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Abstract—Multi-Dimensional Connectionist Classification is a
method for weakly supervised training of Deep Neural Networks
for segmentation-free multi-line offline handwriting recognition.
MDCC applies Conditional Random Fields as an alignment
function for this task. We discuss the structure and patterns of
handwritten text that can be used for building a CRF. Since CRFs
are cyclic graphical models, we have to resort to approximate
inference when calculating the alignment of multi-line text during
training, here in the form of Loopy Belief Propagation. This work
concludes with experimental results for transcribing small multi-
line samples from the IAM Offline Handwriting DB which show
that MDCC is a competitive methodology.

I. INTRODUCTION

Offline handwriting recognition is the automatic transcrip-
tion of natural handwritten text from images to computer-
processable character strings. Often this involves the transcrip-
tion of paragraphs of multiple text lines. One approach to
process multi-line texts is to segment the paragraph image into
multiple line images and then transcribe each line on its own.
This approach in combination with Connectionist Temporal
Classification (CTC) [1] has lead to state-of-the-art systems
[2] [3] [4] [5] in recent years.

A well known problem with this general approach is that
both segmentation and transcription are prone to errors which
accumulate. Errors in segmentation may lead to larger errors in
transcription. This dependency is described as Sayre’s knot [6]:
Correct segmentation requires correct transcription; correct
transcription requires correct segmentation.

One way to untangle these dependencies is to not treat
segmentation and transcription as two separate procedures but
as two aspects of one single procedure. A recently proposed
method [7] [8] simultaneously uses a Deep Neural Network
(DNN) with an attention-mechanism for segmentation by steer-
ing attention and CTC for transcription. This is an explicit
transformation of the multi-line text to a one-dimensional
sequence. Another method is Multi-Dimensional Connectionist
Classification (MDCC) [9] which proposes a loss function
and decoding algorithm that allows for training a DNN to
transcribe multi-line text without segmentation and without
explicit transformation to a one-dimensional sequence.

MDCC consists of two separate procedures: first, an
Expectation-Maximization-style training using Conditional
Random Fields (CRFs) [10] and Loopy Belief Propagation

(LBP) [11] [12, p. 769] to align the truth label string to the two-
dimensional DNN output and defining a loss function to train
the DNN to estimate the correct probabilities of individual
‘pixels’ belonging to certain glyphs. CRFs and LBP are well
known methods in computer vision. Second, decoding this
probabilistic DNN output to retrieve a computer-processable
character string of the multi-line text. These procedures are
shown schematically in Figure 1.

MDCC requires the DNN to accept a two-dimensional
image of text as input and to produce a two-dimensional output
where each ‘pixel’ is a probability vector estimating that this
‘pixel’ is part of a certain glyph from the alphabet. The actual
DNN topology can be chosen according to the problem at
hand. DNNs based on Multi-Dimensional Long Short-Term
Memory (MDLSTM) [13] [14] have been used for MDCC
before. We used a hybrid CNN+LSTM network [15] for this
work.

Training the DNN using MDCC is based on stochastic or
mini-batch gradient descent using backpropagation. Estimation
of glyph probabilities, which are also necessary for later de-
coding and transcription, is done by the DNN. MDCC then sets
up a loss function to improve this estimation. Correct prob-
abilities are not known since the training data only consists
of the input images and the corresponding truth label strings.
No information about the location or size of the characters is
included in the training data. The correct probabilities can be
approximated by constructing a CRF that encodes the truth
label string and relies on approximate inference to obtain
the correct probabilities. This is called the ‘alignment’ of
the truth label string to the two-dimensional DNN output.
Constructing the CRF is specified in the following Sections
II and III. The DNN parameters are then adapted by cal-
culating the multi-nomial cross-entropy loss of the estimated
and corrected probabilities, performing backpropagation and
gradient descent using one of the standard gradient descent
algorithms for neural networks. This training loop is repeated
until a satisfactory estimation of the probabilities is achieved
by the DNN.

This work improves the original MDCC by introducing 8-
instead of 4-neighborhood relations for alignment. This solves
difficult cases were text lines are aligned along a diagonal
in the pixel space. It also exchanges the potential functions
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Fig. 1. Overview of both training and transcription. Training is an Expectation-Maximization-style approach were first the DNN parameters are held constant
and the CRF alignment is updated, then the CRF alignment is held constant and the DNN parameters are updated.

from a Potts model for ones that are specifically designed for
handwritten text.

