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1. Abstract

In this chapter we review two pieces of work aimed at understanding the principal
limits of extracting egomotion parameters from optic flow fields (Dahmen et al.
1997) and the functional significance of the receptive field organization of motion
sensitive neurones in the fly’s visual system (Franz and Krapp 1999). In the first
study, we simulated noisy image flow as it is experienced by an observer moving
through an environment of randomly distributed objects for different magnitudes
and directions of simultaneous rotation R and translation T. Estimates R’, of the
magnitude and direction of R, and t’, of the direction of T, were derived from
samples of this perturbed image flow and were compared with the original vectors
using an iterative procedure proposed by Koenderink and van Doorn (1987). The
sampling was restricted to one or two cone-shaped subregions of the visual field,
which had variable angular size and viewing directions oriented either parallel or
orthogonal with respect to the egomotion vectors R and T. We also investigated
the influence of environmental structure, such as various depth distributions of
objects and the role of planar or spherical surfaces. From our results we derive two
genera rules how to optimize egomotion estimates: (i) Errors are minimized by
expanding the field of view. (ii) Sampling image motion from opposite directions
improves the accuracy, particularly for small fields of view.

From the iterative algorithm we derived afast, non-iterative “matched filter”
to extract R’ and t', which under many conditions yields results very similar to
those obtained by iteration. Its structure shows striking similaritiesto the receptive
field organization of wide-field motion sensitive neurones in the visual system of
the fly (Krapp and Hengstenberg 1996), but there are characteristic differences. To
explain these differences, we developed a more elaborate version of this approach
in which the statistical properties of the fly’s environment and behaviour, i.e. the
distribution of object distances and flight directions, are taken into account. A
matched filter was directly derived from an optimization principle that minimizes
the variance of the filter output caused by noise and distance variabilities. The
optimized filters were then compared to the detailed organization of the receptive
fields of the fly’s wide-field neurones. Our analysis suggests that these neurones
are not optimal for estimating the magnitude of R and t’, but rather for consis-
tently encoding the presence and the sign of rotatory or translatory flow fields
along a particular set of axes.
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2. Introduction

Many visually controlled behaviours require a fast and reliable determination of
egomotion. One source of egomotion information is the characteristic pattern of
retinal image shifts which are induced when an observer moves relative to the
surroundings. These so-called optic flow fields (Gibson 1950) are thought to be
analysed by the visual system of many spices — including human — to gain infor-
mation on different aspects of egomotion (reviews: Miles and Wallman 1993;
Lappe 1999; Lappe et al. 1999). In particular, flying and swimming animals have
to rely on optic flow to monitor their true movement in space because they operate
in a drifting and turbulent medium the movement of which cannot be detected
directly.

In this chapter two questions regarding egomotion estimates from optic flow
fields are addressed. First: How reliable can egomotion parameters be determined
in principle from visual cues? And second: Can these considerations shed some
light on the functional role of certain motion-sensitive neuronesin the fly brain?

At any given moment egomotion can be uniquely decomposed into a rota-
tion R and a linear displacement T (Koenderink 1986). This fact has lead to a
large body of theoretical and experimental work addressing the problem of how
accurately R and T can be extracted from optic flow (for areview see Heeger and
Jepson 1992). Because al points in the environment along one viewing direction
are projected to the same point in the image, the monocular 2D image of the 3D
environment is ambiguous. From the image flow alone an observer can thus only
estimate the direction and the size of ego-rotation R’, and the direction t' (unit
vector) of translation but not its absolute speed. As far as the information about
the surrounding world is concerned, image flow only reveals the relative distances
of contours. Whenever absolute distances or the true speed of locomotion need to
be known, additional information (often from a non-visual source) is required
either about the true speed of the observer, or about the absolute distance of at
least one (sufficiently close) contour.

The limits of accuracy of the egomotion estimates, R’ and t’, depend on a
number of parameters, including the spatial structure of the environment, the
density and distribution of contours, and the design of the visual system in terms
of the orientation and extent of its visual field. The accuracy with which local
motion vectors can be measured imposes additional constraints. In afirst step, we
therefore analyse the effects the environmental topography and the visua field
have on the reliability of R’ and t’ by simulating spherical and planar surround-
ings, and by restricting the solid angle of measuring optic flow. In contrast to a
camera-like coordinate system with a planar image, we prefer algorithms formu-
lated in a spherical coordinate system because many animals, especialy
arthropods possess nearly panoramic visual fields. The global analysis of the
principal limits for estimating egomotion parameters from optic flow leads to the
development of a fast “matched filter”. The structure of this filter shows striking
similarities with the receptive field organization of wide field motion sensitive
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neuronesin flies (Krapp and Hengstenberg 1996; Dahmen et al. 1997; Krapp et al.
1998).

The third optic neuropil of the fly visual system, the lobula plate, contains
about 60 wide-field, directionally selective interneurones (Hausen 1984; Hausen
and Egelhaaf 1989; cf. also Warzecha and Egelhaaf, this volume) which integrate
the outputs of retinotopically organized arrays of many local motion detectors
(EMDs; review: Reichardt 1987). At a given location, retinal image shifts are
analysed by sets of at least 6 EMDs which differ in their preferred directions
(Buchner 1976; Gotz et al. 1979). Tangential neurones that are thought to be
involved in visual course stabilization and gaze control have been divided into two
distinct functional and anatomical groups. the horizontal system (HS; Hausen
19823, b) and the vertical system (VS; Hengstenberg et al. 1982; Hengstenberg
1982). The HS comprises three neurones which are named according to the orien-
tation of their receptive fields and their dominant sensitivity to the direction of
image motion. In a crude approximation, all three HS neurones respond to hori-
zontal front-to-back motion. HSN (N = north) is highly sensitive to wide-field
motion within the dorsal visual field, HSE (E = equatorial) responds maximally to
respective motion in the equatorial region, and the receptive field of HSS (S =
south) covers the ventral visual space. The VS neurones, in contrast, were thought
to preferentially receive input from EMDs that are tuned to vertical downward
motion. In early studies, however, it had already been noted that the local pre-
ferred directions of the tangential neurones are not always confined to either hori-
zontal or vertical orientations alone (Hausen 1981; Hengstenberg 1981). It has
now become clear that the distribution of local preferred directions and motion
sensitivities within the receptive field of individual tangential neurones show
striking similarities with the distribution of velocity vectors in optic flow fields
(Krapp and Hengstenberg 1996; Krapp et al. 1998). These findings suggest that
each tangential neurone is adapted to process image flow generated by a specific
movement of the insect.

