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Volterra and Wiener series are perhaps the best-understood nonlinear
system representations in signal processing. Although both approaches
have enjoyed a certain popularity in the past, their application has been
limited to rather low-dimensional and weakly nonlinear systems due to
the exponential growth of the number of terms that have to be estimated.
We show that Volterra and Wiener series can be represented implicitly as
elements of a reproducing kernel Hilbert space by using polynomial ker-
nels. The estimation complexity of the implicit representation is linear
in the input dimensionality and independent of the degree of nonlinear-
ity. Experiments show performance advantages in terms of convergence,
interpretability, and system sizes that can be handled.

1 Introduction

In system identification, one tries to infer the functional relationship be-
tween system input and output from observations of the ingoing and out-
going signals. If the system is linear, it can be always characterized uniquely
by its impulse response. For nonlinear systems, however, there exists no
canonical representation that encompasses all conceivable systems. The
earliest approach to a systematic, that is, a nonparametric, characterization
of nonlinear systems dates back to V. Volterra, who extended the standard
convolution description of linear systems by a series of polynomial integral
operators with increasing degree of nonlinearity, very similar in spirit to the
Taylor series for analytical functions (Volterra, 1887). The last 120 years have
seen the accumulation of huge amount of research done on both the class of
systems that can be represented by Volterra operators and their application
in such diverse fields as nonlinear differential equations, neuroscience, fluid
dynamics and electrical engineering (overviews and bibliography in Schet-
zen, 1980; Rugh, 1981; Mathews & Sicuranza, 2000; Giannakis & Serpedin,
2001).

A principal problem of the Volterra approach is the exponential growth
of the number of terms in the operators, with both degree of nonlinearity
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and input dimensionality. This has limited its application to rather low-
dimensional systems with mild nonlinearities. Here, we show that this
problem can be largely alleviated by reformulating the Volterra and Wiener
series as operators in a reproducing kernel Hilbert space (RKHS). In this
way, the whole Volterra and Wiener approach can be incorporated into
the rapidly growing field of kernel methods. In particular, the estima-
tion of Volterra or Wiener expansions can be done by polynomial kernel
regression that scales only linearly with input dimensionality, indepen-
dent of the degree of nonlinearity. Moreover, RKHS theory allows us to
estimate even infinite Volterra series, which was not possible before. Our
experiments indicate that the RKHS formulation also leads to practical
improvements in terms of prediction accuracy and interpretability of the
results.

In the next section, we review the essential results of the classical Volterra
and Wiener theories of nonlinear systems. (This section is mainly a re-
view for readers who are not familiar with Wiener and Volterra theory.) In
section 3, we discuss newer developments since the mid-1980s that
lead to our new formulation, which is presented in section 4. A pre-
liminary account of this work has appeared in Franz and Scholkopf
(2004).

2 Volterra and Wiener Theory of Nonlinear Systems

2.1 The Volterra Class. A system can be defined as a map that assigns
an output signal y(f) to an input signal x(f) (we assume for the moment
that x(t) and y(t) are functions of time t). Mathematically, this rule can be
expressed in the form

y(t) = Tx(t) 2.1)

using a system operator T that maps from the input to the output function
space. The system is typically assumed to be time invariant and continuous;
the system response should remain unchanged for repeated presentation
of the same input, and small changes in the input functions x(t) should
lead to small changes in the corresponding system output functions y(t).
In traditional systems theory, we further restrict T to be a sufficiently well-
behaved compact linear operator H; such that the system response can be
described by a convolution,

y(t) = Hix(t) = / WO (o)x(t — 7). 22)

of x(t) with a linear kernel (or impulse response) 1)(7). A natural extension
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of this convolution description to nonlinear systems is the Volterra series
operator,

y(t) = Vx(t) = Hox(t) + Hix(t) + Hox(t) + - - - + Hux(£) + - - -, (2.3)

in which Hyx(t) = hy = const. and
Hyx(t) = /W)(n, o Tx(E—T) .. x(t—t)d, ..., dT, (2.4)

is the nth-order Volterra operator (Volterra, 1887, 1959). The integral kernels
h®(zy, ..., 7,) are the Volterra kernels. Depending on the system to be rep-
resented, the integrals can be computed over finite or infinite time intervals.
The support of the Volterra kernel defines the memory of the system; that s,
it delimits the time interval in which past inputs can influence the current
system output. The Volterra series can be regarded accordingly as a Taylor
series with memory: whereas the usual Taylor series represents only sys-
tems that instantaneously map the input to the output, the Volterra series
characterizes systems in which the output also depends on past inputs.