Decoding the two-dimensional probabilistic output from the
DNN is done for transcription. The decoding mechanism is
based on a horizontal scan-line that is initialized on the very
top of the two-dimensional output. It is then moved top-
to-bottom and left-to-right while alternating between visible
lines and line separators. Visible lines are decoded to text
lines while the scan line moves through them and newline
characters are added while moving through the line separators.
This transcribes a multi-line text from the two-dimensional
probabilities output estimated by the DNN. Please see [9] for
more information on the decoding mechanism.

The main body of this work focuses on the ideas and
theoretical aspects of MDCC. Comparison with a previous
variant of MDCC and the attention-based transcription method
[7] is done by an experiment and evaluation of error rates.

Section II discusses the structure of handwritten text and
how to derive the topology of the CRF used in MDCC
from it. Section III defines the CRF potential functions and
completes the definition of the CRF. Section IV discusses
the loss function for training a DNN using MDCC. Section
V gives a brief overview on why approximate inference is
necessary for MDCC. Section VI includes experimental results
for transcribing small multi-line samples from the IAM Offline
Handwriting DB. Section VII concludes this work with a brief
discussion.

II. TOPOLOGY

CRFs are undirected cyclic graphical models of multi-
variate probability distributions. As such we need to define the
topology of the graphical model in order to work with a CRF,
e.g. for inference. Nodes in the case of MDCC are ‘pixels’
of the DNN output and states the individual positions within
the truth label string for supervised training. We can use this
to infer the probabilities of individual ‘pixels’ belonging to

certain glyphs. The CRF in MDCC is constructed by defining
two separate graphs, a pixel graph and a label graph, and
then computing the graph tensor product of both as discussed
later in this section. Nodes of the pixel graph translate to the
nodes of the CRF and nodes of the label graph to the states of
the CRF. Both graphs are directed but directions are dropped
after calculating the graph tensor product and the resulting
CRF will be an undirected graph. This is possible since both
graphs define neighborhoods, which are undirected in nature,
and directions are only used for easier understanding of the
two graphs’ topologies.

Fig. 2. Example pixel graph for a DNN output of 3× 3 ‘pixels’ in size.

The topology of the pixel graph is rather simple: it is a
regular grid of nodes, each node s corresponding to one ‘pixel’
of the DNN output. As such the edges of the pixel graph are
one edge in each of the four directions of the directed graphs.
Figure 2 shows one such example pixel graph.

Defining the topology of the label graph requires some
thought about the structure of multi-line handwritten text. The
nodes of the label graph correspond to individual positions
within the truth label string. The truth label string contains
newline characters to separate lines. Edges of the label graph
still represent steps of one ‘pixel’ distance in one of the four
directions. The visual shape of glyphs and structure of the text
thus define the topology of the label graph.

We will use the term glyph for a visible/printable element
of the alphabet. Character denotes one specific instance of a
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Fig. 3. Possible patterns of the boundary between two text lines. First/Upper line in green, second/lower line in blue.

glyph. For example in ‘hello’ the glyph ‘l’ exists once in the
alphabet but the character ‘l’ occurs twice in the string.

The language and writing system in which the text is written
allows us to define some basic parameters for the structure of
the text. For English handwriting these would be that lines
are written from left to right and lines are ordered from top
to bottom.

Further parameters arise out of the requirements that the
decoding algorithm sets. We are free to define these parameters
ourselves since the decoding algorithm is part of MDCC, but
it must be ensured that these parameters are respected during
both training and decoding. We assume that there are more
‘pixels’ in the DNN output than the truth label is in length.
Repetition of lines and/or glyphs is thus necessary since all
‘pixels’ must belong to some position in the truth label string.
Otherwise said, the sum of state probabilities of the CRF must
sum to one per node. This means that lines and/or glyphs are
‘blobs’ in pixel space. Further we assume that these ‘blobs’
are continuous, e.g. a glyph ‘O’ is a continuous area and not
a circle with a dot of background in the middle. Modeling
glyphs any other way than ‘blobs’ would require knowledge
about the shape of glyphs and thus make it necessary to
model prototypical glyphs. MDCC avoids this by only aligning
characters by their location and size, not shape.