Although the receptive field organization of the tangential neurones shows a
good qualitative correspondence to the above mentioned matched filter model
(Dahmen et al. 1997), there are systematic differences. With respect to the sensi-
tivity distribution within the receptive fields of the VS neurones, a marked dorso-
ventral asymmetry was obtained which is not reproduced by the model of Dahmen
et al. (1997). We therefore review afurther study that tries to explain these differ-
ences from the statistical properties of the fly’s environment and the velocity
characteristic of its motion detectors (Franz and Krapp 2000). In this approach,
matched filters are derived from an optimality criterion that minimizes the vari-
ance of the filter output caused by noise and distance variability between different
scenes. To obtain quantitative predictions of the receptive fields of tangential
neurones, it is necessary to model (1) the regional differencesin distance distribu-
tion in the visual field, (2) the average distribution of flight directions, and (3) the
velocity characteristic of the fly’s motion detector. The resulting matched filters
accurately reproduce the receptive fields of several tangential neurones.
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3. Limiting factors for the extraction of egomotion parameters

3.1 An iterative procedure for extracting egomotion parameters from
optic flow

The limits of accuracy of R” and t' were studied in “numerical experiments” (for
details, see Dahmen et al. 1997), much in the same way as described by
Koenderink and van Doorn (1987). We used their model of arigid world consist-
ing of N fiducial points at fixed positions in space that are given by the vectors D;
(i = 1...N). The visual system is represented by a unit sphere onto which each
fiducial point isimaged. The vantage point in its centreis the origin of the coordi-
nate system. The distances of the fiducial points from the vantage point are D.
The viewing directions (unit vectors) towards the fiducial points d = D;/D; are
called markers. When the system moves on a curved path, described by rotation R
and translation T, image velocities p; at the markers d are generated according to:

p=Nd/Mt=-(T-(T*d)d)/D -[R" d] (1)

where « means the scalar product and [ ] the vector product. Introducing the
“relative nearness’ | = [T|/D; (for details, see Koenderink and van Doorn 1987,
Dahmen et al. 1997) equation (1) can be rewritten as:

p=-Wt-(ted)d)-[R" d] (19)

Image velocitiesfor at |east five markers are necessary in order to solve equation
(2). Usually local image velocity estimates p at more than five markers are avail-
able. In real life these estimates are subject to noise and errors, so that generally
there will be no solution to the simultaneous equations (1). The best we cando is
to find a“best estimate” R’, t’, 1’ in the sense that the average error E = (1/N)
a|p’-pf is minimized, where p’ are derived from R’, t', |’ via equation (1a).
Minimizing E with respect to variationsdR’, dt’ and dy;’ under the constraint |t'| = 1
leads to the following three equations:

t=-k{av(w'p) +[R "~ av(’d)] -av(w' (t's d)d) @
R=auln’ A +I v )]+ au(R's d)d) ©
W=t (a-[d" RD/(@-(Cd))

In these equations k is a normalization factor that allows for |'| = 1, and
av(x) = UN a(x;); i = 1,...,N. This set of coupled linear equations cannot be
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solved directly but only in an iterative procedure. As pointed out by Koenderink
and van Doorn (1987) this offers a “best solution” in the sense that E is mini-
mized. There is no way to approximate the measured flow vectors p better by
other p’ generated by egomotion in an environment of rigid and stationary objects
whatever extraction algorithm for the egomotion components R’, t' will be used.
Thisistruefor distributions of error vectorsp’ -p which are independent of d; and
isotropic around p;. For non-isotropic distributions p’-p; have to be multiplied in
E by proper weights.

In order to test the reliability of R’, t' under various conditions we per-
formed “numerical experiments’ in the following way: We selected a combination
of vectors R and T, a visual field of the observer, and a certain structure for the
environment, i.e. a set of parameters which describe a spherical or planar envi-
ronment, the average angular density of markers, and the width of the Gaussian
vector noise superimposed on the unperturbed image vel ocities. We call this set of
parameters a visual configuration. For each visual configuration we selected 32
sets of randomly distributed markers. For each set of markers 32 sets of perturbed
velocity fields were generated. Thus for each visual configuration 1024 simula-
tions of a measured flow field were created. For each “measurement” we evalu-
ated R’ andt’ and observed the size-scatter of R’ and the angular scatter of R’ and
t'. We selected R and T along one of the coordinate axes. Because equations (2),
(3) arelinear, results for any other orientation of R and T can be derived from this
set of conditions.

3.2 “One shot” estimates and a matched filter for estimating
egomotion parameters

In many visual configurations, iterative algorithms are time consuming. The short
latencies of many animals' responses to pattern rotation and translation suggest
that they are able to determine components of their own movement by way of a
fast, almost instantaneous mechanism. Such an ability would also seem to be
essential for visual control of robot navigation. To propose a suitable fast
“matched” filter we reformulate equations (2) and (3):

t=-2{l -av(' dAw d)} " (av(w'p) + R~ av(w'd)]) (28)

R ={I-av(dAd)}* @v(p" d]) +[t' " av(w'd)]) (38)

(I isthe unit matrix; A indicates the dyadic product; ? is a normalization factor so
that |t'| = 1).

