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SUMMARY  

 

The ageing infrastructure in ports requires regular inspection. This inspection is currently 

carried out manually by divers who sense by hand the entire underwater infrastructure. This 

process is cost-intensive as it involves a lot of time and human resources. To overcome these 

difficulties, we propose to scan the above and underwater port structure with a Multi-Sensor-

System, and -by a fully automated process- to classify the obtained point cloud into damaged 

and undamaged zones.  

We make use of simulated training data to test our approach since not enough training data 

with corresponding class labels are available yet. To that aim, we build a rasterised heightfield 

of a point cloud of a sheet pile wall by cutting it into verticall slices. The distance from each 

slice to the corresponding line generates the heightfield.  

This latter is propagated through a convolutional neural network which detects anomalies. We 

use the VGG19 Deep Neural Network model pretrained on natural images. This neural 

network has 19 layers and it is often used for image recognition tasks. We showed that our 

approach can achieve a fully automated, reproducible, quality-controlled damage detection 

which is able to analyse the whole structure instead of the sample wise manual method with 

divers. The mean true positive rate is 0.98 which means that we detected 98 % of the damages 

in the simulated environment.- 
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1 MOTIVATION  

The ageing infrastructure of sea and inland ports in Germany require new technologies and 

methods in the preparation and implementation of life cycle management. The previously 

personnel- and time-intensive work processes are being replaced by new automated, smart 

and innovative measurement and analysis processes to ensure transparency, resource 

efficiency and reliability. 

Port infrastructure is subject to severe degradation over their lifetime due to human activities 

and environmental influences. Especially the material of seaports is profoundly affected by 

the saltwater. This causes structural damages to the concrete structures, sheet pile walls or 

wooden structures. In order to ensure the safety and stability of the infrastructure, it is crucial 

to detect and categorize the importance of the damage. Identifying structural damage in time 

allows early maintenance measures to be taken and can prevent costly repairs or even a 

collapse of the infrastructure 

 

Monitoring of port infrastructural buildings is divided into two parts: above and underwater. 

The structural testing of port infrastructure above water is carried out by manual and visual 

inspections. The recording and documentation of the condition of damage underwater involve 

considerably more effort; the infrastructure is tested sample wise every 50 to 100 m; the 

divers slide down the structure and try to sense the wall with their hands. Human sensory tests 

and damage inspections underwater with divers are, therefore, highly variable in quality and 

quantity. Damage classification and -development is not reproducible due to the subjective 

perception. Furthermore, there is normally no comprehensive inspection underwater, which 

means that only a few percent of the structure can be inspected.  

Therefore, a comprehensive building inspection in short time intervals is necessary. Due to 

the high amount of sediment, especially in the Ems, Weser and Elbe regions, a quality-

controlled visual inspection is nearly impossible.  

This study deals with a fully automated, quality-controlled and reproducible above and 

underwater 3D-Sensing and - damage-detection of port infrastructure: This is done usually 

using pattern recognition methods in modern data processing (see Hesse et al., 2019 for more 

information). 

The results obtained in this way are to be used by the port operator to make the maintenance 

concepts and construction work following the building inspection transparent and reliable. 

This approach will reduce the downtimes of the port facilities and cost-intensive changes in 

the construction process significantly. 

For the acquisition of building geometry and condition, not only exact, but also high-

resolution 3D data for the underwater and above-water parts of the building are required. This 
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is the only way to reliably record damage and, based on this, to make a well-founded 

assessment of the current state of the structure. 

In our system three different sensor types are merged into one kinematic-Multi-Sensor-

System (k-MSS) for this detection task: a high-resolution hydroacoustic underwater 

multibeam echosounder, an above-water profile laser scanner and five HDR cameras. In 

addition to the IMU-GPS/GNSS method known from various applications, hybrid referencing 

with automatically tracking total stations is used for positioning (Figure 1). Although the 

individual sensors record in a grid pattern, the resulting point cloud is not grid-shaped due to 

the movements of the carrier platform. 

 
Figure 1: 3D recording of a port facility above and below water. (Hesse et al., 2019) 

In this study we focus on geometrical damages since we are using only pointcloud data and no 

images from the cameras. 

Various publications deal with comprehensive sensing methods for structural health 

monitoring for concrete or other materials above water or in clear offshore regions. 