A special line separator is introduced to the alphabet. This
line separator must span from the left to the right borders. Its
occurrence means that the ‘pixels’ above and below belong
to two different lines. If two ‘pixels’ are not separated by a
line separator then they are assumed to belong to the same
line. We can further specify that two characters in the same
line can be distinguished if they belong to two different
glyphs. A glyph separator label is introduced to distinguish
between two adjacent characters that are the same glyph. An
example for this would be the string ‘hello’ which makes it
necessary to recognize the two ‘l’ glyphs as two different
characters. The solution is to introduce the glyph separator
within the glyph repetition: ‘helǫlo’. The approach of adding
separators is proposed by CTC, but in a different way than
MDCC: CTC adds optional separators between all character
pairs and mandatory separators between character pairs of the
identical glyph. MDCC only adds mandatory separators and
omits optional ones.

Figure 3 shows some possible patterns of the boundary
between two text lines. Please note that these are examples
and the full multi-line text in pixel space is a combination
and repetition of these simple patterns. These simple patterns
already lead to some observations: in pixel space a horizontal
move to the right could lead to a change to both the previous
or the next line. This is because of the two directions in which
text lines can be slanted. Also a single pixel row can hold both
the first line, second line and then the first again. We should
not assume that one pixel row always corresponds to only one
text line or that the order of text lines in a pixel row follows
a strict linear order. On the other hand, a movement from top
to bottom in pixel space will always traverse the text lines in
strict ascending order.

Figure 4 contains some example patterns for the boundary
between two characters of the same text line. Again these
are examples that must be combined and repeated to contain
the full multi-line text in pixel space. These patterns support
similar observations as in text lines: horizontal movement
results in an ascending order of the characters whereas a
vertical movement can mean a jump to both the previous or
next character.

We can now continue to define the topology of the label
graph using this knowledge about the structure of the given
writing system. Each node xs of the label graph corresponds to
one text position in the truth label string. Label separators and
glyph separators are introduced where necessary. The rules for
introducing edges to the label graph are as follows, see Figure
5:

1) All characters as well as the glyph and label separators
can repeat themselves in all four directions. This intro-
duces four loops (four directions) at each node.

2) A transition to the next character in the same text line is
possible for horizontal right, vertical down and diagonal
down-right moves in pixel space.

3) Vertical and diagonal down-left moves in pixel space
allow a transition to the previous character of the same
text line.

4) A switch to the next text line is possible in all four
directions in pixel space.

5) A horizontal right movement allows the transition back
to the previous text line.
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Fig. 4. Possible patterns of the boundary between two characters within the same text line. First/Left character in green, second/right character in blue.

Fig. 5. Abstract label graph showing the transitions from one character to its
neighboring characters and lines. Solid directed arrows show actual edges in
the label graph. Dotted undirected lines indicate neighborhoods that must be
realized according to the described rules.

Figure 5 shows an abstracted label graph around one char-
acter. The outgoing edges from the character ‘L0 C0’ are
constructed using the above rule set. The missing edges are
indicated by dotted undirected edges and must be realized
while building the label graph.

The graph tensor product used in MDCC is restricted
by only allowing the product of edges that share the same
direction. In total there are four edge directions in the di-
rected graphs: horizontally to the right, vertically downwards,
diagonal down-left and diagonal down-right. This results in 8-
neighborhoods in the CRF when dropping the directions. Ac-
cording to the MDCC variant of the graph tensor product, an
edge (s, xs) ∼ (t, xt) exists in the CRF iff s ∼d t∧ xs ∼d xt
with d being the edge direction, s, t nodes in the pixel graph
and xs, xt nodes in the label graph. (s, xs) and (t, xt) are
node-state combinations in the resulting CRF. The meaning
of the edges in the two graphs is the answer to the following
question: when moving one ‘pixel’ in this direction, which
nodes are possible neighbors?

A CRF is defined by its node potential function and edge po-
tential function that define the ‘compatibility’ between nodes
and their states. The potential functions of a CRF may contain
structural zeros, potential values of exactly zero that disallow
the corresponding node-state combination completely. These

structural zeros allow us to think about the CRF first in terms
of graph topology were allowed node-state combinations and
edges have potential values greater than zero and disallowed
ones a potential value of exactly zero. Computing the graph
tensor product out of the described pixel and label graphs
produces the topology of the CRF. The actual node and
edge potential function will be defined in Section III, but the
topology already defines which potentials are greater than zero
and which are structural zeros.