Theterm [R’ * av(y’d)] in equation (2a) represents the “apparent transla-
tion” induced by rotation R’, and the term [t' ~ av(y’ d)] in equation (3a) repre-
sents the “apparent rotation” induced by translationt’. None of the terms depends
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on the actual image flow p. Provided D; are distributed sufficiently symmetrical
the apparent terms become small. The matrices{...}"* depend only on the markers
di and reflect their distribution in the solid angle of the visual field. With suffi-
ciently many and symmetrically distributed markers, the equations can be further
simplified, because the off-diagonal elements of the matrices practically disap-
pear. Then equations (2a) and (3a) can be re-written:

aV(px,i/ Di )/ aV(Si n2 QX,i/ |:)i 2)
to' ~ av(py,;/Di)av(sin® gy;/D;%) (2b)

aV(pz,i/Di )/aV(Si n2 qLi/Di 2)

av(py;dz; - Pz dy;)av(sin’cy;)
Ro’ = av(p,;dx; - Pxida)/av(sin’ay;) (3b)

aV(px,i dy,i - py,idx,i )/aV(Si nzqz,i)

where d;, Oy, , 0z arethe angles of d with the x-, y-, z-axis, respectively. The two
equations (2b) and (3b) allow for an initial approximation of t' and R’ in asingle
step calculation. In the iterative solution the resulting estimates are used as initial
values for equations (2a) and (3a). To achieve a better estimate further iterations
are performed that include the “ apparent translation” and “ apparent rotation” com-
ponents. Iteration in general improves the estimates whenever the “apparent
terms’ deviate significantly from zero.

Equations (2b) and (3b) can be interpreted intuitively. Suppose, for instance,
that we are interested in the rotational component R, about the axis a. We then
first construct a “template” field of unit vectors parallel to the flow field induced
by a unit rotation about axisa at all markers d:

Ui =-[a” d]/sing, )
where q; is the angle between a and d. We project the actual flow p onto
this vector field to evaluate the contribution of p toRy’:

mMi=peuty =[p" d]-alsing (5)

In order to get the properly scaled contributions of all flow vectors g to Ry’
we haveto average m; / sin g;. To arrive at equation (3b) and a quick, “best one
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shot”, estimate of the rotation component about axis a, we have to take a weighted
average of these contributions with the weighting factor

wh = sin’g;. (6)

Equation (2b) can be interpreted in an analogous way. When we are inter-
ested in the component t,’ of t' along the unit vector a, we regard the template of
unit vectors parallel to the flow field induced at marker d by a unit translation a:

ulai=-[[d " & d]/sing. @)
We project p onto u'y;:
m' =p *+u'y = p +a/sing.

In order to get the proper contribution of all p to t;’ we have to average
D; m'/ sin g;. Comparison to equation (2b) tells us that we have to use a weighted
average with the weighting factor

WTi = sin2 (o] / Di2 (8)
to find the “ best one shot” estimatet’.

3.3 What influences the accuracy of estimating egomotion parameters
from optic flow?

In the following we demonstrate how various factors affect the accuracy of ego-
motion parameter estimates derived from the procedures described in the previous
two sections.

3.3.1 The number of fiducial points

The reliability of R’ and t' depends on the number of flow measurements, as
demonstrated by the example of our simulation results in figure 1. For the visual
configuration (see inset) in this case arotation R = (0, 0, 1) around the vertical
axis (yaw rotation) was combined with aforward tranglation T = (1, 0, 0), and the
visual field consisted of two 160° wide cones that were centred symmetrically
along the transverse axis. The markers were equally distributed in all directions,
while their density was varied in this numerical experiment between 20 and 1000
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points/ 4p. Distances D; were normally distributed around 1 with s = 0.1 to gen-
erate a “spherical” environment. The perturbation vectors added to the original
image flow to simulate errors of measurement were equally distributed in all
directions. Their size was normally distributed with s = 0.1 |p|. Figure 1a shows
the mean and standard deviation of the angular deviation from the veridical rota-
tion vector for R'x (? ), R'y (O), t'y (? ), t'z (? ) as function of point density.
Figure 1b illustrates the size scatter of R’, given as fraction of the true rotation
magnitude |R|. It is apparent from these plots that the estimates of direction and
size of egomotion from the fully iterative procedure are very reliable, both in
terms of biases and random fluctuations that are due to noisy signals. Only when
the density of fiducial pointsisreduced to less than 50/4p, alarge scatter and a 5%
underestimation of rotation magnitude indicate a notable impairment of the per-
formance (for a more extensive documentation, see Dahmen et al. 1997). For all
further simulations we chose a marker density of 250/4p which corresponds to an
average angle of about 10° between markers.
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Fig. 1 Mean and standard deviation of the angular scatter of R’ and t' (a) and of |R’| (b) versus
the density of fiducial points. The visual configuration is indicated in the inset: rotation (black
arrowhead) R = (0,0,1), translation (white arrowhead) T = (1,0,0), the visual field are two oppo-
site cones, 160° wide, oriented along the +y and —y axis, distances D of fiducia points are
normally distributed around 1 with range s = 0.1 (“spherical” environment). The perturbation dp;
of theflow p; was equally distributed in all directions and |dpi| was normally distributed with s
(Jdpi]) = 0.1 |pi|. The angular error of R’ and t’ is indicated (in °) by the mean and standard
deviation of the distribution of the two components of R’ and t’ orthogonal toRand T:? =Ry,
? =Ry ? =t'y,? =t
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In Fig. 2 the visual field were two 100° wide cones of variable angular separation. The cone axes
pointed symmetrical to the left and right of the x-axis in the x-y plane. Results for three combi-
nations of R and T, indicated in the insets, are presented. In the first column the panels show the
angular distribution of R’ and t’ in an analogousway asinfigurel. Ina:? =Ry,? =Rz ? =t),
? =t';inb:? =R, ? =Ry, ? =t),? =t';inc? =Ry, ? =Ry, ? =ty ? =tYy. Inthe
second column mean and standard deviation of |R’| versus the angular separation of the two cone
axes are reproduced. The density of fiducial points per solid angle was constant on the average
(250/4p) in each cone, so that in the area of overlap of the two cones the density of markers was
twice that of non-overlapping areas.

