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Abstract. The use of non-orthonormal basis functions in ridge regres-
sion leads to an often undesired non-isotropic prior in function space.
In this study, we investigate an alternative regularization technique that
results in an implicit whitening of the basis functions by penalizing di-
rections in function space with a large prior variance. The regularization
term is computed from unlabelled input data that characterizes the in-
put distribution. Tests on two datasets using polynomial basis functions
showed an improved average performance compared to standard ridge
regression.

1 Introduction

Consider the following situation: We are given a set of NV input values x; € R™
and the corresponding N measurements of the scalar output values t;. Our task
is to model the output by linear combinations from a dictionary of fixed functions
p; of the input x, i.e.,

M
i = Z’yﬂpj (x;), or more conveniently, §; = $(x;), (1)
=1

using ¢(x;) = (p1(xi),p2(%;),...) . The number of functions M in the dictio-
nary can be possibly infinite as for instance in a Fourier or wavelet expansion.
Often, the functions contained in the dictionary are neither normalized nor or-
thogonal with respect to the input. This situation is common in kernel ridge
regression with polynomial kernels. Unfortunately, the use of a non-orthonormal
dictionary in conjunction with the ridge regularizer ||y||*> often leads to an un-
desired behaviour of the regression solutions since the constraints imposed by
this choice rarely happen to reflect the - usually unknown - prior probabilities
of the regression problem at hand. This can result in a reduced generalization
performance of the solutions found.

In this study, we propose an approach that can alleviate this problem either
when unlabelled input data is available, or when reasonable assumptions can be
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made about the input distribution. From this information, we compute a regular-
ized solution of the regression problem that leads to an implicit whitening of the
function dictionary. Using examples from polynomial regression, we investigate
whether whitened regression results in an improved generalisation performance.

2 Non-orthonormal functions and priors in function space

The use of a non-orthonormal function dictionary in ridge regression leads to
a non-isotropic prior in function space. This can be seen in a simple toy exam-
ple where the function to be regressed is of the form ¢; = sin(a=z;)/(az;) + n;
with the input z; uniformly distributed in [—1, 1] and an additive Gaussian noise
signal n; ~ N(0,02). Our function dictionary consists of the first six canonical
polynomials ¢ (z) = 1, ¢2(x) = , ¢3(x) = 2%, ...,¢¢(z) = x° which are neither
orthogonal nor normalized with respect to the uniform input. The effects on the
type of functions that can be generated by this choice of dictionary can be seen
in a simple experiment: we assume that the weights in Eq. 1 are distributed
according to an isotropic Gaussian, i.e., v ~ N(0,02Ig) such that no function
in the dictionary receives a higher a priori weight. Together with Eq. 1, these
assumptions define a prior distribution over the functions g(z) that can be gen-
erated by our dictionary. In our first experiment, we draw samples from this
distribution (Fig. la) and compute the mean square of g(z) at all z € [-1,1] for
1000 functions generated by the dictionary (Fig. 1b). It is immediately evident
that, given a uniform input, our prior narrowly constrains the possible solutions
around the origin while admitting a broad variety near the interval boundaries.
If we do ridge regression with this dictionary (here we used a Gaussian Process
regression scheme, for details see [5]), the solutions tend to have a similar be-
haviour as long as they are not enough constrained by the data points (see the
diverging solution at the left interval boundary in Fig. 1¢). This can lead to bad
predictions in sparsely populated areas.

If we choose a dictionary of orthonormal polynomials instead (in our ex-
ample these are the first six Legendre polynomials), we observe a different be-
haviour: the functions sampled from the prior show a richer structure (Fig. 1d)
with a relatively flat mean square value over the interval [—1,1] (Fig. 1e). As a
consequence, the ridge regression solution usually does not diverge in sparsely
populated regions near the interval boundaries (Fig. 1f).

The reason for this behaviour can be seen if one thinks of the functions
as points in a function space. The dictionary defines a basis in a subspace such
that all possible solutions of the form Eq. 1 are linear combinations of these basis
vectors. Assuming an isotropic distribution of the weights, a non-orthogonal basis
results in a non-isotropic distribution of points in function space. As a result,
any new function to be expressed (or regressed) in this basis will have a larger
probability if its projection onto the basis happens to be along a larger principal
component, i.e., we have a non-isotropic prior in function space. Conversely, an
orthonormal basis in conjunction with an isotropic weight distribution results in
an isotropic prior in function space such that no specific function is preferred over
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Fig. 1. Toy experiment using polynomial bases: a. 10 examples drawn from the prior
in function space generated by the first 6 canonical polynomials and b. generated by
the first 6 Legendre polynomials; c. Mean squared value in the interval [—1,1] of 1000
random linear combinations of the first 6 canonical polynomials and d., of the first 6
Legendre polynomials; e. Regression on 10 training samples (stars) using the canonical
polynomial basis and f., the Legendre basis. The dashed line denotes the true function,
the solid line the prediction from regression. The shaded areas show the 95%-confidence
intervals.

another. This situation may often be preferable if nothing is known in advance
about the function to be regressed.
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3 Whitened regression

The standard solution to regression is to find the weight vector v in Eq. 1 that
minimizes the sum of the squared errors. If we put all ¢(x;) into an N x M
design matrix @ with & = (¢(x1) ", ¢(x2)",...4(xn) ") T, the model (1) can be
written as ¥y = &7y such that the regression problem can be formulated as

argmin(t — &v)?. (2)
!

