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Abstract. In homing tasks, the goal is often not marked
by visible objects but must be inferred from the spatial
relation to the visual cues in the surrounding scene. The
exact computation of the goal direction would require
knowledge about the distances to visible landmarks,
information, which is not directly available to passive
vision systems. However, if prior assumptions about
typical distance distributions are used, a snapshot taken
at the goal suffices to compute the goal direction from
the current view. We show that most existing approaches
to scene-based homing implicitly assume an isotropic
landmark distribution. As an alternative, we propose a
homing scheme that uses parameterized displacement
fields. These are obtained from an approximation that
incorporates prior knowledge about perspective distor-
tions of the visual environment. A mathematical analysis
proves that both approximations do not prevent the
schemes from approaching the goal with arbitrary
accuracy, but lead to different errors in the computed
goal direction. Mobile robot experiments are used to test
the theoretical predictions and to demonstrate the
practical feasibility of the new approach.

1 Introduction

For many animal species it is vital to find their way back
to a shelter or to a food source. In particular, flying
animals cannot rely on idiothetic information for this
task, as they are subject to wind drift. Thus, they have to
use external information, often provided by vision. A
location may be identified visually using one of two
methods: first, by association with an image of the
location (recorded while approaching or leaving it), or
second, by association with an image of the scene as seen
from the location. These two methods depend on the
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visual characteristics of the location and determine how
such a snapshot can be used to recover its associated
spatial position: (1) if the location itself is marked by
salient visual cues, these may act as beacons that can be
tracked until the goal is reached (e.g. Collett 1996); (2) if
there are no beacons, the goal direction has to be
inferred from the spatial relation to the visual cues in the
surrounding scene. A protypical example for this
navigation task is the Morris water-maze task (Morris
1981), where a rat has to find a platform hidden under
an opaque water surface (cf. Fig. 1). If the animal moves
so as to attain the same spatial relationship to the scene
as the one recorded in the snapshot, it will eventually
reach the goal. In this study, we refer to this behaviour
as scene-based homing since it makes use of the whole
scene rather than of tracking single objects.

A number of experiments have shown that inverte-
brates such as bees or ants are able to pinpoint a lo-
cation defined by an array of nearby landmarks (see
Collett 1992 for a review). Apparently, these insects
search for their goal at places where the retinal image
forms the best match to a memorized snapshot. Cart-
wright and Collett (1983) have put forward the hy-
pothesis that bees might be able to compute the goal
direction from the azimuth and size change of land-
marks near the goal. While vertebrates also seem to
use landmark distances for scene-based homing tasks
(Collett 1986), the proposed mechanism requires only
the storing and processing of a single snapshot. Cart-
wright and Collett (1983) and Wittmann (1995) showed
in computer simulations that a snapshot-based homing
scheme is indeed sufficient to explain the search fre-
quency patterns of honeybees. Experiments with mo-
bile robots have demonstrated that similar mechanisms
also work under real world conditions (Hong et al.
1991; Rofer 1995, 1997; Franz et al. 1997; Moller et al.
1998).

In the present work, we focus on the problems that
any agent, animal or robot, has to face when using
snapshots of the surrounding scene for homing tasks.
We provide an analysis of the necessary computations
which shows that several solutions to this problem are
possible, depending on the basic assumptions. As an
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Fig. 1. Morris water-maze task: a rat has to swim to a platform
hidden under an opaque water surface. The goal direction can only be
inferred from the spatial relationship to the visual cues in the
surrounding scene

alternative to existing computational models, we for-
mulate a new scene-based homing algorithm that is able
to cope with some of the shortfalls of previous ap-
proaches. We test the algorithm and our theoretical
predictions on real robots to avoid the idealizations one
necessarily has to accept when simulating an agent and
its environment.

In the next section, we give a mathematical descrip-
tion of the basic task, followed by an investigation of the
error and convergence properties of previous solutions.
Using this computational framework, we propose a new
algorithm in Sect.4. Section 5 describes our implemen-
tation on a mobile robot and presents experimental re-
sults. We conclude our study with a discussion of the
results and relate them to previous approaches taken by
researchers in biology and robotics.

2 Inferring the goal direction from the surrounding scene
2.1 Mathematical description of the task

To characterize the basic task mathematically, we start
by giving some definitions which will be used throughout
the paper. As an idealized model of an agent, we chose a
mobile omnidirectional sensor ring measuring the sur-
rounding light intensity. If the allowed movements of the
sensor ring are restricted to two dimensions, then a ring
parallel to the movement plane suffices, in principle, to
determine the relevant motion parameters. The agent is
able to record a 360° view at the horizon of the
surrounding panorama as a snapshot. Although this
assumption is not an essential prerequisite, it simplifies
the mathematical treatment and the practical implemen-
tation, since no computational resources are necessary
to merge several restricted views into a common image
of the panorama. Using a ring at the horizon has the
additional advantage that, in a static environment, the
optic flow will always be confined to this ring when
moving in the plane. Imaged landmarks may move along
that ring or become occluded, but will never leave the
ring.

The position of an image point on the sensor ring is
denoted by the angle 0. All points in the environment

giving rise to identifiable points in the image are called
landmarks. This should not be confused with the usual
notion of a landmark as a physical object. In our ter-
minology, a visible object may contain several land-
marks.