Hadavandsiri et al. (2019) introduced a new approach for automatic, preliminary detection of 

damage in concrete structures with terrestrial ground scanners and a systematic threshold. 

O’Byrne et al. (2013) are detecting disturbances by texture segmentation of colour images. 

Gatys et al. (2015) showed that neural networks trained on natural images learn to represent 

textures in a way that enables synthesizing realistic textures and even whole scenes. Neural 

networks, as feature extraction are, thus, preferred over hand-crafted features (Yosinski et al., 

2014; Carvalho et al., 2017 and Abati et al., 2019). 

However, the limitation of such a transfer of features remains an open research question, 

especially when the input domain has the same topological structure, but different statistical 

structure. 

In this work, we want to detect damages in point clouds. Therefore, we transfer features learnt 

from natural images to height maps from a range sensor. A heightmap or heightfield in 

computer graphics is a raster image that is mainly used as a discrete global grid in secondary 

height modeling. Each pixel records values, such as surface elevation data. In contrast to 
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natural images, the statistics of heightmaps depends on scan-resolution and the scanned object 

itself, which makes transferability difficult. A way to overcome this drawback is to train 

heightmap neural networks from scratch (Simony et al., 2018). The novelty detection 

approach we use can classify defective from non-defective features in a simulated data 

environment. This opens the door for further research in the use of pre-trained neural 

networks for range sensor data. 

 

2 Related Work  

Automated inspection of surfaces is always in favour to replace difficult, subjective or 

repetitive manual inspection processes. Three different approaches to automated inspection 

are reffered to in the literature (Kumar, 2008): 1. specifying a defect model and searching for 

similar patterns (Bodnarova et al., 1998), 2. looking for differences to a given reference 

template (Boracchi et al., 2014), and 3. learn discriminating between defects and non-defects 

(Racki et al., 2018)  

Depending on available datasets, existing visual inspection approaches can be divided into 

two categories: supervised classification and novelty detection. When labelled samples of 

both defects and non-defects can be easily obtained, supervised classification approaches are 

preferred (Sarkar et al., 2018).  

In practical applications only partial labelled data or strongly unbalanced data is available. In 

the context of defect detection, this means that either a large amount of defective data or non-

defective data is available. Both situations massively complicate a supervised approach. 

Previous works, therefore, often make use of unsupervised learning techniques like novelty 

detection (Aiger & Talbot, 2012; Racki et al., 2018). 

In novelty detection scenarios, only non-defective samples are considered during training. 

Such systems consist out of two in independent principle parts which are designed separately. 

The first part is a domain-specific feature extraction part, the second part is a general 

discriminator that judges novel samples (Miljković, 2010). 

Earlier systems made use of handcrafted features based on, e.g., frequencies, interest points, 

sharp edges, or physical measures (Aiger & Talbot, 2012). Such features are powerful in 

specific situations with good domain knowledge and a small number of labelled data. 

However, general-purpose feature descriptors like SIFT (Lowe, 1999) are experimentally 

inferior to features extracted from neural networks (Nanni et al., 2017). Therefore modern 

systems often use features from a neural network in the first place before developing a 

specialized descriptor (Abati et al., 2019; Carvalho et al., 2017; Gatys et al., 2015 and Racki 

et al., 2018). Foremost, the particular neural network needs to be trained on a domain very 

similar to the operating domain (Yosinski et al., 2014). The obtained vector space is called 

feature space (Hastie et al., 2009).  

The design of the discriminator is very flexible and very specific to the actual task. Some 

systems use a simple threshold, and others estimate areas of high density in feature space, 

various compress the information and measure reconstruction error. Any combinations of 

these are possible, too. Please refer to Miljković, 2010 or Pimentel et al., 2014 for a good 

overview of the existing method for classifying novelties. 

The proposed method addresses such situations where only a few labelled defective data is 

available, and the most of the data is non-defective. Such methods learn a model based on 
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non-defective reference data to discriminate between unseen defective and non-defective 

examples. 

3 METHODOLOGY 

To that aim, we start with a point cloud of typical harbour structures and firstly transform it 

into a heightfield which is described in chapter 3.1. Secondly in chapter 3.2, we extract 

features with a convolutional neural network. The third step is the defect detection by Local 

Outlier Factors (LoF) in chapter 3.3.  