The input functions typically come from some real, separable Hilbert
space such as L2[a,b], the output functions from the space Cl[a,b] of
bounded continuous functions. Similar to the Taylor series, the conver-
gence of a Volterra series can be guaranteed for only a limited range of the
system input amplitude. As a consequence, the input functions must be re-
stricted to some suitable subset of the input space. For instance, if the input
signals form a compact subset of the input function space, one can apply
the Stone-Weierstrafy theorem (a generalization of the Weierstrafs theorem
to nonlinear operators; see, e.g., Hille & Phillips, 1957) to show that any
continuous, nonlinear system can be uniformly approximated (i.e., in the
L*-norm) to arbitrary accuracy by a Volterra series operator of sufficient
but finite order (Fréchet, 1910; Brilliant, 1958; Prenter, 1970).1

Although this approximation result appears to be rather general on first
sight, the restriction to compact input sets is quite severe. An example of a
compact subset is the set of functions from L?[a, b] defined over a closed
time interval with a common upper bound (proof in Liusternik & Sobolev,
1961). In practice, this means that the input signals have to be nonzero only
on a finite time interval and that the approximation holds only there. Many
natural choices of input signals are precluded by this requirement, such as
the unit ball in L?[a, b] or infinite periodic forcing signals.

LIf one further restricts the system to have fading memory (i.e., the influence of past
inputs decays exponentially), the uniform approximation by finite Volterra series can be
extended to bounded and slew-limited input signals on infinite time intervals (Boyd &
Chua, 1985).
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2.2 The Wiener Class. So far, we have discussed only the repre-
sentation of a general nonlinear system. Now we come to the prob-
lem of obtaining such a representation from data. For a linear system,
this is a straightforward procedure since it suffices to test the system
on a set of basis functions from the input space (e.g., delta functions
or sinusoids). In a nonlinear system, however, we ideally have to mea-
sure the system response for all possible input functions. One way to
achieve this is by testing the system on realizations of a suitable random
process.

The stochastic input in Wiener theory is the limiting form of the ran-
dom walk process as the number of steps goes to infinity (or, equiva-
lently, as the step size goes to zero), which is now known as the Wiener
process (Papoulis, 1991). One can show that the Wiener process assigns a
nonzero probability to the neighbourhood of every continuous input func-
tion (Palm & Poggio, 1977). Thus, the realizations of the Wiener process
play a similar role in Wiener theory as the sinusoidal test inputs in lin-
ear system theory since they are capable of completely characterizing the
system.

In system identification, we are given only pairs of input and output
functions, whereas the system itself is treated as a black box. The appro-
priate Volterra representation has to be found by minimizing some error
measure between the true output and the model output, such as the integral
over the squared error. Thus, the approximation has to be only in the L2-
norm, not in the L*-norm as in Volterra theory. A weaker approximation
criterion typically relaxes the restrictions imposed on the input and output
set and on the type of systems that can be represented by a Volterra series
(Palm, 1978). Wiener theory relaxes the approximation criterion even fur-
ther: assuming that the input is generated by the Wiener process, it requires
only an approximation in the mean squared error sense over the whole
process, not for any single realization of it.

The minimization of the mean squared error for the estimation of the
Volterra kernels requires the solution of a simultaneous set of integral equa-
tions. This can be avoided by using an orthogonal least-squares framework
as proposed by Wiener (1958) and Barrett (1963). Since the distribution of
the input is known for the Wiener process, we can choose an input-specific
decomposition of the system operator T,

y(t) = Gox(t) + Gix(t) + Gox(t) + - - - + Gux(t) + - - -, (2.5)

into a Wiener series of operators G, that are mutually uncorrelated, that
is, orthogonal with respect to the Wiener process. The Wiener operators G,
are linear combinations of Volterra operators up to order n. They can be
obtained from the original Volterra series by a procedure very similar to
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Gram-Schmidt orthogonalization. For instance, the second-degree Wiener
operator?,

sz(t) = /hz(‘[l, ‘L’z)x(i’ — ‘C])x(t — ‘Cz)dTld‘Cg — / I’l2(‘L’1, Tl)dtl, (26)

consists of a zero-order and a second-order Volterra operator. The integral
kernel of the highest-order (i.e., nth order) Volterra operator of G, is called
the leading Volterra kernel of G,,. As a result of the orthogonalization, the
G, can be estimated independent of each other. Moreover, any truncation
of this orthogonalized series minimizes the mean squared error among all
truncated Volterra expansions of the same order.