Suppose the sensor ring moves away from the home
position H in direction « by a distance d to point C and
changes its orientation by the angle  (see Fig. 2). As a
consequence, the image of landmark L at distance r is
shifted from 0 to a new position 6 + ¢ (assuming a static
environment). From the triangle HLC in Fig. 2, we ob-
tain

r_sin(0 —a+y +9) (1)
d sin(y + 9)

This relation can be used to compute the direction
B = o — 1y + m back to the starting position H from the
change ¢ in the landmark position (the displacement) if
r/d and  are known.

Before relation (1) can be applied for homing tasks,
two basic problems have to be solved:

1. In order to compute the displacement §, a corre-
spondence between image points in the snapshot and
in the current view must be established.

2. If the snapshot and the current view are the only
information available, the absolute distance r of the
landmark at L is unknown. This lack of knowledge
must be compensated by some additional assumption
about the distance distribution of possible landmarks
in the environment.

2.2 Computation of correspondences

The problem of identifying corresponding regions in
different images is a well-studied issue in computer

Fig. 2. Moving a ring sensor from the home position H# to C in
direction o (with respect to sensor’s initial orientation Oy) and
rotating it by y leads to a change 6 of the viewing angle of a
landmark L



vision (Forstner 1993), e.g., in optic flow analysis or in
stereo vision. This has led to the application of
standard optic flow techniques to establish correspon-
dences between the snapshot and the current view,
such as feature matching (Hong et al. 1991) or
correlation of image patches on a multi-scale pyramid
(Wittmann 1995). In the general case of a translating
and rotating agent, the entire image has to be
searched for correspondences. This not only requires
large computational resources, but also increases the
danger of false matches. The search space for
correspondences can be restricted if the agent knows
its orientation with respect to an external reference
(Cartwright and Collett 1983; Wittmann 1995; Moéller
et al. 1998)) or always keeps a constant orientation
(Hong et al. 1991; Rofer 1995). In addition, the
number of false matches can be reduced by using
coloured images or assuming neighbourhood preser-
vation of landmarks (Rofer 1995, 1997).

All previous approaches compute correspondences
locally, i.e., they compare subregions of the image. This
makes them susceptible to false matches since small
image patches are not very distinctive. In Sect. 4, we
will present a global image matching procedure that
does not rely on local or feature correspondence.
Similar schemes for global image comparison have
been suggested for simple tasks in stereo vision by
Mallot et al. (1996).

2.3 Assumptions about distance distributions

Isotropic distance assumption. Although never explicitly
stated, most previous approaches to scene-based homing
compensate the lack of distance knowledge by assuming
an isotropic landmark distribution. This means that the
frequency and distance of landmarks are assumed to be
independent of the viewing direction. In this case, one
obtains the correct goal direction by summing over all
displacement vectors along the sensor ring, since all
vector components orthogonal to the direction of the
movement cancel each other (see Sect. 3). A homing
algorithm based on this assumption does not need any
object recognition mechanisms and can rely solely on
local optical flow techniques. Although a violation of the
isotropic distance assumption introduces considerable
errors in the computed home direction, we show in
Sect. 3.2 that it nevertheless leads to converging homing
algorithms.

Equal distance assumption. In Sect. 4, we will in-
troduce a new algorithm based on an approximation
which we call equal distance assumption. The sur-
rounding landmarks are assumed to have identical
distances from the location of the snapshot. This
approach provides constraints for the computation of
the displacement field which will be used in a global
image matching procedure. On first sight, the equal
distance assumption appears not to be very realistic,
but we will show in Sect. 4.2 that the effect of the
resulting errors on homing performance remain
small.
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3 Homing with the average displacement vector
3.1 Displacement vector sum in isotropic environments

Most of the approaches described in the literature
assume that the agent keeps a constant orientation
(y =0) or that any orientation change is corrected
before computing the home direction. In this case, we
obtain for the displacement from (1)

dsin(0 — o)

tano :r—dcos(Q—oc)

(2)
Following Hong et al. (1991), we define the associated
displacement vector d; as a vector with absolute value ¢
pointing in direction 0; + /2 + n/2 for 6 > 0, and in
direction 0; + 6/2 — /2 for 6 < 0 (cf. Fig. 3a). It was
assumed by Honget al. (1991) that the distance to the goal
can be most quickly reduced by moving in the direction of
the displacement vector. By simply adding up all dis-
placement vectors over the sensor ring and normalizing
the result, one obtains an averaged unit home vector

ﬁ:& (3)

=)

which denotes the next movement direction. As can be
seen from Fig. 3a, the displacement vector contains
generally a component which is orthogonal to the
direction of the movement and thus gives rise to the
error 7 in the computed driving direction. If one assumes
an isotropic landmark distribution, these errors cancel
each other in the vector sum (3). Note that vectors with a
larger displacement stronger influence the computed
home vector in (3). This has two advantages: First, large
displacements are less affected by sensor noise. Second,
the largest displacement vectors occur perpendicular to
the goal direction and thus have the smallest error
component (cf. Fig. 3).