3.1 Heightfield generation 

Input variables for the machine learning approach are rasterised distances between the point 

cloud and the original damage-free structure. In an optimal scenario, one can use a CAD- or 

BIM-model and determine deviations between model and point cloud. Unfortunately, no 

models are available for most existing port infrastructural buildings: to face this challenge, 

two possibilities exist: generation of an approximated surface or making use of a local 

moving-window approach. 

In this study, we chose this latter approach and cut the point cloud into vertical slices of 5 cm 

in width. Each slice is approximated with a straight line using principal component analyses 

(PCA) (Jolliffe, 1986). The distances of each point to the line are then rasterised into a 2D 

heightfield with 2 cm raster size. The raster size depends resolution of the pointcloud and 

must be adapted to the respective data set. Empty cells, which occur due to data gaps or 

inappropriate point distribution, are interpolated with natural neighbour interpolation to avoid 

interferences in the feature extraction step. The whole process is implemented in MATLAB 

and Python and is summarized in a flowchart form in Figure 2.  

 
Figure 2: Flow chart of the automatic damage detection process 
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The obtained heightfield of the port infrastructure is interpreted as a scalar function defined 

on a 2d grid, denoted by 𝑯(𝒙, 𝒚). Afterwards, patches are extracted from the grid and 

flattened to data vectors. The data vectors 𝒙 are organized as matrix 𝑿 with shape 𝑵 × 𝒑, 

where 𝑵  is the number of patches and 𝒑 the number of pixels. Figure 3 shows an example of 

such an heightfield in pseudocolour. The data is further normalized by subtracting column-

wise mean and scaling the column vectors to have unit variance (so-called standard 

normalization). 

 

 
Figure 3: Visualizing an example heightfield on a 2d grid in pseudocolour. 

 

3.2 Feature extraction 

For extracting features, we use the VGG19 neural network (cf. Figure 4), a standard 

convolutional neural network (CNN) pretrained on natural images (Wan et al., 2020; 

Simonyan & Zisserman, 2014).The network consists of 19 layers and is trained in a 

classification scenario. It is well-known for achieving superhuman performance on the 

extensive scale image database ImageNet (http://www.image-net.org) consisting out of more 

than a million labelled natural images. We only keep the first convolutional layers of the 

network, i.e. including layer pool_4. It is interesting to note that deeper layers tend to learn 

higher-order characteristics (e.g. faces or objects) than lower layers (e.g. edges and 

structures). See Zeiler and Fergus (2014) for a comprehensible visualization. 

 

 
Figure 4: The layer architecture of the VGG19 network. Pooling layers are highlighted in red. (Simonyan & Zisserman, 

2014). 

 

In contrast to the scalar function of the heightfield, the VGG19 network expects three-channel 

RGB-colour input. To fulfil this requirement we broadcast the signal over three channels. 
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Every vector 𝒙𝑰 is propagated through the network, and the intermediate activation of the jth 

layer is stored. Afterwards, the Gramian matrix of each activation is computed (see Gatys et 

al., 2015 for details). For computational efficiency and because we are not interested in 

synthesizing new data, we only keep the diagonal of the Gramian matrix, which relates to the 

energy per feature. This leads to the feature vector 𝒛 ∈  𝑹𝒌, where 𝒌 is the number of feature 

maps in the jth layer of the network. Note that this procedure always leads to a dimensionality 

𝒌 independent of the input size 𝒑. Again, we organize all feature vectors as rows in a matrix, 

resulting in feature matrix 𝒁 with shape 𝑵 × 𝒌. 

 

3.3 Detection 

As discriminator, the proposed method uses a standard approach called LoF (Breunig et al., 

2000). This method constructs a reachability graph in feature space and derives an outlier 

score from this graph. This score is then used for threshold-based classification of new data. 

We denote the outlier score as 𝑜𝑖  =  𝐿𝑜𝐹(𝑧𝑖), with 𝑜𝑖  ∈  𝑅. The threshold is derived from 

data. A new data point 𝑥𝑖 is classified as a defect if its outlier score 𝑜𝑖  =  𝐿𝑜𝐹(𝜙(𝑥𝑖)) is 

above the threshold 𝑡 or as non-defect otherwise. 