3.3.2 The angular separation of the cones in a two cone visual field

A number of recent studies of optomotor reflexesin insects, crabs, and birds show,
that responses to pattern rotation are enhanced when contrasts are visible in oppo-
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site directions in the visual field (e.g. Nalbach 1990; Frost 1993; Kern et a. 1993;
Blanke and Varju 1995). To test whether there is a systematic reason for combin-
ing flow information from specific parts of the visual field, we restricted fiducial
points to two cone-shaped segments of the visual field and varied their angular
separation. The axes of the cones were located in the x-y plane, symmetrical to the
x-axis. We asked how the accuracy of R’ andt’ depends on the angular separation
F between the two visual cones for different types of egomotion. In figure 2 the
results for specific combinations of R and T as indicated in the insets are pre-
sented for a cone width of 100°. The density of pointsin each cone was kept con-
stant, so that in overlapping areas of the two cones the density of fiducial points
was twice as high as in non-overlapping areas. In this way we excluded a possible
influence of avariable number of points.

In the visual configurations of figure 2 we find in some cases a strong influ-
ence of the angular separation F on the accuracy of R’ and t’. For instance, small
angular separationsF lead to large systematic errors of t'yand |R’| (Fig. 2b,e) and of
Ry, t'y and |R’| (Fig. 2c,f). These errors practically disappear when the visual
fields are oriented in opposite directions (F = 180°). As might be expected, the
accuracy also improves for enlarged visual fields (data not shown). In the special
visual configuration of figure 2a,d (roll around the axis of translation) systematic
errors are small. It can be concluded that in general it pays to analyse flow in
opposite viewing directions to monitor egomotion. Since the estimation algorithm
does not contain any specific interaction of information from opposite visual
fields, this advantage is simply a consequence of geometry. The reason for thisis
that av(pd;) decreases when the fiducial points are located in opposite regions of
the visual field, reducing the “apparent terms” in equations (2a) and (3a). In addi-
tion, the non-diagonal elements of the matrices in these equations are small under
these conditions. For the specia visual configuration of figure 2a,d the “apparent
terms”’ are small for all F because R, T, and av(y; d;) are nearly parallel independ-
ently of F. Hence the systematic angular error turns out to be negligible for the
wholerange of F.

In the following simulations we use two visual cones pointing either into the
same direction along the x-axis simulating a visua field restricted to frontal
regions, as in the human visual system, or in opposite directions along the y-axis
asfor instancein the laterally directed eyes of insects.
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Fig. 3 Resultsfor typical combinations of R and T in a“spherical” environment, illustrated in the
insets, are presented as function of the width of the cones. In the first row angular errors for fully
iterated estimates in opposite cone configurations are shown (conventions of symbols are analo-
gous to Fig. 2). The second row reproduces angular errors of fast estimates (equations (2a),(3a)
with R’ and t’ on the right side replaced by Ro’ and to' (equations (3b),(2b) resp.) in the same
configurations as row 1. The third row presents angular errors of fully iterated estimates in
corresponding “frontal vision” configurations (2 parallel cones). The fourth row shows errors of
size estimates |R’| in the same configurations as the previous three columns (opposite cones: ? =
full iteration, ? = fast iteration; ? = parallel cones). Opposite cones were oriented along the +y
and -y axis, the two coaxia cones aong the x axis (see insets). Note the different scales of
angular deviation in the third row.
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3.3.3 The size of visual cones and the relative orientation of R and T for
iterated and one-shot estimates

We analysed how different orientations of R and T influence the errors of R’ and
t" by pointing both vectors either parallel or perpendicular to the axes of the cones.
We also varied the width of the cones, keeping the density of markers constant.
Because equations (2) and (3) arelinear in R and T, estimates for all other orien-
tationsof R and T are linear combinations of the results for these orthogonal
components.

We begin by considering two typical situations, namely a pitch (left column
in figure 3; combinations of R and T are indicated in the insets) and a yaw rotation
(right column in Fig. 3) during forward translation. The first row in figure 3 shows
angular errors of fully iterated estimates, the second row those of one-shot esti-
mates, the third row errors of fully iterated estimates with a double cone along the
x-axis, and the fourth row the errors of size estimates [R’| for all visual the con-
figurations considered here. For other combinations of R and T , in particular
when they are oriented parallel to the cone axis, the estimates are generally in very
good agreement to the veridical values, irrespective of the cone width. Fast esti-
mates are the result of equations (2a) and (3a) with R’ and t’ on the right hand
sidereplaced by the Ry’ andty’ of equations (3b) and (2b). It is quite obvious from
the comparison of the first two rows and the corresponding results in the fourth
row (? and? ) that for a spherical environment fast estimates are nearly as good
as fully iterated ones. The disadvantage of a frontal vision system as far as ego-
motion estimates are concerned is obvious from the third row of this figure (note
the different y-scales in Figs. 3c, g) and corresponding results in the fourth row
(? ). Inthisvisual configuration only large cone angles lead to reliable estimates.