The scheme of Hong et al. (1991) was used in the later
implementations of Rofer (1995, 1997), Wittmann
(1995), and Moller et al. (1998), but in each approach
the displacements were computed using different meth-
ods (see Table 1). In the original scheme of Cartwright

a)

Fig. 3. a The direction of the displacement vector & is 0 + 8/2 + n/2
for 6 >0, and 0+ /2 — =/2 for 6 < 0. The resulting error in the
home direction is #. b The average displacement vector points exactly
in the home direction, if the summed errors of quadrant I and III
exactly match those of quadrant II and IV. The largest displacement
vectors occur at viewing angles perpendicular to the home direction
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and Collett (1983), the displacement vectors had unit
length and were attached directly at 0. They additionally
included radial unit vectors which act to lessen the size
discrepancy of visible objects.

In order to illustrate the properties of a homing al-
gorithm based on the isotropic distance assumption, we
have implemented a simplified version of the scheme by
Hong et al. (1991). In their approach, local matches m; ;
between an area of the current image / centered at i and
an area of the stored snapshot /5 centered at j are cal-
culated according to

mi; = Z Wl’(1i+l — W) = < (Ijs+1 - .“S) 4)

S
i—1 o

where w; = 1/(2 + |1|) is a weighting function!, [-L,L]
the window, and u and ¢ the mean and the standard
deviation of the pixel values inside the window. The
angular difference between the image position of i and
that of the best match yielded the displacement of i with
respect to the snapshot. In contrast to the original
implementation, we did not identify particularly suitable
image points, but computed a dense displacement field
at all image positions. This could possibly lead to a
degradation in performance but suffices to illustrate the
properties of the scheme as the applicability to robotic
tasks was already shown by Hong et al. (1991).
Although the isotropic distance assumption has been
implemented in several systems, none of these ap-
proaches provides an analysis of error or convergence
properties. In the next section, we show that this ap-
proximation indeed leads to converging homing
schemes, although the associated error does not neces-
sarily decrease when approaching the home position.

3.2 Error and convergence

The angular deviation 5 (cf. Fig. 3) between the
displacement vector and true home direction can never
exceed 90°. To visualise this, let us consider a landmark
positioned left of the vector HC. Then, both 6 and 0 + ¢
are confined to the interval [0, n]. Clearly, the same has
to hold for their mean, 6+ /2. Since the estimated
home direction is given by

0 =

p=0+ 5 + > (5)
we have n/2 < ff <3/2n. Keeping in mind that the
correct return angle is 7, we find that the absolute error
|| is less or equal to m/2 provided that there are no
errors in the measurement of 6. Equality is obtained if
and only if H, C and L are all on one line. An analogous
argument holds if the landmark is to the right of the
movement direction.

Let us assume that we have solved the correspon-
dence problem and that the computed displacements are

"The original paper uses w; = 1/|2 + /| which we think is a
printing error

error-free. Furthermore, let us assume that the sensor
ring has a constant orientation and that the environment
contains more than two non-aligned landmarks. If the
homing mechanism described above is used, then the
distance d(¢) to the home position tends to 0 in a general
environment, provided that there are no locations with
identical views. In practice, this means that the home
position can be found from all points where correct
displacements are computable.

Proof. Since the directional error is always smaller
than or equal to 90°, d(¢) has to decrease monotonically
during the homing procedure. An error of exactly 90°
occurs only at two points in the visual field, namely in
the home direction and in the opposite direction. As we
assume there are at least three non-aligned landmarks,
there must be at least one displacement vector within
error smaller than 90°. Thus, d(#) decreases strictly
monotonically for d(z) > 0. In addition, d(¢) is always
bounded from below by 0, such that lim,_ d(¢) exists.
This means that d(¢) converges to 0, which completes the
proof.

In a non-isotropic environment, the configuration of
sensor and environment will change after each move-
ment and so will the error. Although the single dis-
placement vectors become smaller when the sensor
approaches the goal, it should be noted that the error in
the estimated home direction does not necessarily
decrease due to the normalization factor in (3). Since
we have shown that the scheme converges, this should
result in a spiral-like trajectory during the homing
procedure.

4 Homing with parameterized displacement fields

4.1 A matched filter based on the equal distance
assumption

Before applying the equal distance assumption, we will
convert (1) into a suitable form for the subsequent
analysis. We assume a typical landmark distance R and
denote the deviation from it by # so that » = R + #/. This
leads to

dsin(0 — o)
t o) =—=
an(y +9) 1+%—4cos(0 — a)

(6)

We replace 7 and d by the ratios e = #'/R and p = d/R.
This leads to the simplified notation

antp 0= 2O »

The cases p=0, e=—1, on the one hand, and
p=1+4+¢€ 0=0ao on the other have to be excluded,
which means that the agent is not allowed to occupy the
same position as a landmark while homing or taking a
snapshot. We now apply the equal distance assumption
by neglecting the individual distance differences € of the
surrounding landmarks. When solved for 9, the resulting
expression
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describes the displacement field 6(0)|,_, when all land-
marks are located at a distance R from the starting
position. The displacement field is completely deter-
mined by only three parameters: a, ¥ and p.

These simplified displacement fields can be used to
estimate the real displacement field by a matching pro-
cedure. Since the direction of the sensor movement « is
one of the matching parameters, the goal direction can
be computed using the following algorithm:

1. For all parameter values of «, y and p, the current
view is distorted by shifting the image positions 6 of
the single pixels according to (8). The result of this
procedure is new images that would have been ob-
tained if the sensor had moved according to the pa-
rameters in an environment where the constant
distance assumption was perfectly valid.