Fig. 6. Example of a text line that is incorrectly aligned along a diagonal. The
correct label sequence is ‘C1 C2’ and not ‘C1 C2 C1 C2’ in this example.

The topology presented in this work is based on 8-
neighborhoods in the pixel grid instead of 4-neighborhoods as
used in the original MDCC publication [9]. This was inspired
by the observation that text lines along a diagonal could be
incorrectly aligned using 4-neighborhoods. One example for
this is shown in Figure 6 where the text line ‘C1 C2’ should be
aligned, but instead ‘C1 C2 C1 C2’ is occurring as a pattern.
This is solved by introducing diagonal dependencies into the
topology.

III. POTENTIAL FUNCTIONS

In Section II we have discussed the topology of the CRF
in use for MDCC. For building and using an actual CRF we
further need to define node and edge potential functions. These
define the ‘compatibility’ between nodes and states of the
CRF. In the MDCC case, the node potential function ψs(xs)
defines the compatibility between ‘pixel’ s of the DNN output
and position xs within the truth label string. Furthermore the
edge potential function ψs,t(xs, xt) defines the compatibility
between two neighboring ‘pixel’ s, t and two positions xs, xt
and as such controls the edges in the CRF.

The edge potential function ψs,t(xs, xt) is derived out of
the topology of the CRF. Structural zeros are modeled in the
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edge potential function and as such, ψs,t(xs, xt) = 0 iff no
edge (s, xs) ∼ (t, xt) exists in the CRF topology. ψs,t(xs, xt)
is positive otherwise.

The actual choice of the potential function values greater
than zero is more or less free depending on the problem at
hand. Greater values of the potential functions mean higher
compatibility. It has some benefits to choose exponential
functions in the form of ψs,t(xs, xt) = exp(...):

1) LBP computes repeated multiplications of the potential
function values for message passing. Computation in
log-space improves numerical stability and exponential
functions are easily integrated into a log-space imple-
mentation.

2) Choosing exponents greater than one for the potential
functions leads to a reliable convergence of beliefs in
LBP in our experience.

We can further make the following assumptions about
handwritten text:

1) A horizontal movement in pixel space will less likely
result in a change of text lines than staying within the
same text line.

2) A vertical movement in pixel space will more likely re-
sult in either continuing the same character or changing
the text line than changing the character within the same
text line.

Based on this we have chosen the following values for the
edge potential function ψs,t(xs, xt):

1) e1.5 if s, t are in the same pixel row and xs, xt are in
the same text line.

2) e1 if s, t are in the same pixel row and xs, xt are not
in the same text line.

3) e1.5 if s, t are not in the same pixel row and xs, xt are
either identical or not in the same text line.

4) e1 if s, t are not in the same pixel row and xs, xt are
different characters in the same text line.

The node potential function ψs(xs) also models structural
zeros. These occur whenever a truth label position xs cannot
occur in ‘pixel’ s. This is the case if such a combination of s,
xs would make it impossible to fit the remaining truth label
string. For example the character ‘e’ of ‘hello’ can never occur
in the leftmost pixel column since this retains no space for the
‘h’ character. This means ψs(xs) = 0 iff the s, xs combination
leads to an invalid configuration and ψs(xs) > 0 in all other
cases.

DNN training with MDCC is based on estimating the
probabilities of individual pixels of the input image belonging
to certain glyphs from the alphabet. This is what the DNN is
trained for in MDCC. The CRF in MDCC is used to include
the knowledge of the truth label string to correct the estimated
probabilities, set up a loss function and optimize the DNN
parameters. This means that over time the estimation by the
DNN is improving and MDCC integrates these improvements
in the CRF. This is why the CRF node potential function
respects the estimation by the DNN.

Again we choose exponential functions in the form of
ψs(xs) = exp(...) for the node potential function:

ψs(xs) = exp(k1 + k2 × FAs(xs) + k3 ×DNNs(xs)) (1)

Constants k1, k2 and k3 of Equation 1 are chosen to weight
the three influences in the node potential against each other. k1
is introduced to ensure that ψs(xs) > exp(1) for non structural
zeros and to improve the convergence of beliefs in LBP.