Misjudgments are again due to the asymmetric distribution of the d; in situa-
tions in which the angular separation of the two cones is small, inducing a large
“apparent translation” component by rotation in equation (2a) and a large “ appar-
ent rotation” induced by translation in equation (3a). The one exception, for which
no impairment of performance is expected from the theory, and actually not found
in simulations, is the case where R, T and the cones are collinear. In this visual
configuration av(m d; ) is nearly parallel to R and T, and the “apparent” terms are
very small.

3.3.4 The structure of the environment: moving relative to planes with
or without “clouds”

Many animals and machines move on or paralel to the ground plane and the
question arises what consequences environmental topography has for estimating
egomotion parameters from optic flow. We thus analysed the principal limits of
egomotion parameter extraction in a situation in which the fiducial points are
located on a plane. To explore the role of depth cues, we simulated two parallel
transparent planes at various distances from each other, since depth cues in the
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Fig. 4 Simulation results (angular deviation of R’ and t’ in left column, errors of magnitude of
R’ in right column) as function of cone width, for atypical combination of R and T and several
relative orientations of a single plane environment. The distance of the planes from the origin is
one unit; the distance of the second plane in g and h is two units. In a, b a horizontal plane is
depicted; in c, d avertical plane parallel to x-z; ine, f the same vertical plane as ¢ and d but with
‘clouds, and in g, h two vertical planes are depicted. The visual configuration is indicated in the
insets. Symbol conventions are analogous to those in figures 1-3.

same viewing direction, if properly exploited, may allow the extraction of the
heading direction even in the presence of rotation (cf. Longuet-Higgins and
Prazdny 1980). Fiducial points were generated by piercing the plane(s) along
straight lines through randomly distributed markers within the visual field. About
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50% of the lines did not intersect the plane(s). In these cases we either assumed
that there is visible contrast at infinity (i = 0, we call these distant contours
“clouds”) or that fiducial points are lacking in these directions (no “clouds’). In
the presence of “clouds’ or two transparent planes the number of fiducial pointsis,
on the average, twice that of the single-plane environment. The effect of adding
“clouds” in the hemisphere opposite to the planeisto add flow induced by rotation
only, and to double the solid angle where flow is present. Adding a second trans-
parent plane adds flow induced by translation only, but does not change the solid
angle of visible flow compared to the single-plane environment.

Figure 4 shows the results we obtained for a yaw turn during forward trans-
lation and a number of environmental configurations. Figures 4a-d depict the
situation for a“single plane without clouds’, as seen in the ventral or lateral visual
field, respectively, figures4e and f for a“single plane with clouds’, and figures 4g
and h for “two planes’. The distance of the first plane to the vantage point was one
unit, that of the second one two units. For other distances of the second plane
results were similar to those presented here and for other visual configurations
they are generally better, mostly leading to a veridical representation of the ego-
motion parameters.

3.3.5 General rules for extracting egomotion parameters from optic flow

We have attempted to characterize the principal limits of extracting egomotion

parameters from optic flow under the restriction of an isotropic error distribution.

We considered the number of necessary flow measurements, the size of the visual

field, the optimal directions in which flow is measured, and the distribution of

contoursin the environment. Our main results can be summarized as follows:

1. The precision with which the direction of R’ or t’ can be determined may be
asymmetric: mean and variance of the two components orthogonal toR and T
may be quite different (see for instance Figs. 2b,c; 3c; 4c).

2. With cone widths smaller than 100° egomotion estimates are unreliable espe-
cially in cases when a planar environment is seen through one cone only
(compare Figs. 4a,b and 4c,d).

3. If both, R and T, are orthogonal to the cone axes egomotion estimates are
impaired. Estimates are exceptionally good if both, R and T, are parallel to
the cone axes (data not shown).

4. Adding “clouds’ improves estimates of rotation more than adding depth cues.
When the plane is seen through one cone, adding a set of distant points
reduces the angular scatter of R’. Adding depth cues by a second depth plane
is less effective (compare Figs. 4e and 4g).

5. One shot estimates are practically as good as fully iterated ones as long as
distances do not play an important role (compare Figs. 3a,e and 3b,f). But in
an environment, where distances are distributed anisotropically (plane envi-
ronment) the fully iterated solutions, which include estimates |;’, are (in some
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visual configurations more than in others) superior to one shot estimates (not
demonstrated here).
Our general conclusions are, firstly, that wide visual fields are of utmost
importance for extracting reliable egomotion parameters, and secondly, that the
“apparent” termsin equations (2a), (3a) should be small, i.e. flow should be meas-
ured in opposite directions of view.

4. Fly tangential neurones and matched filters for optic
flow fields

4.1 Are tangential neurones “one shot” estimators for egomotion?

In the search of neural filters underlying the processing of optic flow, one of the
most intriguing pieces of evidence comes from electrophysiological analyses of
large integrating neurones in the fly visual system. As mentioned in the intro-
duction, the local receptive field properties of some tangential neurones have been
determined experimentally (Krapp and Hengstenberg 1997). When the resulting
local sensitivities and preferred directions are plotted into a map of one visual
hemisphere, they show a marked resemblance to the structure of optic flow fields
generated by a unique egomotion component (Krapp and Hengstenberg 1996;
Krapp et a. 1998). As we have seen in Section 3.2, this is exactly what we would
expect in afast filter for “one shot” estimates of egomotion: If we rewrite equa-
tions (2b) and (3b) using the equations (4)-(8), the response of the matched filter
for the egomotion axisa is given by

tao’ =Nav(l’ singi peu'ai) )