2. The generated images are compared to the snapshot
taken at the home position. To measure the degree of
match, we use the dot product between the distorted
image and the snapshot. The best match is produced
by a displacement field which reconstructs the home
view as accurately as possible.

3. The parameter value of o leading to the best match is
selected to obtain an estimate f = o + = of the home
direction.?

4. The agent moves in the estimated home direction,
until the home position is reached. We use two in-
dependent criteria to detect the goal: either the dot
product between the current image and the snapshot
exceeds a pre-set threshold, or the computed home
vector changes its direction about 180° after passing
the goal.

In order to determine the unknowns in (8) completely, at
least three landmarks must be visible. Otherwise, the
home direction can only be estimated if additional
information sources such as compasses or odometers are
available. Note that the algorithm produces an estimate
not only of the home direction, but also of the
orientation y and of the relative distance p. Although
we do not use these estimates in our homing procedure,
this information could be used, e.g., for visual odometry,
without any additional computations.

The parameterized displacement field 6(0)|._, can be
interpreted as a matched filter in the sense that the pa-
rameter set that reproduces the actual displacement field
best is an estimate of the real one. Since the direction of
movement « is one of the parameters, the best matching
displacement field immediately gives the goal direction.
Similar motion templates for determining egomotion
parameters from given optical flow fields have been de-
scribed for the visual system of the blowfly Calliphora
(Krapp and Hengstenberg 1996), and theoretically by

>The relative distance p obtained by this matching process is
generally not the mean relative distance of the surrounding land-
marks, but a weighted average according to the displacement
caused by each individual landmark.
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Nelson and Aloimonos (1988). Mallot et al. (1991) have
used motion templates for obstacle detection in a robot
application.

Although the equal distance assumption is hardly
ever valid in a strict sense, the estimate of the displace-
ment field is quite robust, as will be demonstrated in the
next section.

4.2 Error due to the equal distance assumption

Unlike the isotropic distance assumption, the error due
to the equal distance assumption decreases when the
sensor approaches the goal. This follows directly from
(6) if we assume that the sensor is in the open space
around the goal (i.e., p<1+4e¢). In this case, the
displacement 0 is given by

psin(0 — o)
l—i—e—pcos((i—oc))_w ®)

o= arctan<

The error in the displacement 6 due to neglecting the
deviation of the landmark distance # from the averaged
distance R is

E(e, p) := 0(e, p) — 6(0, p) (10)

Both 6 and E are continuous functions in p and e for
e > —1. Moreover, ¢ and E tend to zero for p — 0. This
means that for each ¢ > —1, fixed 0 and «, and any
desired accuracy bound Ej > 0, there exists a p, such
that p < p, implies |E(e, p)| < Ep. In other words, even if
the equal distance approximation does not hold, we can
reach any desired accuracy level, provided that we are
close enough to the goal. For every snapshot containing
at least three landmarks, there exists an area in which
the location of the snapshot can be approached arbi-
trarily closely.

The maximal area in which the goal can be found is
called the catchment area of the snapshot (Cartwright
and Collett 1987). In practice, the catchment areas tend
to be larger than one might expect from the equal
distance approximation, as there are several factors
which effectively constrain the distances of the imaged
landmarks. First, the error induced by an infinitely
distant point is relatively small, compared to displace-
ments generated by nearby landmarks. Second, very
close points will not have an effect as adverse as might
be expected from their large displacements, since
commonly used obstacle avoidance systems make them
less likely to occur. In addition, the vision system’s
limited depth of field will cause both very close and
very distant landmarks to be blurred and reduced in
contrast, which decreases their effect on the matching
procedure.

4.3 Limitation of spatial resolution by sensor noise

As we have shown in the previous sections, neither the
isotropic nor the equal distance assumption limit the
spatial accuracy of homing. Therefore, the primary
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limiting factor is the pixel and quantization noise of the
sensor ring. In the following, we will determine the max-
imally achievable spatial resolution Ap, i.e. the minimal
distance between places whose images can be reliably
distinguished.

We assume that the intensity distribution A(0) sam-
pled by the sensor ring is low-pass filtered in a subse-
quent processing stage so that the derivative of the
intensity distribution #'(0) is well defined for all sensor
coordinates 0, and spatial aliasing effects are eliminated.

If the variance of the noise in the intensity distribu-
tion is given by ¢°, the maximally resolvable intensity
change is 2¢ according to the usual reliability criterion
for communication systems which is analogous to as-
suming that the threshold signal to noise ratio is unity
(Goldman 1953).

A small movement of the sensor ring from the loca-
tion of the snapshot induces a small change A0 in the
position of the landmarks. The resulting change of the
detected intensity distribution at 0 is, to a first-order
approximation,

AR(0) ~ I (0) - A (11)

which leads to a maximally resolvable image displace-
ment of

2
Omin = A0 % 0 (12)

From (6), we obtain the expression

Op _ (1+¢)sin(0 —a)

= 13
0 sin®*(0 — o+ +0) (13)
so that the maximal spatial accuracy is given by
Ap = p(6+ A0) — p(0)
dp
~ % : 5mm
_ 2(1 + €)sin(0 — ) ’ (14)

1 (0)sin®(0 — o 4y + 9)

This shows that for extreme noise levels, low contrast
and landmark positions near the movement direction,
Ap may become larger than the catchment area, so that
in these cases a scene-based homing scheme is not
applicable. Note, that the above limitation is derived for
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only one landmark. When more landmarks are visible,
the spatial accuracy becomes higher due to the effect of
statistical averaging.