Function DNNs(xs) is the current estimation of the DNN
that s belongs to xs. The DNN actual estimates the probability
of a ‘pixel’ s belonging to a certain glyph g, whereas xs
is a position within the truth label string. As such we need
to introduce a mapping: DNNs(xs) = DNNs(g), g = S(xs)
with S being the truth label string.

Function FAs(xs) gives the probability of s belonging to xs
based on a two-dimensional Forced Alignment (FA) [16]. This
two-dimensional variant of FA assumes that all text lines are
of the same height in pixel space (±1 pixel) and that text lines
are separated by a line separator of exactly one pixel in height.
Furthermore all characters of all text lines are assumed to be
of the same width (again ±1 pixel). Using this information,
text lines and characters are then ordered top-to-bottom and
left-to-right. This results in a spatially uniform placement of
the characters and lines. To achieve smoothness at character
overlaps, only line separators are aligned with a probability
of one, all other characters probabilities are calculated by
a normal distribution with half a glyph width of standard
deviation.

We chose the following values for the three constants to
complete the node potential function: k1 = 1, k2 = 5 and
k3 = 10. This gives the most weight to the DNN estimation but
ensures a reliable alignment even at the beginning of training
or for erratic DNN estimations.

The CRF of MDCC is now defined in the form specified
by Equation 2:

P (C|DNN) =
1

Z(DNN)

∏

s

ψs(xs)
∏

t∈nbr s

ψs,t(xs, xt) (2)

Equation 2 gives the probability P (C|DNN) of a config-
uration C being a valid alignment of the truth label string
given the DNN estimation. In this case, xs and xt are
specific assignments of characters to ‘pixels’ defined by the
configuration C. Function Z is called Zustandssumme and is
the sum over all possible configurations:

Z(DNN) =
∑

C

∏

s

ψs(xs)
∏

t∈nbr s

ψs,t(xs, xt) (3)

We have modified the potential functions in this work as
compared to the original MDCC [9] to ensure that non-
zero potential values are always greater than exp(1). Also
edge potentials are not based on a Potts model anymore but
implement specific ideas about the structure of handwriting.
Node potentials were updated to stronger reflect the influence
of the DNN and FA. This was made necessary since in
larger pixel spaces the edge potentials seemed to have a too
strong influence on the result when compared with the node
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potentials. This then may result in an alignment that does not
reflect the DNN estimations of the character positions and
sizes.

IV. NETWORK TRAINING

Training of the DNN is implemented by estimating
DNNs(g) and correcting it using the described CRF, see
Sections II and III, to obtain the corrected probabilities
CRFs(g). Approximation of CRFs(xs) is done using LBP
in Sum-Product Mode and are also called Beliefs, which are
proportional to the actual probability of xs occurring in s:
CRFs(xs) ∝ Ps(xs).

LBP in sum-product mode on this CRF approximates the
mean probabilities of ‘pixel’ s belonging to a certain character
xs given the DNN estimation and under the condition that each
configuration C encodes the truth label string. See Equation
4 for this marginal probability. It is worth noting that LBP
and message passing in general does at no point explicitly
create any configuration C of the graphical model. Instead
the marginal probabilities are estimated without observing any
configuration.

CRFs(xs) ≈
1

|C|
∑

C:C(s)=xs

P (C|DNN) (4)

MDCC uses multi-nomial cross-entropy as its loss func-
tion L, see Equation 5. Corrected probabilities CRFs(g) =∑

xs:S(xs)=g CRFs(xs) are computed by summing up all truth
label positions that are the glyph in question. This is necessary
since the same glyph g may occur multiple times in the truth
label string S.

L = −
∑

s

∑

g

CRFs(g)× log(DNNs(g)) (5)

The derivative of the loss function L from Equation 5 is as
follows:

∂L

∂DNNs(g)
= −CRFs(g)

DNNs(g)
(6)

The loss function L and its derivative are then applied to
train the DNN for MDCC. Note that CRFs(g) is held constant
during the update of the DNN weights in our EM-like training
procedure, thus we do not need an inner derivative of CRFs(g)
in Equation 6. After training the DNN will be able to perform
segmentation-free multi-line offline handwriting recognition.
A decoding function for producing a computer-processable
character string from the DNN estimation is necessary as
specified and discussed in [9].