The problem with this approach is that if the noises n; are large, then forcing
¥ to fit as closely as possible to the data results in an estimate that models the
noise as well as the function to be regressed. A standard approach to remedy
such problems is known as the method of regularization in which the square
error criterion is augmented with a penalizing functional

(t—d7)> +AJ(7), A>0. (3)

The penalizing functional J is chosen to reflect prior information that may be
available regarding v, A controls the tradeoff between fidelity to the data and the
penalty J(v). In many applications, the penalizing functional can be expressed
as a quadratic form

J() =~"Z "y (4)

with a positive definite matrix X7 L. The solution of the regression problem can
be found analytically by setting the derivative of expression (3) with respect to
v to zero and solving for ~:

Yopt = ()\E;l + QST@)il@Tt. (5)
Based on 7,p¢, we can predict the output for the new input x, using
G = Yopd(x:) = tTOOAZ, ! +870) T g(x.) (6)

Note that the solution depends only on products between basis functions eval-
uated at the training and test points. For certain function classes, these can
be efficiently computed using kernels (see next section). In ridge regression, an
isotropic penalty term on 7 corresponding to X, = 02l is chosen. This can
lead to a non-isotropic prior in function space as we have seen in the last section
for non-orthonormal function dictionaries.

What happens if we transform our basis such that it becomes orthonormal?
The proper transformation can be found if we know the covariance matrix Cy
of our basis with respect to the distribution of x

Cy = Ex[p(x)¢(x) "] (7)

where E, denotes the expectation with respect to x. The whitening transform
is defined as L
D=DT=C,*. (8)
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The transformed basis ¢~> = D¢ has an isotropic covariance as desired:
C; = Ex[¢p(x)$(x) "] = Ex[Dp(x)¢(x) " D] = DEL[¢p(x)$(x) 'IDT = Ins. (9)

Often, however, the matrix Cy will not have full rank such that a true whitening
transform cannot be found. In these cases, we propose to use a transform of the
form

D= (Cy+1In)=. (10)

This choice prevents the amplification of possibly noise-contaminated eigenvec-
tors of Cy with small eigenvalues (since the minimal eigenvalue of (Cy + Inr)
is 1) while still leading to a whitening effect for eigenvectors with large enough
eigenvalues.

When we substitute the transformed basis ¢ = D¢ into Eq. (5) using %, =
I;, we obtain

Yopt = DTHA(DT)? + 87 8) 1Bt (11)
The prediction equation (6) is accordingly
§=t"dAND )’ +8'd) " p(x.) (12)

It follows that doing standard ridge regression with a withened, orthonormal ba-
sis is equivalent to doing regression in the original, non-orthonormal basis using
the regularizer J() = v" D~2y. This allows us to use an implicitely whitened
basis without the need to change the basis functions themselves. This is particu-
larly useful when we do not have the freedom to choose our basis as, for instance,
in kernel-based methods where the basis functions are determined by the kernel
(see next section).

The proposed approach, however, suffers from a certain drawback because
we need to know Cy. In certain cases, the input distribution is known or can
be approximated by reasonable assumptions such that Cy can be computed
beforehand. In other cases, unlabelled data is available which can be used to
estimate Cy. The training data itself, however, cannot be used to estimate Cy
since the estimate is proportional to ' ®. When substituted into Eq. (12) this
amounts to no regularization at all. As a consequence, for the proposed approach
to work it is absolutely necessary to obtain Cy from data independent of the
training data.

4 Whitened Kernel Regression

When the number of basis functions is large, a direct solution to the regression
problem as described in the previous section becomes infeasible. Fortunately,
there is a work-around to this problem for many important function classes:
We noted in the previous section that the regression solution depends only on
products between basis functions evaluated at the training and test points. For
certain function dictionaries, the product between the functions evaluated at two
input values x; and X» can be expressed as

d(x1) " p(x2) = k(x1,%2). (13)
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The function k(x1,x2) on R™ x R™ is a positive definite kernel (for a definition
see [3]). As a consequence, the evaluation of a possibly infinite number of terms
in ¢(x1) " ¢(x2) reduces to the computation of the kernel k directly on the input.
Equation (13) is only valid for positive definite kernels, i.e., functions k& with
the property that the Gram matriz K;; = k(x;,x;) is positive definite for all
choices of the x1,...,xy. It can be shown that a number of kernels satisfies this
condition including polynomial and Gaussian kernels [3].