Rao’ =Nav(sing; p* u%s;) (10)

with some suitable normalization factor N. The unit vectors uTai and uRai are
parallel to the flow field generated by translation in direction a or rotation about a
(cf. equations (1), (4) and (5)), just as one observes in the local preferred motion
directions of the investigated tangential neurones. This suggests that equations (9)
and (10) could provide a model for the egomotion preference of these neurones.
However, the model predicts alocal motion sensitivity following a sin g; depend-
ence which was not found in the measurements (Franz and Krapp, in press).
Instead, the investigated neurones show a pronounced dorsoventral anisotropy in
their receptive fields. For instance, the rotatory VS neurones are more sensitive to
motion above than below the horizon. In contrast, the so-called Hx neurone is
more sensitive below the horizon (cf. Figs. 5a,c,e). Thus, the model needs to be
extended if we want to explain these anisotropic sensitivity distributions.
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Fig. 5 Receptive fields and matched filters. a Averaged receptive field of VS4 neurones (N =5).
The orientation of each arrow represents the local preferred direction this location and its length
indicates the motion sensitivity normalized to the maximum response. The right visual hemi-
sphere and the first meridian of the left hemisphere is mapped in this example. Positions are
defined by azimuth and elevation. Azimuth and elevation of 0° correspond to the position frontal
and in the equatorial plane of the visual field. The azimuth of 90° denotes the lateral, and the
azimuth of 180° the caudal position in the visual field. The filter axis of the V4 is aligned
horizontally, corresponding roughly to the body axis of the fly. ¢ The averaged V S10 receptive
field (N = 5) shows a similar structure but its filter axis is shifted towards the frontolateral visual
field (azimuth approx. 45° and elevation approx. 0°). e The receptive field of the Hx neurones is
reminiscent to an optic flow field induced by translation along a horizontal axis pointing at an
azimuth of about 135°. The sensitivities in the translatory receptive field are higher in the ventral
visual field whereas the V'S neurones are more sensitive to motion in the dorsal visual field. b, d
and f show the corresponding matched filter structures as derived by combining the respective
direction templates with local weights calculated from equation (13) for a specified world model
and a particular distribution of translation directions (modified from Franz and Krapp 2000).
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4.2 Optimized matched filters

The generalized model uses the basic structure of the matched filter as described
above (eguations (9) and (10)), i.e., atemplate field of unit vectors u,; paralel to
the local velocity vectorsinduced by a particular egomotion:

e=Nav(w; f( pi * Ua; ))- (11

As before, the detector signals are weighted by the local motion sensitivities
w; and summed up to give the filter output e. In addition, the model includes the
velocity characteristic f of the fly motion detector which resembles an inverted U-
shape. A model as expressed by equations (9) and (10) uses a linear response, i.e.
f(x) = x. In the fly, this approximation is valid only for small image velocities (ca.
0to 10°/s). At higher velocities, the detector response saturates in an extended, flat
maximum ranging from ca. 20 to 200°/s before it decreases at higher speeds (Borst
and Egelhaaf 1993). The behaviour near the maximal response can be modelled by
dividing the current detector input by its absolute value. When the absolute value
falls below athreshold P, we set the detector output to 0. Usingf(x) = x/|x| for x > P,
equation (11) becomes

e:NaVP,u>P(Wi(n'Ua,i)/lp'ua,i|)- (12

In contrast to the model described in Section 4.1, a matched filter using such
a mechanism cannot encode the magnitude of an egomotion parameter since it
uses only the sign of the flow projection asinput. The filter output rather indicates
the presence and sign of the apparent egomotion component along its axis.

To obtain the local sensitivity distribution of the matched filter, we now
adopt a different point of view: Instead of using a“one shot” version of an ego-
motion algorithm as in Section 3.2, we directly derive the w; from an optimality
criterion, namely by minimizing the variance of the filter output caused by noise
and distance variability. The varying distance distribution in different scenes |eads
to variations of the translatory flow, even when the egomotion parameters remain
exactly the same (cf. equation (1)). As a consequence, the filter output will be
different for the same egomotion in different scenes. The variance in the filter
output can be minimized by choosing appropriate w; that assign less weight to
detector signals with high noise content and distance variability. Such an opti-
mized matched filter is able to maintain its output as consistent as possible
between different scenes.

It can be shown that the optimal sensitivity distribution for equation (12),
minimizing the output variance, is given by (Franz and Krapp 2000):

Wi = E(p * Uaj)?/ (D4® + Dni) (13



Extracting Egomotion from Optic Flow 161

where E denotes the expectation over all scenes, Dt;? the local variance of the
translatory flow caused by the distance variability and Dn;? the noise variance of
the motion detector signal. Dt;? is especially high in viewing directions with small
absolute distance, high distance variability, and a large component of T along u,;
(cf. equation (1)).

4.3 Modelling anisotropies in distances and flight directions

A plausible start to explain the observed anisotropic sensitivity distributionsis that
they reflect the distribution of distances in the fly’s environment. Distances to the
ground usually tend to be smaller than to objectsin the upper regions of the visual
field. The variance of the translatory flow Dt in equation (13) is therefore larger
below the horizon. Flow above the horizon is thus more reliable for the deter-
mination of R’ and, therefore, should be given a larger weight. Vice versa, flow
below the horizon should be given alarger weight in estimating t’ since the trans-
latory flow projection is much larger in this part of the visual field (cf. Nalbach
and Nalbach 1987). Since the statistics of distances and translations for an animal
like the fly are not known, we have to make some reasonable assumptions about
their distribution. As a crude approximation, we assume a simplified “world
model” in which the mean distances below the horizon are smaller than those
above the horizon. The distance scatter around the mean is assumed to be isotropic
(see Fig. 6a). In addition, we assume that the fly is heading preferably forward.
Thus, translations encountered during flight are modelled in a broad and unimodal
distribution with a peak in the forward direction (see Fig. 6b).