All systems that produce square integrable output for the Wiener in-
put process can be approximated in the mean square sense by finite-order
Wiener series operators (Ahmed, 1970). In practice, this means that the
systems must be nondivergent and cannot have infinite memory. Due to
the different types of inputs and convergence, the classes of systems that
can be approximated by infinite Volterra or Wiener series operators are
not identical. Some systems of the Wiener class cannot be represented as a
Volterra series operator and vice versa (Palm & Poggio, 1977; Korenberg &
Hunter, 1990). However, a truncated Wiener or Volterra series can always
be transformed into its truncated counterpart.

One of the reasons for the popularity of the Wiener series is that the
leading Volterra kernels can be directly measured via the cross-correlation
method of Lee and Schetzen (1965). If one uses gaussian white noise with
standard deviation A instead of the Wiener process as input, the leading
Volterra kernel of G,, can be estimated as

W (..., 1) =

n—1
nl An (y(t) - g Glx(t)> x(t—11) ... x(t — 1), (2.7)

where the bar indicates the average over time. The zero-order kernel is

simply the time average h*) = y(t) of the output function. The other lower-
order Volterra kernels of G,, can be derived from the leading kernel by again

applying a Gram-Schmid-type orthogonalization procedure.

2.3 Discrete Volterra and Wiener Systems. In practical signal process-
ing, one uses a discretized form for a finite sample of data. Here, we assume

2 Strictly speaking, the integrals in the Wiener operators have to be interpreted as
stochastic integrals (e.g., Papoulis, 1991) with respect to the Wiener process; that is, the
equality holds only in the mean squared sense. For conditions under which the equality
also holds for specific inputs, see Palm & Poggio (1977).



3102 M. Franz and B. Scholkopf

that the input data are given as a vector x = (xy, ..., xn)" € R™ of finite di-
mension. The vectorial data can be generated from any multidimensional
input or, for instance, by a sliding window over a discretized image or time
series. A discrete system is simply described by a function T : R" — R, not
by an operator as before. The discretized Volterra operator is defined as the
function

m m ( )
Ha) =) D il X X (2.8)

where the Volterra kernel is given as a finite number of m" coefficients h,(?)l

(Alper, 1965). It is, accordingly, a linear combination of all ordered nth-order
monomials of the elements of x.3 Analogous to the continuous-time Volterra
series, it can be shown by applying the Stone-Weierstrafi theorem that all
continuous systems with compact input domain can be uniformly approx-
imated by a finite, discrete Volterra series. For systems with exponentially
fading memory, the uniform approximation can be extended to all input
vectors with a common upper bound (Boyd & Chua, 1985).

The discrete analog to the Wiener series is typically orthogonalized with
respect to gaussian input x ~ N(0, A) since this is the only practical setting
where the popular cross-correlation method can be applied. All properties
of continuous Wiener series operators described above carry over to the
discrete case. In particular, any square-summable functional with gaussian
input can be approximated in the mean square sense by a finite, discrete
Wiener series (Palm & Poggio, 1978).

2.4 Problems of the Cross-Correlation Method. The estimation of the
Wiener expansion via cross-correlation poses some serious problems:

1. The estimation of cross-correlations requires large sample sizes. Typ-
ically, one needs several tens of thousands of input-output pairs be-
fore a sufficient convergence is reached. Moreover, the variance of the
cross-correlation estimator in equation 2.7 increases with increasing
values of the time delay 7; (Papoulis, 1991) such that only operators
with relatively small memory can be reliably estimated.