5 Robot experiments
5.1 Experimental set-up

The experiments were conducted in an arena with
dimensions of 118 x 102 cm. Visual cues were provided
by model houses in the arena (see Fig. 4). We used a
modified Khepera miniature robot connected to an SGI
Indy workstation via a serial and video transmission
cable (Franz et al. 1997). Our scheme was also tested
successfully in a real office environment on two other
robot platforms. The imaging system on the robot
comprises a conical mirror mounted above a small video
camera which points up to the centre of the cone
(Fig. 5). This configuration allows for a 360° horizontal
field of view extending from 10° below to 10° above the
horizon. A similar imaging technique was used by Chahl
and Srinivasan (1996) and Yagi, Nishizawa, and Yach-
ida (1995). The video image was sampled at 25 Hz on
four adjacent circles along the horizon with a resolution
of 4.6° and averaged radially to provide robustness
against inaccuracies in the imaging system and tilt of the
robot platform. In a subsequent processing stage, a

—

Fig. 4. Test arena (118 x 102cm) with toy houses, used in the
homing experiments (see Sect. 5.1). The modified Khepera robot is
depicted in the right half of the arena

Fig. 5. The robot uses a camera module pointing at a
conical mirror, which permits sampling of the environ-
ment over 360°, in a range of £10° about the horizon. The
photography shows the mirror as seen by the camera. The
white circle marks the intensities at the horizon which are
used as input for the homing procedure



spatiotemporal Wiener lowpass filter (e.g. Goldman
1953) was applied to the resulting one-dimensional
array. To compensate for illumination changes, the
average background component was subtracted, and in
a final step, the contrast of the array was maximized via
histogram equalization. The movement commands cal-
culated from these data were transmitted back to the
robot using a serial data link with a maximal transmis-
sion rate of 12 commands per second.

The Khepera’s position was tracked with a colour
camera mounted above the arena, tuned to a red marker
attached to the robot. Position and image data were
recorded with a time stamp and synchronized offline.
Position information was not available to the robot
during the experiments.

5.2 Performance of the homing scheme

The feasibility of our approach was tested in an
experiment with the Khepera robot in the ‘toy house’
arena (Fig. 4). During a test run, the robot covered the
whole arena with 10 000 snapshots, while its position
was recorded by the tracking device. The resulting view
dataset samples the entire set of possible views (the view
manifold) of this environment. The size of the catchment
area can be visualized using the following procedure:
For selected home views, we calculated the correspond-
ing home vector at all possible positions, which leads to
the maps in Fig. 6. A point is considered part of the
catchment area, if there is a path along the goal vectors
leading to the goal. As can be seen from Fig. 6a, the
catchment area can cover the entire open space around
the goal position. The catchment area is somewhat
smaller for goals that are closer to an object (Fig. 6¢,d).
However, an effective use of the scheme is possible in all
areas of the arena where the robot does not collide with
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objects. Sample trajectories from typical homing runs
are shown in Fig. 6b. During the homing runs, the robot
computed the home direction relative to the current
driving direction every 83 ms. The driving direction can
only be corrected with a certain delay so that the
trajectories do not follow the depicted home vectors
exactly. That is, the shaded area shows the maximally
achievable catchment area without taking into account
the effects of the robot’s hardware or control architec-
ture.

Nevertheless, our algorithm can be succesfully ap-
plied for robot control as is demonstrated in the fol-
lowing experiment: for 20 different home positions, the
robot was displaced relative to each home position by
distances in the range of 5-25 ¢m in random directions.
A trial was counted as a success if the robot reached the
home position within a radius of 1 cm without colliding
with an obstacle or exceeding a search time limit of 30 s.
The success rates in Fig. 7 show that the algorithm
performs robustly up to an average distance of 15 cm
from the home position. For larger distances, the start
position was often outside the open space around the
home position, so that occlusions and obstacles affected
the performance. In the office environment, homing was
successful up to 2 m away from the home position.

5.3 Improvements by independent parameter estimation

The function over which the optimization in the three
parameters o, Y and p has to be performed, has multiple
local minima, and thus standard gradient descent
methods cannot be used. Since a global search is very
time consuming, it is convenient if {y or p can be
estimated independently.

