenario the same class ratio would be present.

Many methods are available to perform the classification
task; we shall work here with CART trees [13] as they
are fairly simple and easily provide an interpretation of the
resulting model. Moreover, since a CART tree automatically
selects a small subset of explanatory features that it finds
representative, we may expect that the variables selected
will be those which show larger differences in the Volterra
coefficient distribution of seizure and pre-seizure states. We
can exploit this information by identifying the electrode pairs
associated to the selected coefficients and determining which
relationships have significantly different behavior in seizure
and non–seizure states.

In an initial exploratory experiment we worked with linear
polynomials using all the data available from the first seizure
onset to the last one. The resulting CART tree (shown in
Fig. 2) is quite small, containing only two variables which
correspond to the mean of a Volterra coefficient linearly



Fig. 2. A depiction of the CART tree model obtained when using the
whole data as training set. Only two variables, denoted here as X and
Y , are used, which correspond to the mean and standard deviation of two
Volterra coefficients representing particular relationships between nodes.

linking node 63 to node 59 (neighbour to focal) and to the
standard deviation of a coefficient linking node 59 to 62
(focal to neighbour). Applying this classifier over the whole
dataset results in a 1.55 % misclassification rate, with 0 %
false positives and 1.40 % false negatives. Notice, however,
that the same data have been used for training and testing,
so these accuracies may not be representative of a general
performance. On the other hand, the two extracted features
clearly have discriminative power and the relationship be-
tween node 59 and nodes 62 and 63 seems to greatly depend
on a patient’s state.

To obtain a more significative accuracy measure, we built
100 training-test subset pairs (each pair containing the same
number of patterns as the original dataset) by bootstrap
with resampling, obtaining now an average 2.21 % test
misclassification rate, with 0.71 % false positives and 1.47
% false negatives. This is clearly better than the 3.71 %
a priori distribution of seizures. Another interesting fact
is that, again, the two most frequent variables selected
by the CART procedure over the 100 training subsets are
precisely the ones obtained when using the whole dataset for
training. This seems to imply some robustness in our method.
Moreover, and while these error rates may not be competitive
against state–of–the–art seizure classifiers, they show that
the statistical information they are built upon clearly has
discriminative power and can, therefore, be used to check
whether quadratic channel relationships may provide a better
explanation of the underlying activity. To do so, we repeated
the previous experiments using now quadratic kernels and an
augmented interval lenght l = 200. However, working with
the same 100 train–test pairs as before, the misclassification
rate is now 2.36 %, with 0.82 % false positives and 1.54
% false negatives. In fact, a Wilcoxon rank sum test shows
that the misclassification rates derived from linear kernels are
significantly better at the 5 % level. Thus, quadratic Volterra
coefficient information does not seem to the improve the
performance of CART trees over that achieved by linear ones.

V. DISCUSSION AND FUTURE WORK

In this work we have studied how implicit Wiener series
can be used to analyze seizure ECoG recordings. In par-
ticular, implicit Wiener series makes it quite easy to obtain
such representations simply by adjusting the non-linearity
degree of the approximation and, in principle, higher order

Volterra representations should capture more information on
the underlying data. A simple way of checking whether
this is true is to work with classifiers acting on patterns
derived from different degree models. We have first shown
how such patterns can be derived from statistical information
on the Volterra coefficients and performed then experiments
with CART trees acting over patterns built from linear and
quadratic kernels. In our experiments, a quadratic model does
not improve the classification accuracies of a linear one,
even though the quadratic CART classifier selects Volterra
coefficients that correspond to non-linear node relationships.
This might mean that, although non-linear relationships
among channels exist, they are not relevant for the task of
seizure classification.

On the other hand, another advantage of the application
of implicit Wiener series to seizure data lies in their ability
to pinpoint the most relevant relationships between the
individual recording channels, something for which CART
trees are quite useful. These results hint that implicit Wiener
series might be useful for tasks such as focal node location
or the detection of the most relevant channels involved in the
appearance of the seizure. In any case, a more thorough study
is needed on the application of our procedure to data from
different patients and, also, to determine its applicability
when used on EEG data instead of ECoG recordings.
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