V. COMPARISON WITH EXACT INFERENCE

LBP approximates marginal probabilities as specified in
Section IV. We would like to show that approximation of
these probabilities is the only computationally tractable way
of performing this style of training. The graphical model of
a multivariate probability distribution, here a CRF, includes
cycles. These cyclic dependencies make it impossible to
apply optimized algorithms such as Forward-Backward [17]
or non-loopy Message Passing [18]. One example inference

algorithm to calculate the exact marginal probabilities without
approximation is to enumerate all valid configurations C of
the cyclic graphical model. Exact inference in general cyclic
graphical models is known to be NP-hard [19] [20]. There
are chain-structured cyclic graphical models, e.g. alignment in
CTC, that can be separated into two directed acyclic models
that enable exact inference in polynomial time. Unfortunately
this chain-structure does not hold true for the CRF in MDCC,
which has a grid-structure.

The number of valid configurations for the string ‘aa\nbc’
in pixel grids of sizes 4x4, 5x4 (width x height), 5x5 and 6x5
are shown in Table I. We have stopped the enumeration of the
valid configurations within a 6x6 grid after several hours of
run time. Run time measurements using approximate inference
were continued for some larger pixel grid sizes. A grid size
of 100x100 was added to show that MDCC can be applied
to paragraph-sized outputs with reasonable run time. Time
measurements shown in Table I were performed on a 2.2 GHz
Intel Core i7-6560U.

Run time of LBP is dependent on the number of message
passing iterations that are required to converge to a stable
point. The convergence criteria used in this work is to check
the mean change in LBP messages from one iteration to
the next. LBP is stopped if this mean change falls below a
threshold of 3 × 10−6 at any iteration. Our experience with
MDCC is that 10 to 100 iterations of message passing are
enough in the described CRF.

The mean difference between approximated probabilities
CRFs(xs) and exact probabilities Ps(xs) for this example
in a 6x5 grid was 0.0407163 with a standard deviation of
0.0834019.

VI. RESULTS

We evaluated MDCC on the identical data set as used in
the original work [9]. Examples of 2 lines with 3 words each
were extracted from the IAM Offline Handwriting Database
[21]. The two lines were always two consecutive lines of the
source paragraph as well as the 3 words were consecutive in
those lines. This results in a data set of 11508 examples. One
such example is shown in Figure 7. Training was performed
on 80 percent of the data (9208 examples) while 10 percent
(1150 examples) each were used for validation and evaluation.

Fig. 7. Example input with 2 lines of 3 words each. Constructed from the
IAM Offline Handwriting DB.

The DNN topology for the experiment is a hybrid
CNN+LSTM and specified in Table II. Each convolutional
block consists of a 2D convolution with added padding to
keep the output the same size as the input. The convolution
is followed by batch normalization [22] and a leaky ReLU
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TABLE I
COMPARISON OF ENUMERATING ALL VALID CONFIGURATIONS AND APPROXIMATE INFERENCE USING LBP.

Pixel Grid Size Num. Configurations Run time Enumeration Run time LBP
4x4 3440 0.091s 0.002s
5x4 56480 1.360s 0.003s
5x5 3033992 82.035s 0.005s
6x5 74116576 2301s (38m) 0.007s
6x6 0.010s
10x10 0.047s
100x100 69.434s

[23] activation function. The feature maps of the DNN are
two dimensional at any layer. The bidirectional LSTM layers
are column-wise (vertical) or row-wise (horizontal) with each
column or row being treated independently from all others.

TABLE II
DEEP NEURAL NETWORK TOPOLOGY. THE COLLAPSE LAYER WAS ONLY

USED FOR PRE-TRAINING, NOT FOR MULTI-LINE TRAINING USING MDCC.

Layer Type Parameters
Input image Gray scale.
Conv. block Kernel size 5x5. 64 neurons.
Max. pooling Window size 3x3.
Conv. block Kernel size 5x5. 96 neurons.
Max. pooling Window size 3x3.
Conv. block Kernel size 5x5. 128 neurons.
Max. pooling Window size 2x2.
Conv. block Kernel size 5x5. 196 neurons.
Conv. block Kernel size 5x5. 256 neurons.
Vertical BLSTM 256 cells total. 128 cells per direction.
Horizontal BLSTM 256 cells total. 128 cells per direction.
Vertical BLSTM 256 cells total. 128 cells per direction.
Horizontal BLSTM 256 cells total. 128 cells per direction.
Conv. layer Kernel size 1x1. One neuron per glyph.
(Collapse layer) Column-wise summation.
Softmax

The DNN was pre-trained on IAMDB words using CTC.
Pre-training was for 10 epochs with a mini-batch size of 16
examples. Training using MDCC and the data set consisting
of examples of 2 text lines was started after these 10 epochs.
Mini-batch size for MDCC training was 4 examples. The
optimizer for both training phases was RMSProp [24] with
a learning rate of 0.001.