2. The estimation via cross-correlation works only if the input is gaus-
sian noise with zero mean, not for general types of input. In physical
experiments, however, deviations from ideal white noise and the re-
sulting estimation errors cannot be avoided. Specific inputs, on the
other hand, may have a very low probability of being generated by

3 Throughout this letter, we assume that the Volterra kernels are symmetrical with
respect to permutations of the indices i ;. A nonsymmetrical kernel can be converted into
a symmetrical kernel without changing the system output (Volterra, 1959; Mathews &
Sicuranza, 2000).
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white noise. Since the approximation is computed only in the mean
square sense, the system response to these inputs may be drastically
different from the model predictions.*

3. In practice, the cross-correlations have to be estimated at a finite
resolution (cf. the discretized version of the Volterra operator in
equation 2.8). The number of expansion coefficients in equation 2.8
increases with m" for an m-dimensional input signal and an nth-order
Wiener kernel. However, the number of coefficients that actually have
to be estimated by cross-correlation is smaller. Since the products in
equation 2.8 remain the same when two different indices are per-
muted, the associated coefficients are equal in symmetrical Volterra
operators. As a consequence, the required number of measurements is
(n 4+ m —1)!/(n!(m — 1)!) Mathews & Sicuranza, 2000). Nonetheless,
the resulting numbers are huge for higher-order Wiener kernels. For
instance, a fifth-order Wiener kernel operating on 256-dimensional
input contains roughly 10'? coefficients, 10’ of which would have
to be measured individually by cross-correlation. As a consequence,
this procedure is not feasible for higher-dimensional input signals.

4. The cross-correlation method assumes noise-free signals. For real
noise-contaminated data, the estimated Wiener series models both
signal and noise of the training data, which typically results in re-
duced prediction performance on independent test sets.

3 Estimating Wiener Series by Linear Regression in RKHS

3.1 Linear Regression. The first two problems can be overcome
by adopting the framework of linear regression: given observations
(x1, 1), ..., (XN, Yn), linear regression tries to estimate y as a function of
x by

M

y=f(x)= Zj:l Yiei (), (3.1)

using y; € R and a dictionary of M functions ¢; : R" — R where M is al-
lowed to be infinite. In the case of pth-order Volterra or Wiener series, this
dictionary consists of all monomials of x up to order p (see equation 2.8).

4 A number of studies develop an orthogonal framework with respect to other input
classes (Schetzen, 1965; Ogura, 1972; Segall & Kailath, 1976). None of these, however, can
be applied to input classes different from the one they were developed for.
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Instead of assuming an infinite amount of data, the y; are found by mini-
mizing the mean squared error over the dataset

N

1
(0t s fO)), o b s fO) = 15 D0 (F) = )% (32)

which disposes of the cumbersome cross-correlation estimator (Korenberg,
Bruder, & Mcllroy, 1988; Mathews & Sicuranza, 2000). Moreover, the input
signal class is no more restricted to gaussian noise, but can be chosen freely,
for example, from the “natural” input ensemble of the system. As long as
the input is known to the experimenter, there is no need for controlling the
input as in the classical system identification setting. Note, however, that
the obtained Volterra models will approximate the Wiener series only for
sufficiently large data sets of gaussian white noise. Korenberg et al. (1988)
have shown that the linear regression framework leads to Wiener mod-
els that are orders of magnitude more accurate than those obtained from
the cross-correlation method. Unfortunately, the solution of this regression
problem requires the inversion of an M x M matrix (Mathews & Sicuranza,
2000). This is again prohibitive for high-dimensional data and higher orders
of nonlinearity since M scales like m".

3.2 Regression in RKHS. If we stack the basis functions ¢;(x) into a
common vector ®(x) = (¢1(x), g2(x), . . .), we can interpret ®(x) as a nonlin-
ear mapping from R™ into another, possibly infinite-dimensional space H.
For certain dictionaries, H constitutes a dot product space where the dot
product can be expressed in terms of a positive definite® kernel function®
k(x,x) = ®(x)" ®(x’), which can be evaluated without computing ®, that is,
the possibly infinite-dimensional dot product can be replaced by a simple
function evaluation (see, e.g., Scholkopf & Smola, 2002).

An important property of such a space is that it can be identified with a
suitable closure of the space of functions,

K

f(X) = Zj:l O[]‘k(X, Zj)’ (3.3)

with an arbitrary set of points z1, . . ., zx from R"; in this case, any expansion
of type 3.1 can be expressed in the form 3.3 (Scholkopf & Smola, 2002). This
space has the structure of an RKHS, which allows the application of the so-
called representer theorem. It states the following: suppose c is an arbitrary

5That is, the Gram matrix Kij = k(xi, xj) is positive definite for all choices of the
X1, ..., Xy from the input domain.