 

4 APPLICATIONS AND SIMULATION 

Using a machine learning approach requires a large set of labelled training data. For the 

generation of a simulated point cloud of a sheet pile wall with damages, three steps are 

necessary: 

1. Generation of a large number of datasets with randomly located and sized damages 

with a mathematical model for a sheet pile wall.  

2. Computation of Cartesian coordinates of each point on the planes of the sheet pile wall 

by projecting rays from the k-MSS in vertical increments. The third dimension results 

from the movement of the sensor along a given trajectory. For the sake of simplicity, 

we used a straight line with equidistant sensor positions in this study.  

3. Addition of a random number of damages onto the planes of the sheet pile wall. Each 

damage has an ellipsoidal shape with random values for the principal axis.   

The result is noise-free point cloud. The ranges of each ray are then corrupted with random 

instrumental measurement uncertainty. The distance measurement uncertainty is assumed to 

be normally distributed and set according to the manufacturer´s specifications to 20 mm. The 

resulting resolution of the pointcloud is around 2 cm. Figure 5 illustrates the simulation 

procedure. 
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Figure 5: Simulation principal used in this study: at each sensor position, all rays in vertical increments according to the 

manufacturer´s specifications are intersected with the planes of the sheet pile wall. 

A second dataset was generated: it indicates for every position whether it is damage or not 

and is thus the ground truth. Since the heightfield is a 2D raster image for the anomaly 

detection, we also use a 2D binary label image where one stands for damage and zero for non- 

damaged zones. 

The label image is a 2D-raster with two classes representing damage or no damage (Figure 6 

right). The raster is generated in the XZ-Plane of the point cloud. To avoid coarse shapes or 

misclassified raster cells, the image is filtered with the morphological operator’s erosion and 

dilation (Serra, 1983). Erosion is used to separate two near clusters, and dilation fills small 

holes. Using erosion after dilation is also called opening in mathematical morphology. Figure 

6 right shows the simulated point cloud with the corresponding label image. 

 

 

 

 

 

 

 

 

 

Figure 6: Left is the simulated point cloud and right the corresponding label map, where white stands for damage and black 

is no damage. 
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5 Evaluation 

In our experiment, we use a patch size of 50 × 50 pixels which corresponds to 1 𝑚2 in world 

coordinates. The patches are extracted by a sliding window and have an overlap of 25 pixels. 

Note that no defect segmentation inside a patch is conducted — the whole patch is either 

defective or non-defective. Throughout experiments, we report average precision ratio (APR) 

and area under the curve (AUC) of receiver operating characteristics (ROC) (Schubert et al., 

2012). Further, we keep 10 % of the training data as validation data 𝑋𝑣𝑎𝑙 for deriving 

thresholds. The threshold  𝑡 is chosen such that none of the 𝑀 validation data vectors is 

classified as defective. Hence, the threshold is  

𝑡 =  𝑚𝑎𝑥({𝑜1, … , 𝑜𝑀}). Further, the threshold is used to compute true-positive-rate (TPR), 

false-positive rate (FPR) and false-negative-rate (FNR). Results are averaged over 10 runs 

with different splits of validation and training data. In total there are 10 synthetic heightfields 

of the port infrastructure. The results of using two different sets of features are shown in Table 

1 and Table 2. Table 1 shows the performance metrics of features taken from layer pool_4. As 

deeper layer tend to learn higher-order features it is interesting to see that the method has 

issues with the samples #1, #2 and #3. 

  
Table 1: Results with activations (512d features) from layer pool_4 (numbers in braces correspond to number of training 

samples, number of non-defective test samples and number of defective test samples). 

Heightfield no.  AUC  APR  TPR  FPR  FNR  TNR 

#1 0.94±0.00  0.83±0.01  0.65±0.05  0.11±0.11  0.02±0.00 0.99±0.01 

#2 0.93±0.00  0.79±0.01   0.53±0.09  0.05±0.02   0.06±0.01  0.99±0.00 

#3 0.99±0.00  0.94±0.00  0.89±0.00  0.08±0.03  0.01±0.00  0.99±0.00 

#4 1.00±0.00  1.00±0.00  1.00±0.00  0.13±0.08  0.00±0.00  0.98±0.01 

#5 1.00±0.00  1.00±0.00  0.97±0.03  0.04±0.05  0.00±0.00  1.00±0.01 

#6  1.00±0.00  1.00±0.00  0.97±0.03  0.19±0.06  0.00±0.00  0.99±0.00 

 