Error rates were measured in Character Error Rate (CER)
as specified in Equation 7. CER is the fraction of the Edit-
distance [25] [26] of the decoded string d and the truth string
t divided by the length of the truth string. The convergence of
CER during MDCC multi-line training is shown in Figure 8.

CER(d, t) =
Edit(d, t)

|t| × 100 (7)

Error on the validation data set reached its minimum after
115 epochs at a CER of 6.00, while a CER of 0.59 was
measured on the training data set. CER on the independent
evaluation data set was 5.47 after 115 epochs. This is an
improvement over the CER of 10.4 as reported by [9] on the
identical data set. It also indicates a potential improvement
over a CER of 10.9 as reported by [7, p. 6] on a similar, but
not publicly available data set.

Fig. 8. Convergence rate of the DNN error while training for transcription
of 2 lines with 3 words each. First 10 epochs were pre-training using CTC.

PyTorch [27] was used to implement the described DNN and
training. PyTorch allows easy utilization of a NVIDIA GPU
for training. The DNN in this experiment was executed on a
NVIDIA GeForce GTX 1080 Ti. Both the CTC and MDCC
implementations are optimized for execution on a CPU which
made memory transfers between the main memory and GPU
memory necessary. An Intel Core i5-6500 with 3.2GHz was
used for calculating the CTC and MDCC loss during training.

Each epoch of MDCC training took approximately 58
minutes. This results in a speed of 3.4 examples per second
during training. Transcription speed for evaluation was 14.5
examples per second. The difference is due to the execution
of LBP for approximate inference during training.

Figures 9 and 10 show heat maps of glyph probabilities for
the example of Figure 7. Figure 9 shows glyph probabilities
for ’e’ and has nearly correct localization of the characters. It
also shows that the aligned characters are continuous areas, but
do not necessarily have to be of a rectangular shape. Figure
10 shows the glyph ’r’ that has two adjacent occurrences
which are separated by a glyph separator to distinguish the
two characters of the same glyph.

Fig. 9. Heat maps of DNN (left) and CRF (right) probabilities for glyph ’e’.
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Fig. 10. Heat maps of DNN (left) and CRF (right) probabilities for glyph
’r’.

VII. DISCUSSION

In this work we have discussed the structure of handwritten
text and how to model its properties with cyclic graphical
models in the form of Conditional Random Fields. We pro-
vided details on how to use this CRF to calculate an alignment
of multi-line text over two-dimensional images. This sets the
stage for training Deep Neural Networks for segmentation-
free multi-line offline handwriting recognition by applying an
approach similar to Connectionist Temporal Classification but
in two dimensions: first calculate the alignment of the truth
label string over the DNN output and then use this alignment
to set up a loss function for DNN training. MDCC thus
implements weakly supervised training of DNNs for multi-
line handwriting recognition.

We further believe that MDCC can serve as a framework
for application in higher-dimensional spaces as well. Problems
based on the classification of multiple objects (in this case
glyphs) in a multi-dimensional space can in theory be modeled
by MDCC. Necessary is the specification of the space in which
the alignment takes place, which in this case is a 2-dimensional
pixel grid but could also be a discrete 3- or 4-dimensional
space. Knowledge about the geometric relations between the
objects is also required, in the case of handwriting the writing
system on how to order lines and characters.

The experimental results of this work are an improvement
on the previous variant of MDCC on the same data set. Error
rates are competitive and show that MDCC can be used for
practical applications of offline handwriting recognition. We
believe the improved error rates are because of changing to
8- instead of 4-neighborhoods and adopting CRF potential
functions that are specific to handwritten text.

Next steps for applying MDCC are to transcribe whole para-
graphs of the IAM Offline Handwriting DB and to transcribe
industrial data.
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