6 Note that with a slight abuse of notation, we will nevertheless use the transpose to
denote the dot product in that space.
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cost function, 2 is a nondecreasing function on R;, and || - ||r is the norm
of the RKHS. If we minimize an objective function

c((x1, yi, fa)), - (s yis f(xk))) + (11 f ) (3.4)

overall j and z; in equation 3.3, then an optimal solution’ can be expressed
as

f(x) = 27:1 oz]-k(x, X]‘), o€ R. (35)

In other words, although we did consider functions that were expansions
in terms of arbitrary points z; (see equation 3.3), it turns out that we can
always express the solution in terms of the training points x; only. Hence,
the optimization problem over an arbitrarily large number of M weights
y; is transformed into one over N weights «;, where N is the number of
training points.

In our case, the cost function is given by equation 3.2, and the regularizer
Q is zero. The optimal weight set « = (a1, ..., ay) is readily computed by
setting the derivative of equation 3.2 with respect to the weights a; equal
to zero; it takes the form o = K~ly wherey = (1, ..., yn)'; hence,8

y=f00=a"k)=y Kk, (3.6)

where k(x) = (k(x, x1), k(x, x2), ..., k(x, xy))" € RN. As a result, we have to
invertan N x N matrix instead of an M x M matrix in linear regression. For
high-dimensional data, we typically have M = m" > N. In this case, a time
complexity’ of O(mN? + N®) and memory complexity of O(N?) compares
favorably to the exponential complexity of the original linear regression
problem, which is O(m>") and O(m?"), respectively.

3.3 Volterra Series as Linear Operator in RKHS. In order to apply the
RKHS framework to the problem of estimating the Volterra and Wiener
expansion of a system, we have to find a suitable kernel. Our starting point
is the discretized version of the Volterra operators from equation 2.8. The
nth-order Volterra operator is a weighted sum of all nth-order monomials
of the input vector x. Forn =0, 1, 2, ... we define the map ¥, as

n—1

P(x) =1 and &,(x) = (x], x{l_lxz, axxy Xy, xy)  (37)

7 For conditions on the uniqueness of the solution, see Scholkopf and Smola (2002).

81f K is not invertible, K ! denotes the pseudo-inverse of K.

° The evaluation of the kernel function typically has complexity O(1n), which holds
true in the polynomial kernels described below.
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such that ®, maps the input x € R" into a vector ®,(x) € H, = R™" contain-
ing all m" ordered monomials of degree n evaluated at x. Using ®,,, we can
write the nth-order Volterra operator in equation 2.8 as a scalar product in
HH/

H,(x) = 1, u(x), (3.8)

with the coefficients stacked into the vector 7, = (h; (n) IRE hg";l,
h ... € H,. Fortunately, the monomials constitute an RKHS. It can
be easily shown (e.g., Scholkopf & Smola, 2002) that

(0] (x1) D,(x2) = (x1 x2)" =: ky(x1, X2). (3.9)

This equivalence was used as early as 1975 in an iterative estimation scheme
for Volterra models, long before the RKHS framework became common-
place (Poggio, 1975).

The estimation problem can be solved directly if one applies the
same idea to the entire pth-order Volterra series. By stacking the
maps @, with positive weights 4, into a single map ®¥)(x) = (29®(x),
a1®1(x), ...,a,®,(x))", one obtains a mapping from R™ into H” =R x
R” x R"™ x ... x R" = RM with dimensionality M = 13"\, The entire
pth-order Volterra series can be written as a scalar product in H(,

S H00 = (1) 00, (3.10)

with n?) € HP). Since H(?) is generated as a Cartesian product of the single
spaces H,, the associated scalar product is simply the weighted sum of the
scalar products in H,:

P
dP(x1)T o) (x7) = ano a2(x{ x2)" = kP (x1, x2). (3.11)

A special case of this kernel is the inhomogeneous polynomial kernel used
in the Volterra estimation approach of Dodd and Harrison (2002),

Ko, x2) = (14 x{x2)". (3.12)

which corresponds to

P
(1+x{x)" Z ( ) X1 x2)" (3.13)
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via the binomial theorem. If a suitably decaying weight set a,, is chosen, the
approach can be extended even to infinite Volterra series. For instance, for
a, = ,/1/n! we obtain the translation-variant gaussian kernel