A kernelized version of whitened regression is obtained by considering the
set of n basis functions which is formed by the Kernel PCA Map [3]

b(x) = K2 (k(x1,%), k(X2,%), ... k(xn,x)) " . (14)

The subspace spanned by the ¢(x;) has the structure of a reproducing kernel
Hilbert space (RKHS). By carrying out linear methods in a RKHS, one can
obtain elegant solutions for various nonlinear estimation problems [3], examples
being Support Vector Machines. When we substitute this basis in Eq. (5), we
obtain

Yopr = AZ7 + K) 1K 5t (15)

using the fact that # = K~3K = K2 = &'. By setting k(x) = (k(x1,x),
k(x2,x%),...k(xn,x)) ", the prediction (6) becomes
gu = tTOK2Z UK 3 4+ K) k(x4). (16)

It can be easily shown that this solution is exactly equivalent to Eq. 6 if Eq. 13
holds. When choosing X, = In, one obtaines the solution of standard kernel
ridge regression [1]. Application of the whitening prior leads to

G =t (AR + K) 'k(x,) (17)

Here, Cy = K~3C K2 and C) = Ex[k(x)k(x)T]. This results in R = K~z Cj
or R=K :Cy + Iy, depending on the choice of D.

5 Experiments

We compare whitened regression to ridge regression [1] using the kernelized form
of Eq. 17 with R = K=3Cy + Iy and Eq. 16 with Y, = Iy, respectively. We
consider three types of polynomial kernels that differ in the weights assigned to
the different polynomial orders: the summed polynomial kernel

hp(xx) = 3 (] x0)'s (18)

the adaptive polynomial kernel

kap(xla XZ) = Z

d )
i—o ai(XIX2)1§ (19)
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Table 1. Average squared error for whitened and ridge regression. Significant p-values
< 0.1 are marked by a star.

Kernel SUMMED ADAPTIVE INHOMOGENEOUS
POLYNOMIAL POLYNOMIAL POLYNOMIAL

Sinc dataset

Ridge regression 1.126 1.578 0.863

Whitened regression 0.886 0.592 0.787

p-value (t-test) 0.471 0.202 0.064*
Boston house-price

Ridge Regression 18.99 16.37 18.74

Whitened Regression 12.83 15.78 13.08

p-value (t-test) 0.022* 0.817 0.053"

where the weights a; are hyperparameters adapted during the learning process,
and the inhomogeneous polynomial kernel

d —i .
() = (L4 xTx) = 500 (Y7 ) om0

In both experiments, we used a 10 fold cross-validation setup with disjoint test
sets. For each of the 10 partitions and the different kernels, we computed the
squared error loss. In addition to the average squared loss, we tested the signif-
icance of the performance difference between whitened and standard regression
using a t-test on the squared loss values.
1. Sinc dataset. Our first experiment is the sin(az)/(az) toy example (a = 8,
noise variance o2 = 0.05) of Sec. 2 with disjoint training sets of 10 examples and
disjoint test sets of 80 examples. We estimated the covariance C for Eq. 17 from
4000 additional unlabelled cases. The hyperparameters A, and a; were estimated
by conjugate gradient descent on the analytically computed leave-one-out error
[4], the best degree d was also chosen according to the smallest leave-one-out
error for all orders up to 10.
2. Boston Housing. For testing whitened regression on real data, we took dis-
joint test sets of 50/51 examples and training sets of 455/456 examples from
the Boston house-price dataset [2]. Note that due to dependencies in the train-
ing sets, independence assumptions needed for the t-test could be compromised.
Since the Boston house-price dataset does not provide additional unlabelled
data, we had to generate 2000 artificial unlabelled datapoints for each of the 10
trials based on the assumption that the input is uniformly distributed between
the minima and maxima of the respective training set. The artificial datapoints
were used to estimate Cy. Instead of the leave-one-out error, we used conjugate
gradient descent on a Bayesian criterion for selecting the hyperparameters, usu-
ally referred to as negative log evidence [5]. The maximal degree d tested was
5.

The results in Table 1 show that whitened regression performes on the average
better than standard ridge regression. However the improvement appears to
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be relatively small in many cases such that we get a significant result with
p < 0.1 only for the inhomogeneous polynomial kernel on both datasets and
for the summed polynomial kernel on the Boston house-price set. The weaker
significance of the results on the Sinc dataset can be attributed to the very small
number of training samples which leads to a large variance in the results.

The assumption of a uniformly distributed input in the Boston housing data
seems to be useful as it leads to a general improvement of the results. The signif-
icantly better performance for the summed and the inhomogeneous polynomial
kernel is mainly caused by the fact that often the standard ridge regression
found only the linear solution with a typical squared error around 25, whereas
whitened regression always extracted additional structure from the data with
squared errors between 10 and 16.

6 Conclusion

Using a non-orthonormal set of basis function for regression can result in an
often unwanted prior on the solutions such that an orthonormal or whitened
basis is preferable for this task. We have shown that doing standard regression
in a whitened basis is equivalent to using a special whitening regularizer for the
non-orthonormal function set that can be estimated from unlabelled data.

Our results indicate that whitened regression using polynomial bases leads
only to small improvements in most cases. In some cases, however, the improve-
ment is significant, particularly in cases where the standard polynomial regres-
sion could not find a non-trivial solution. As a consequence, whitened regression
is always an option to try when unlabelled data is available, or when reasonable
assumptions can be made about the input distribution.
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