Spatial distance from image distance. The image dis-
tance between snapshot and current view correlates with
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Fig. 7. Success rate for 100 homing runs, with starting distances
between 5 and 25 cm

spatial distance, as can be seen from Fig. 8. The views
are taken from the view dataset described in Sect. 5.2.
We use the maximal pixel-wise cross-correlation ® as a
measure of image distance. This is equivalent to the dot
product of two view vectors a;, b;, after first rotating one
of them such as to maximize the overlap with the other
one:

® = max Z ajbj.; (15)
J

Due to the correlation, a rough estimate of spatial
distance may be obtained from the measured image
distance. As the estimate of the other two parameters o
and  is very robust to variations in p, we use a linear
approximation for the relationship between spatial and
image distance. This speeds up the algorithm consider-
ably, so that home vectors can be computed in our C ++
implementation at a frame rate of 25 Hz on an SGI Indy
workstation (R4400 Processor at 100 MHz).
Orientation estimation. Similarly, the change of ori-
entation iy may be estimated by shifting snapshot and
current view until a minimal image distance is reached.
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Fig. 8. Scatterplot of image distance vs spatial distance. The
correlation can be used to estimate metric distance

Unfortunately, this works well only near the goal. Since
the algorithm does not tolerate large errors in the esti-
mate of y, this method is not directly applicable in our
scheme. A different approach, however, which we have
successfully tested in other experiments, involves using
previously acquired information to speed up the esti-
mation of Y. In particular, restricting the search space
for  to the neighbourhood of previous estimates of
did not decrease accuracy.

5.4 Accuracy

The accuracy of the computed home vector is directly
linked to the error properties which we predicted in
Sects. 3.2 and 4.2. As a measure of accuracy we use the
average homeward component (Batschelet 1981). This
measure characterizes both the accuracy and the angular
dispersion of the computed home vectors and is often
applied in homing experiments. As long as the home-
ward component stays significantly above zero, the
robot moves nearer to the goal; if it is close to 1, the
robot moves directly homeward.

In a first experiment (Fig. 9), we randomly selected 50
snapshots from the above mentioned 10 000 views. For
each snapshot, all other views were divided into bins
according to their distance from the snapshot, ranging
from 2 to 30 cm in steps of 2 cm. From each bin, we
selected a view at random and computed the home
vector using both homing algorithms described above.
The orthogonal projection of the estimated home vec-
tors on the real home vector in each bin was averaged
over all 50 snapshots.

We observe the predicted decrease in accuracy for the
algorithm based on the constant distance approximation
until a distance to the goal of 16 cm is exceeded. The
decrease is due to two factors: first, the constant distance
approximation becomes worse with increasing distance.
Second, with increasing distance, occlusions become
more frequent such that correspondences are harder to
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Fig. 9. Average homeward component of computed home vector for
randomly chosen pairs of views. The values obtained from the
constant distance assumption are marked by crosses, those from the
isotropic distance assumption by diamonds



find. In contrast, the accuracy obtained from the algo-
rithm based on the average displacement vector in-
creases very weakly with distance, but remains at a low
level. This is consistent with the prediction that no sig-
nificant changes in accuracy are to be expected. The
weak increase can be explained by the fact that dis-
placement vectors are easier to compute for larger dis-
placements which occur more often at larger distances
from the goal. As a consequence, accuracy could prob-
ably be increased by using a higher image resolution.
The decrease in accuracy of both algorithms for dis-
tances smaller than 2 cm is due to sensor noise as pre-
dicted by (14).

To assess the influence of occlusions on home vector
accuracy, we recorded 450 pairs of views during a ran-
dom walk and computed the respective home vectors for
each pair (Fig. 10). The pairs were required to be con-
nected by a direct line of sight, and no snapshots were
taken within =~ 2cm reach of the obstacles. We again
calculated the average homeward component using the
constant distance approximation. The distances in the
range of 1-15 cm were divided into 1-cm bins, each
containing 30 samples. At distances larger than 15 cm,
the database was too small, because pairs with larger
distances fulfilling the imposed conditions occurred very
rarely during the random walk, due to the cluttered
structure of the arena. The results in Fig. 10 indicate
that the accuracy decrease due to the constant distance
assumption is less pronounced when the path to the goal
is free of obstacles.

6 Discussion

In this paper, we analysed the computational require-
ments for scene-based homing. We have shown that
several solutions to this problem are possible, depending
on the basic assumptions. As an alternative to existing
computational models which rely on the isotropic
distance assumption, we have proposed a novel ap-
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Fig. 10. Average homeward component based on the constant
distance approximation for different choices of views. The curve
marked by crosses is computed from view pairs connected by a direct
line of sight, the curve marked by diamonds from randomly chosen
view pairs
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proach to scene-based homing based on the equal
distance assumption described in Sect. 2. We have
shown that the accuracy with which these algorithms
can approach a goal is limited only by sensor noise, not
by the approximations, and that every snapshot is
surrounded by a catchment area. Robot experiments
demonstrated the validity of our method for real world
applications and provided a quantitative assessment of
its performance. The predicted error properties of the
constant and isotropic distance assumption could be
reproduced in the experiments. In the following sections,
we discuss evidence from biological studies about scene-
based homing in animals, and relate our approach to
existing computational models.

6.1 Relation to biological studies

In the biological literature, various terms have been used
for scene-based homing. Collett (1996), e.g., describes
this strategy as image matching, whereas Trullier et al.
(1997) use the more general term guidance, which also
includes non-visual strategies. Scene-based homing is a
local navigation strategy, since the specific landmark
configuration must be visible at any moment. Inside the
visibility range, a home vector pointing towards the goal
can be computed from the sensory input at all locations.
This is different from scene recognition-triggered re-
sponses (Collett 1996; Trullier et al. 1997), where the
recognition of the scene activates a previously stored
home vector. Scene-based homing requires a working
memory for the snapshot as the goal location itself is not
specified by any visual cues. This is opposed to aiming at
beacons (Collett 1996) or, as called by Trullier et al.
(1997), target approaching, where the goal can always be
perceived.