T o] 1
kK (xq, xp) = X1 = ano E(x?xz)n, (3.14)

or for ||x|| <1, « > 0, Vovk’s infinite polynomial kernel (Saunders et al.,
Smola, 1998),

kvovk(x1, x2) = (1 — xlsz)fa = ZOO <—n(x> (—1)”(x1sz)”. (3.15)

n=0

The latter two kernels have been shown to be universal; the functions of their
associated RKHS are capable of uniformly approximating all continuous
functions on compact input sets in R” (Steinwart, 2001). As we have seen in
the discussion of the approximation capabilities of discrete Volterra series,
the family of finite polynomial kernels in its entirety is also universal
since the union of their RKHSs comprises all discrete Volterra series. Iso-
lated finite polynomial kernels, however, do not share this property.

3.4 Implicit Wiener Series Estimation. We know now that both finite
and infinite discretized Volterra series can be expressed as linear operators
in an RKHS. As we stated above, the pth-degree Wiener expansion is the
pth-order Volterra series that minimizes the squared error if the input is
white gaussian noise with zero mean. This can be put into the regression
framework: assume we generate white gaussian noise with zero mean, feed
itinto the unknown system, and measure its output. Since any finite Volterra
series can be represented as a linear operator in the corresponding RKHS,
we can find the pth-order Volterra series that minimizes the squared error
by linear regression. This, by definition, must be the pth-degree Wiener
series since no other Volterra series has this property.!® . From equations 2.7
and 3.6, we obtain the following expressions for the implicit Wiener series,

1 - P P T —11.(p)
Go) = y'1 and }° G0 =)  Hx) =y K, k"),
(3.16)
where the Gram matrix K, and the coefficient vector kP)(x) are computed

using the kernel from equation 3.11 and 1= (1,1,...)" € RN. The system
is now represented as a linear combination of kernels evaluated at the

10 Assuming symmetrized Volterra kernels, which can be obtained from any Volterra
expansion.



3108 M. Franz and B. Scholkopf

training points instead of a linear combination of monomials; that is, the
Wiener series and its Volterra functionals are represented only implicitly.
Thus, there is no need to compute the possibly large number of coefficients
explicitly.

The explicit Volterra and Wiener expansions can be recovered at least in
principle from equation 3.16 by collecting all terms containing monomials of
the desired order and summing them up. The individual nth-order Volterra
operators (p > 0) are given implicitly by

Hy(x) = any " K, ku(x), (3.17)

with k,(x) = ((x] )", (x; X)", ..., (xx)") ".1! For p = 0, the only term is the
constant zero-order Volterra operator Hy(x) = Go(x). The coefficient vector
Nn = (h(f;’_“,l, hg”;l, h(l'gl ...)T of the explicit Volterra operator is ob-
tained as

m = a,®, K.y, (3.18)

using the design matrix @, = (¢n(x1), Pn(x2), . . ., ¢, (xn))T. Note that these
equations are also valid for infinite polynomial kernels such as k> or
kvovk. Similar findings are known from the neural network literature where
Wray and Green (1994) showed that individual Volterra operators can be
extracted from certain network models with sigmoid activation functions
that correspond to infinite Volterra series.

The individual Wiener operators can be recovered only by applying the
regression procedure twice. If we are interested in the nth-degree Wiener
operator, we have to compute the solution for the kernels k™(xq, x,) and
k®=Y(x1, x2). The Wiener operator for n > 0 is then obtained from the dif-
ference of the two results as

Gu=Y" G~ 3 Gi¥)
_— [ K k™) — K7 k("‘l)(x)] . (3.19)

The corresponding ith-order Volterra operators of the nth-degree Wiener
operator are computed analogous to equations 3.17 and 3.18.

' Note that the time complexity of computing the explicit Volterra operator is
O(m"N? + N3), and the corresponding memory complexity is O(m" N + N?). Thus, using
the implicit estimation method as an intermediate step is still preferable over direct linear
regression for m" > N.
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3.5 Orthogonality. The resulting Wiener operators must fulfill the or-
thogonality condition, which in its strictest form states that a pth-degree
Wiener operator must be orthogonal to all monomials in the input of lower
order. However, we have constructed our operators in a different function
basis; we have expanded the pth-order Wiener operators in terms of kernels
instead of monomials. Thus, we have to prove the following:

Theorem 1.  The operators obtained from equation 3.19 fulfill the orthogonality
condition

E [m(x)G (x)] = 0 (3.20)

where E denotes the expectation over the training set and m(x) an rth-order
monomial withr < p.