Based on the assumptions about distances and translations, optimal matched
filters can be computed according to equation (13). The resulting weight sets
depend only on a few parameters. This allows us to apply a fitting procedure in
which these parameters are varied until the best fit to the measured motion sensi-
tivities of the tangential neurones is reached. The goodness-of-fit is measured by
evaluating their c®-value. Weight setswith a c>-value corresponding to p < 0.05 are
rejected.

We first tested weight sets for the linear range of motion detector response
such as the ones described in equations (9) and (10), using our world model and
the chosen translation distribution. All of the resulting weight distributions could
be rejected with high probability. Provided that our assumptions capture essential
elements of the fly’s environment, this means that the tangential neurones under
consideration are not optimized for direct “one shot” estimation of the current
rotation or translation. The optimal weight sets from equation (13), however,
produced a significant fit for some tangential neurones. For instance, there is a
close correspondence between the measured response field of V4 (Fig. 5a) and
Hx (Fig. 5e) and the structure of an optimal matched filter for sensing a particular
rotation (Fig. 5b) or translation (Fig. 5f), respectively. This suggests that these
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neurones rather act as detectors for the presence and sign of the rotatory flow
around a particular set of axesinstead of directly encoding egomotion.

Both matched filter models failed to explain the receptive field properties of
a number of other VS neurones. The receptive fields of these neurones are very
close to the model (13) in some regions, but in other regions where the model
predicts a high motion sensitivity they respond only weakly to motion (e.g., VS10
in figure 5¢ and d which is not sensitive to motion in the frontal part of the visual
field). This indicates that further, possibly anatomical or developmental con-
straints are at work in their design.

Fig. 6 a Simplified world model of the fly’s environment. The distances are assumed to scatter
around the mean distance Do with a constant standard deviation DD. Above the horizon (eleva-
tion e> 0) a constant average distance Do is assumed. The environment is assumed to be flat
below the horizon. b Distribution of translation directions encountered by the fly as assumed to
generate filter sensitivity profiles. One thousand different directions were calculated using an
unimodal two-dimensional von Mises distribution. (modified from Franz and Krapp 2000).

5. Discussion

We reviewed theoretical and neurophysiological studies aimed at understanding
how egomotion parameters can be estimated in biological and artificial systems. In
the wake of these considerations it is tempting to speculate about the optimal
design of systemsthat solve avariety of tasks related to visual guidance.

5.1 Sampling the visual field for robust egomotion estimates

We note that the direction of R and T can be determined from optic flow in arigid
world to a precision of about 3°, provided that the flow can be measured with a
relative error of 10% at 50 markers which are distributed over a whole spherical
visual field. Under these conditions, the magnitude of R can be extracted to within
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5% (see Fig. 1). A system dealing with 50 markers, which are scattered across the
whole sphere, will operate on signals at an average angular separation of about
22°. This can be compared to 1200 ommatidia in Drosophila or 6000 in
Calliphora flies, or maximum spatial resolution of approximately 5° or 1°,
respectively (Land 1997). Because this is thought to roughly correspond to the
maximum number of local motion measurements available to the flies' visual
system, there seems to be a considerable amount of redundancy in the sensory
system reflecting the sparse distribution of contrasts in natural environments. For
the extraction of egomotion parameters it therefore is not necessary to perform
many (as compared to the potentially available number) and very precise local
measurements. It is essential, however, to measure image motion over a large
solid angle and to apply the “appropriate” integration. If these conditions are met,
the estimates are robust against relatively large flow errors even when only a few
image velocity measurements are available. This robustness is particularly rele-
vant in environments where local contrast is not distributed homogeneously
throughout the entire visual field.

Our investigation of an optical system equipped with two visual cones of
variable angular separation and width was stimulated by results in visualy
induced behaviour in insects which showed that insects distinguish between rota-
tional and translatory flow (Junger and Dahmen 1991). It was shown that the gain
of compensatory head and body movements increases with the angular separation
of two stripes rotating around an animal (Frost 1993; Kern et al. 1993; Blanke and
Varju 1995). Our theoretical analysis now shows that the errors in estimating
egomotion parameters are minimized by pointing the receptive field axes into
opposite directions (see Fig. 3a). As a simple consequence of geometry, the
amount of error reduction depends on the visual configuration: for small visual
fields it is often remarkable, for wide cones it is less pronounced (compare Figs.
3a and e with Figs. 3c and g). In contrast to humans, arthropods with their com-
pound eyes benefit in this respect from their extended visual fields, an advantage
which is increasingly being recognized in robotic applications (Nelson and
Aloimonos 1988; Chahl and Srinivasan 1997; Nagle et al. 1997; Franz et al.
1998). In case animals have to operate on arestricted field of view, they can use
knowledge about their typical translatory locomotion by orienting their cones
forwards and backwards. Thisis somewhat counter-intuitive, because, particularly
for small visual fields, the largest flow vectors are not visible in this case. How-
ever, the “apparent” terms in equations (2a), (3a) are reduced under such condi-
tions, which allows for a more reliable estimation of translatory egomotion com-
ponents. Vice versa, visual configurations with R and T being oriented orthogonal
to the visual cone axes are most unfavourable, because the apparent terms tend to
be large under such conditions.
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5.2 Simplified estimation procedures and specific environments

Estimates R’ and t' are good in a cluttered world where nearby contours can be
seen in al directions, a situation, which we attempted to simulate with our
“spherical” environment. “One shot” estimates R’ and t’ through equations (2b),
(3b) are nearly as good as fully iterated ones for a spherical environment (compare
Figs. 3a and e with Figs. 3b and f). In an environment in which the contrasts are
confined to a plane, however, R’ and t' estimates may be unreliable particularly
for a“one-shot” algorithm. One fundamental limitation of the “one-shot” estimate
appears to be the knowledge about the distribution of distances. The relative
nearness J; and the weighting matrices {1-av (¢ A d)}™* and {I-av (uidi A wd)}™
reflect the distribution of markers and distances of fiducial points. Knowledge
about distance distributions can be incorporated by customizing these matrices to
a given environment and to the optical system. Keeping this possibility in mind,
we now discuss an example of biological implementation of egomotion estimation
inthe visual system of thefly.