The ability for scene-based homing is widespread
among animals. The most prominent example probably
is found in the work on honeybees (Anderson 1977;
Cartwright and Collett 1983). Cartwright and Collett
showed that bees use only a snapshot to find the goal
without recording the spatial layout of the surrounding
scene. They proposed that by using a stack of distance-
filtered snapshots, this mechanism could be extended to
larger scale navigation (Cartwright and Collett 1987).
More recent observations indicate, however, that scene-
based homing in honeybees seems to be limited to the
immediate vicinity of the goal, while other mechanisms
are used for larger scale navigation (Collett 1996). In-
terestingly, the bee aligns its body in a specific compass
direction during an approach (Collett and Baron 1994).
From a computational point of view, this would greatly
simplify the matching of snapshot and current view since
only small image displacements have to be detected.

Scene-based homing abilities have been reported also
for a number of other insect species such as hoverflies
(Collett and Land 1975), waterstriders (Junger 1991),
solitary wasps (Zeil 1993), ground nesting bees (Briin-
nert et al. 1994) and desert ants (Wehner et al. 1996).
Wehner and Miiller (1985) show that the snapshot re-
corded by desert ants remains fixed relative to retinal
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coordinates and does not rotate to compensate for
changes of the body orientation.

Vertebrates seem to have more highly developed
scene-based homing abilities. Food-storing birds, for
instance, retrieve hoarded food by remembering the lo-
cation of thousands of caches (Sherry and Duff 1996).
They rely mainly on visual information from nearby
landmarks to locate the concealed caches. Gerbils
(Collett et al. 1986) and rats (Morris 1981) store more
than a mere snapshot, for these animals appear to re-
member also the spatial layout of the scene. If landmark
distances are stored, additional assumptions about the
distance distribution are no longer necessary. This al-
lows for higher homing accuracies than in purely snap-
shot-based schemes.

Some experimental results have a simple explanation
if one assumes that image displacement fields are used to
compute the home direction. Cheng et al. (1987) report
that the bee weights landmarks according to their dis-
tance from the goal. From (2), it is clear that distant
landmarks lead only to small differences between the
current image and the snapshot, while nearby landmarks
cause larger displacement vectors. As a consequence,
these vectors receive a higher weight in the displacement
vector sum (3). Since in our algorithm (Sect. 4) a pre-
defined displacement field is matched to the actual dis-
placement field, a similar explanation holds: the algo-
rithm mainly tries to reproduce the larger displacement
vectors because these cause the largest mismatch be-
tween snapshot and current image. This can also ac-
count for the observation that bees assign higher weights
to landmarks with high contrast (Pelzer 1985) since these
lead to larger mismatches. It should be pointed out that
other weighting mechanisms are conceivable. So far, our
model uses only one-dimensional arrays of grey values
as input, whereas other landmark properties such as
their colour or height above ground might play an im-
portant role in assigning weights to them.

As we have seen, both the constant and the isotropic
distance assumptions lead to working homing algo-
rithms. While the single trajectories are often different,
they result nonetheless in similar search density peaks

Table 1. Overview of scene—based homing schemes (cf. Sect. 6)

for a given landmark array. This is due to the fact that
both algorithms guide an agent towards a location
where the match between the current image and the
memorized snapshot is maximal. When looking only at
the peaks of the search density pattern, all described
algorithms agree well with the experimental data (cf. e.g.
Cartwright and Collett 1983; or Wittmann 1995). As a
consequence, differences between possible algorithms
might be observed more easily on the level of single
trajectories, or with respect to their catchment areas. As
an example, one could build two landmark arrays in
which only one of the assumptions described in our text
is valid and the other is violated in order to decide be-
tween both assumptions (cf. Fig. 11). In both set-ups,
the trajectories of the homing animals are recorded. If
the animal uses, for example, the constant distance as-
sumption, the average homeward component of its tra-
jectories should be significantly higher in set-up 4 than
in set-up B. The reverse would be obtained for the iso-
tropic distance assumption.

6.2 Computational models
In this section, we will briefly discuss a number of scene—

based homing schemes and point out some differences to
the present approach. In doing so, we will mainly focus

Fig. 11. In set-up A the isotropic distance is violated, while the
constant distance assumption is valid. This condition is reversed in set-
up B. An animal using, for instance, the constant distance assumption
will show a significantly higher average homeward component in set-
up A than in set-up B

Reference Approximation Correspondence Input Constant Implementation
orientation
Cartwright and Isotropic landmark Region matching Binary, 360° Yes Computer simulation
Collett 1983 distribution
Hong et al. 1991 Isotropic landmark Feature matching Grey value, 360° Yes Mobile robot
distribution
Rofer 1995 Isotropic landmark Kohonen network Grey value, 360° Yes Mobile robot
distribution
Wittmann 1995 Isotropic landmark Correlation on Grey value, 330° Yes Computer simulation
distribution resolution pyramid
Rofer 1997 Isotropic landmark Similarity to RGB values and No Mobile robot
distribution adjacent pixel pairs derivatives, 360°
Franz et al. 1997 Equal distance Parameterized Grey value, 360° No Mobile robot
displacement fields
Moller et al. 1998 Isotropic landmark Region matching Binary, 360° Yes Mobile robot

distribution




on the type of approximations and the correspondence
mechanisms utilized (summarized in Table 1).