Proof. We will show that this a consequence of the least-squares fit of any
linear expansion in a set of basis functions of the form of equation 3.10. In
the case of the implicit Wiener and Volterra expansions, the basis functions
¢;(x) are polynomial kernel functions k®)(x, x;) evaluated at the training
examples x;.

We denote the error of the expansion as e(x) = y — Z?A: 12j9;(x). The
minimum of the expected quadratic loss with respect to the expansion
coefficient o is given by

Bl = ~2E [pe(0e(] = 0. (3.21)
(093

This means that for an expansion of the type of equation 3.1 minimizing
the squared error, the error is orthogonal to all basis functions used in the
expansion.

Now let us assume we know the Wiener series expansion (which mini-
mizes the mean squared error) of a system up to degree p — 1. The approxi-
mation error is then given by the sum of the higher-order Wiener operators
e(x) = Z;’;p Gu(x), so G(x) is part of the error. As a consequence of the
linearity of the expectation, equation 3.21, implies

Z:;, E[¢r(x)Gy(x)] =0 and Z:ip“ E[er(x)Gn(x)] =0 (3.22)

for any ¢ of order less than p. The difference of both equations yields
E [(pk (x)G,,(x)] =0, so that G ,(x) must be orthogonal to any of the lower-
order basis functions—to all kernel functions k)(x, x;) with order  smaller
than p. Since any monomial m(x;) of degree r < p evaluated on a training
data point x; can be expressed as a linear combination of kernel functions



3110 M. Franz and B. Scholkopf

up to degree r, orthogonality on the training set must also hold true for any
monomial of order r < p.

For both regression and orthogonality of the resulting operators, the as-
sumption of white gaussian noise was not required. In practice, this means
that we can compute a Volterra expansion according to equation 3.16 for
any type of input, not just for gaussian noise. Note, however, that the or-
thogonality of the operators can be defined only with respect to an input
distribution. If we use equation 3.19 for nongaussian input, the resulting
operators will still be orthogonal, but with respect to the nongaussian input
distribution. The resulting decomposition of the Volterra series into orthog-
onal operators will be different from the gaussian case. As a consequence,
the operators computed according to equation 3.19 will not be the original
Wiener operators, but an extension of this concept as proposed by Barrett
(1963).

3.6 Regularized Estimation. So far we have not addressed the fourth
problem of the cross-correlation procedure: the negligence of measurement
noise. The standard approach in machine learning is to augment the mean
squared error objective function in equation 3.4 with a penalizing functional
Q, often given as a quadratic form,

Q=ira'Ra, A>0, (3.23)

with a positive semidefinite matrix R. R is chosen to reflect prior knowledge
that can help to discriminate the true signal from the noise. A controls the
trade-off between the fidelity to the data and the penalty term. The resulting
Wiener series is given by

Z::o Gulx) = Z::O H,(x) =y (K, + 2R kP () (3.24)

instead of equation 3.16. When choosing R = Iy, one obtains standard ridge
regression, which leads to smoother, less noise-sensitive solutions by lim-
iting their RKHS norm. Alternatively, Nowak (1998) suggested selectively
penalizing noise-contaminated signal subspaces by a suitable choice of R
for the estimation of Volterra series.

Regularization also offers possibilities for compensating for some of the
difficulties associated when using higher-order polynomials for regression,
such as their poor extrapolation capabilities, or the notoriously bad condi-
tioning of the Gram matrix. As a result, the prediction performance of poly-
nomials on many standard data sets is worse than that of other function
bases such as gaussians. However, by a suitable choice of the regulariza-
tion matrix R, these problems can be alleviated (Franz, Kwon, Rasmussen,
& Scholkopf, 2004). Moreover, there is a close correspondence between
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regularized regression in RKHS and gaussian process regression (Wahba,
1990; Scholkopf & Smola, 2002; Rasmussen & Williams, 2006). This corre-
spondence can be used to approximate arbitrary other kernels by polyno-
mial kernels (Gehler & Franz, 2006).