5.3 Are tangential neurones “matched filters” for egomotion estimation?

Identifying the limits of accuracy for egomotion estimation allows us to judge how
effective a biological or technical system may perform on this task. In the case of
fly tangential neurones, some of these neurones fulfil the optimality criterion
defined in Section 4.2. We found the best quantitative fit between the experi-
mental data presented here and the model predictions under two major assump-
tions: (i) The receptive field organization of these cells is adapted to the distri-
bution of distances and translation directions encountered by the fly. Thus the
neurones reflect aspects of the animals’ visual environment and their functional
context. (ii) The elementary motion detectors feeding into these neurones do not
appear to operate in the linear range, but in the plateau-like velocity range.

The observation that tangential neurones are best suited to indicate the pres-
ence and sign of a specific egomotion component rather than its magnitude is a
consequence of the velocity characteristic of elementary motion detectors (EMDs)
in our model. This restriction, however, may have little consequences for control
performance as long as these neurones operate as part of a closed feedback loop
with zero set-point. Further constraints may be imposed by the fact that EMDs do
not compute the velocity of retinal image shifts (Reichardt 1987). Instead, their
output signals are influenced by pattern properties like spatial frequency content
or contrast (Egelhaaf and Borst 1993).
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Fig. 7 Combined response fields to construct matched filters for self-motion estimation which
cover one complete visual hemisphere. a Averaged response field of the neurones V4 - VS7

(five neurones of each type). This combined filter has a preferred axis of rotation corresponding
to the body axis of the fly. Thusit can be expected to responds best to roll-rotations of the animal

(“roll-sensor”). b The response field shown was generated from the vector differences between
the averaged response field of the neurones VS8-VS10 and the response fields of VS1 - VS3

(five neurones of each type). Such filter is designed to sense pitch-rotations around the transverse
body axis (“pitch-sensor”). Note the relatively weak sensitivity to motion in the ventral visual

field. ¢, d Comparison between the measured motion sensitivities (solid lines) of the roll-sensor
and the theoretical weights w’; (dotted lines) derived from the model described in Section 4.2.

Error bars indicate the SD of the measured sensitivities, the weights obtained from the matched
filter model do not differ significantly from the experimental data (C?-fitting procedure). The
sensitivities and weights are plotted as a function of azimuth at an elevation of -15° and as a
function of elevation at an azimuth of 45°.

Although V'S neurones are quite obviously adapted to sense rotations, they
are not insensitive to translatory flow components. Translatory components induce
apparent rotations that are corrupting the rotation estimate (cf. equation 3a). The
apparent rotation term can only be expected to vanish if the viewing directions are
arranged in opposite directions so that the components induced by translation
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cancel each other out, and if the system operated in a world where contrast is
homogeneously distributed. VS neurones with visual fields restricted to one hemi-
sphere usually do not meet this criterion, and signals from appropriate pairs of VS
neurones looking at either hemisphere would need to be combined at later proc-
essing stages. An example of another approach to generate an optimal fit between
the predicted weight sets and the neurones’ sensitivity profilesis shownin figure 7.
Here, the response fields of several cells looking at one and the same hemisphere,
are combined in such a way to completely cover one half of the visual field. The
performance could then be further improved by binocular interactions which are
known to exist for other subclasses of tangential neurones (Hausen 1984).

It is also tempting to speculate about the question why particular egomotion
vectors seem not to be represented explicitly at the level of the visual system. The
reason for this may be to maintain a higher flexibility with respect to the sensory-
motor transformation (Oyster et al. 1972; Gotz and Wandel 1984). The coor-
dinates of the motor system and the sensory coordinates are not necessarily
arranged in the same frame of reference. Thus, for efficiently driving the muscles
involved in the optomotor and/or gaze stabilizing system, a specific combination
of tangential neurones may be selected from the whole ensemble and converge at
an appropriate integration stage.

5.4 Limitations of the present approach and outlook on future work

Whereas the simulation approach that was put forward in the present chapter
provides an illuminating first approximation about the quality and performance
limits of mechanisms to extract the parameters of egomotion, there are funda-
mental limitations when comparisons are to be made with actual implementations
in biological systems. To start with, responses to combined stimuli in opposite
parts of the visual field are by no means the linear superposition of the responses
to the individual components (Frost 1993; Kern et al. 1993; Blanke and Varju
1995), thus violating the assumption of linear summation of local response com-
ponents. Therefore in attempting to understand exactly the neuronal mechanisms
of egomotion extraction, it will be crucial to study quantitatively the behaviour
and physiological foundations of flow field processing in more detail. The
matched filters described in Section 3.2 and 4.2 include stages which compute the
linear sum over all local estimates, but the response of the tangential neurones
saturate with increasing pattern size at alevel that depends on velocity (Borst et al.
1995). It is unclear as yet, what consequences this property has for the task of
extracting egomotion information from the current optic flow under real time
conditions (cf. Egelhaaf and Warzecha, this volume). To answer this important
question the tangential neurones need to be studied in experiments involving real-
istic wide-field optic flow stimuli.
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