Most approaches use a 360° field of view. This sim-
plifies the homing task considerably since, for an om-
nidirectional sensor, all non—occluded landmarks are
permanently visible. As Nelson and Aloimonos (1988)
pointed out, there is an additional advantage: in a 360°
field of view, the rotatory and translatory part of the
displacement field can easily be separated. In the case of
limited fields of view, the decomposition becomes more
difficult. Therefore, considerable effort has gone into
technical implementations, including a camera pointing
at a spherical (Hong et al. 1991; Réfer 1997) or conical
mirror (Franz et al. 1997; Moller et al. 1998) and a ro-
tating intensity sensor (Rofer 1995).

Cartwright and Collett (1983) and Wittmann (1995)
proposed models for honey bee landmark navigation.
Both assume that the bee stores its orientation with re-
spect to an external compass reference provided by the
sun or the earth’s magnetic field. This allows the bee to
keep the orientation of the snapshots constant, either by
‘mental’ counterrotation or appropriate body orienta-
tion. The mobile robot of Mdller et al. (1998) uses a
polarized light compass (Lambrinos et al. 1997) to
counterrotate a binary snapshot. Similarly, the camera
platforms of the robot used by Hong et al. (1991) and
Rofer (1995) do not rotate when the robot changes di-
rection, so that all views have constant orientation. As
pointed out in Sect. 5.3, this has the advantage of greatly
reducing the computational cost. In addition, limited
fields of view can be used without having to deal with the
invisible parts, because the viewing direction always re-
mains the same. The schemes of Cartwright and Collett
(1983) and Wittmann (1995) are implemented in ideali-
zed computer models, so they do not have to deal with
noisy orientation estimates. Since these errors may result
in large deviations in the estimation of the home direc-
tion, small rotatory deviations are compensated for in
the robotic implementations of Hong et al. (1991) and
Rofer (1995). However, the orientation of the platforms
is subject to cumulative errors, and thus these schemes
may fail in large-scale environments.

Many schemes use additional assumptions for the
computation of image displacements. Hong et al. (1991)
assume that prominent features in the image can be at-
tributed to objects around the robot. By observing only
the displacement of these features, changes in the image
due to different lighting or reflectance have less effect on
homing performance. Rofer (1995, 1997) uses the as-
sumption that landmarks maintain their order in the
snapshot and the current view. While it restricts the
search space for correspondences, this assumption is
only true near the goal. It should be noted that although
the above approaches differ in the way they establish
correspondences between views, they all rely on the
approximation of isotropic landmark distribution. The
error in the computed home direction due to this ap-
proximation may be very large, even close to the goal
(cf. Fig.9). Thus, these schemes may converge very
slowly in strongly non-isotropic environments, and even
fail for higher noise levels.
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Cartwright and Collett (1983) and the robot im-
plementation of their scheme (Moller et al. 1998)
included an additional feature to reproduce the experi-
mental data: the vector sum for the computation of the
home direction contains not only the tangential dis-
placement vectors but also radial vectors which act to
lessen the size discrepancy of the visible objects. This
makes their scheme less sensitive to non-isotropic land-
mark distributions (and even works if only one single
object is visible), but requires a segmentation of the
image into objects and background.

6.3 Conclusion

As the computation of displacement fields is an ill-posed
problem, some additional assumption about the field has
to be included. Our scheme makes explicit use of the
underlying geometry of the task. Together with the
equal distance assumption, this yields a low-dimensional
parameterization of the possible displacement fields. The
low—dimensionality leads to an optimization problem
solvable in real time. All displacement fields defined by
the parameterization, in particular the result of the
optimization, are such that they can occur in real-world
situations. This, however, is not guaranteed for general
optical flow methods such as feature matching or
correlation.

Clearly, our homing scheme is limited to the imme-
diately accessible surroundings of a snapshot. Else-
where, we have described how to deal with navigation in
large-scale environments by combining several snap-
shots into a graph-like structure (Scholkopf and Mallot
1995; Franz et al. 1998).

Since this work was largely inspired by biological
principles, we want to conclude with a few remarks
concerning the biological relevance of our scheme. The
proposed algorithm could be implemented with matched
filters in very simple neural circuitry. As Krapp and
Hengstenberg (1996) have recently shown, flies use
matched filters for complex stimuli such as generic op-
tical flow fields. Moreover, we note that in our ap-
proach, three-dimensional information is only present
implicitly, in the use of perspective distortion, and in the
geometrical parameterization of displacement fields.
Previous studies have shown that a variety of visual
tasks (e.g., object recognition, see Biilthoff and Edelman
1992; navigation, Gillner and Mallot 1998) can be ac-
complished by humans without using explicit 3-D rep-
resentations. Although these observations support our
general approach, we emphasize that our homing algo-
rithm is not an explicit model of animal behaviour. It
aims rather at understanding possible solutions to a
general problem which robots as well as animals have to
solve.
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