Table 2 shows the results using features from the lower layer pool_2. It is easy to see that the 

overall detection performance is much better compared to the features from pool_4.  Besides 

the feature hierarchy (i.e. feature order) there is another essential difference between layers of 

a CNN, which is scale. Every pooling operation reduces signal resolution and simultaneously 

increases the receptive field on the input. It follows that every layer is sensitive to patterns at a 

particular scale. 
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Table 2: Results with activations (128d features) from layer pool_2 (numbers in braces correspond to the number of training 

samples, number of non-defective test samples and number of defective test samples). 

Heightfield no.  AUC  APR  TPR  FPR  FNR  TNR 

#1 1.00±0.00  0.99±0.00  0.98±0.03  0.25±0.16  0.00±0.00 0.98±0.01 

#2 1.00±0.00  0.99±0.00   0.93±0.02  0.07±0.04   0.01±0.00  0.99±0.00 

#3 1.00±0.00   1.00±0.00   1.00±0.01  0.04±0.05  0.00±0.00  1.00±0.00 

#4  1.00±0.00  1.00±0.00  1.00±0.00  0.12±0.10  0.00±0.00  0.98±0.01 

#5 1.00±0.00  1.00±0.00  1.00±0.00  0.05±0.04  0.00±0.00  0.99±0.00 

#6 1.00±0.00  1.00±0.00  1.00±0.00  0.04±0.05  0.00±0.00  1.00±0.00 

 

As shown in Table 1, the mean TPR for activations with 512d features is 0.7, which means 

that 70 % of the damages are detected. Heightfield #1 and #2 are conspicuous due to their 

poorer value for TPR of 0.65 for #1 and 0.53 for #2. The mean FPR is 0.1, which is not very 

critical, but it should be decreased in future studies in terms of efficiency and cost reduction 

since a diver has to check every suspected case. The mean FNR is 0.02, and the mean TNR is 

0.99 which means that 99 % of the no defective area has been classified correctly and only 

0.02 % of the damages could not be detected. 

The mean TPR for activations with 128d features, as shown in Table 2 is 0.98, and the mean 

FPR is 0.09 which indicates that 98 % of the damages are correctly classified and only 9 % 

non-defective area is misclassified. Conspicuous is heightfield #1 with a FPR of 0.25. The 

mean FNR is 0.001 which is very good since only 0.1 % are incorrectly classified, and the 

mean TNR is 0.99. That indicates that 99 % of the area is correctly classified as no damage. 

Overall the activations with 128d features seem to perform better on the synthetic datasets. 

This is also visible in table 3 and 4, which show the confusion matrices of the mean values. 

Figure 7 shows an example for the detected true positives in heightfield #6. 

 
Table 3: Confusion matrix with activations (512d features) from layer pool_4. 

0.70 0.1 

0.02 0.99 

 
Table 4: Confusion matrix with activations (128d features) from layer pool_2. 

0.98 0.09 

0.001 0.99 
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Figure 7: Detected true positives in heightfield #6. 

6 CONCLUSION AND OUTLOOK  

With the introduced method, the building inspection can be digitized and raised to a 

completely new level. With the used k-MSS, we achieve a significant higher completeness of 

the port inspections compared to the manual method with divers. By using laserscanner and 

hydrographic measurements, we obtain a quality-controlled and reproducible recording of the 

infrastructure. Due to the area-based measurement of the component surfaces above and 

underwater, suspected damage can be reliably detected and verified. A comparison of 

different measurement epochs - as they have to be carried out every six years within the 

framework of structural inspections - is thus also possible for underwater constructions, so 

that the development of damage and the service life of these constructions, which are 

important for our national economy, can be better observed and evaluated in future. With the 

introduced approach to use heightfields as input for constitutional neural networks we achieve 

a fully automated damage detection. The mean true positive rate is 0.98 for the activation 

(128d features) from layer pool_2 for simulated data. 

The lack of enough training data forced us to use simulated data only for this study. The first 

results show a high potential of the introduced method. But the performance can vary for real 

data. 

Next studies should focus on performing the algorithms on real data and optimising control 

variables. Therefore, this approach should be applied to real-world data in different conditions 

and locations. 
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