If one is interested in single Wiener operators, the regularized estima-
tion has a decisive disadvantage: the operators computed according to
equation 3.19 are no more orthogonal. However, orthogonality can be still
enforced by considering the (smoothed) output of the regularized Wiener
system on the training set

7=y (K, + AR 'K, (3.25)

as a modified, “noise-corrected” training set for equation 3.19, which be-
comes

Gu(x) =y (K, + AR K[K, k" (x) — K, !, K" D(x)]. (3.26)

The resulting Wiener operators are an orthogonal decomposition of the
regularized solution over the training set.

4 Experiments!?

The principal advantage of our new representation of the Volterra and
Wiener series is its capability of implicitly handling systems with high-
dimensional input. We will demonstrate this in a reconstruction task of
a fifth-order receptive field. Before doing so, we compare the estimation
performance of the kernelized technique to previous approaches.

4.1 Comparison to Previous Estimation Techniques. Our first data set
comes from a calibration task for a CRT monitor used to display stimuli
in psychophysical experiments. The data were generated by displaying a
gaussian noise pattern (N (128, 642)) on the monitor, which was recorded
by a cooled change-coupled device camera operating in its linear range.
The system identification task is to quantify the nonlinear distortion of the
screen and the possible interaction with previous pixels on the same scan
line. The input data were generated by sliding a window of fixed length m in
scanning direction over the lines of the gaussian input pattern; the system
output value is the measured monitor brightness at the screen location
corresponding to the final pixel of the window.

We used three techniques to fit a Wiener model: (1) Classical cross-
correlation with model orders 1, 2, and 3 and window size 1 to 4; (2) direct

12 Code for the implicit estimation of Volterra series can be found online at
http:/ /www.kyb.tuebingen.mpg.de/bs/people/mof/code.
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Figure 1 Mean squared error on the test set for varying training set size.
(a) First- (x) and second-order (squares) cross-correlation leads to test errors
orders of magnitude higher than the regression techniques (dots). (b) Perfor-
mance of the tested regression techniques (see the key) for training set size
below 75.

linear regression with monomials as basis functions; and (3) kernel regres-
sion with the adaptive polynomial 3.11, the inhomogeneous polynomial
3.12, and the infinite Volterra series kernel of equation 3.14. For techniques 2
and 3, we used the standard ridge regularizer R = Iy and R = Iy, respec-
tively. The regularization parameter 1 in equation 3.23, the weights a; in the
adaptive polynomial kernel 3.11, the window size m, and the model order
p were found by minimizing the analytically computed leave-one-out error
(Vapnik, 1982). We varied the number of training examples from 10 to 1000
to characterize the convergence behavior of the different techniques. The
independent test set always contained 1000 examples.

As the result shows (see Figure la), the mean squared error on the test
set decreases at a significantly faster rate for the regression methods due
to the unfavorable properties of the cross-correlation estimator. In fact, a
comparable test error could not be reached even for the maximal training set
size of 1000 (not contained in the figure). We display the cross-correlation
results only for m =2 and p =1, 2, which had the lowest test error. The
third-order cross-correlation produced test (and training) errors above 10°
on this data set.

We observe small but significant differences between the tested regres-
sion techniques due to the numerical conditioning of the required matrix
inversion (see Figure 1b). For a training set size above 40, the adaptive
polynomial kernel performs consistently better since the weights a; can
be adapted to the specific structure of the problem. Interestingly, the infi-
nite Volterra kernel shows a consistently lower performance in spite of the
higher approximation capability of its infinite-dimensional RKHS.
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Figure 2 (Left) 16 x 16 linear kernel of the test system. (Right) Reconstructed
linear kernel from the fifth-order Volterra kernel by computing a preimage (after
2500 samples).

4.2 Reconstruction of a Fifth-Order Linear-Nonlinear Cascade. This
experiment demonstrates the applicability of the proposed method to high-
dimensional input. Our example is the fifth-order LN cascade system
¥ = (X351 B )’ that acts on 16 x 16 image patches by convolving them
with a linear kernel hy; of the same size shown in Figure 2 (left) before
the nonlinearity is applied. We generated 2500 image patches containing
uniformly distributed white noise and computed the corresponding system
output to which we added 10% gaussian measurement noise. The result-
ing data were used to estimate the implicit Wiener expansion using the
inhomogeneous polynomial kernel 3.12. In classical cross-correlation and
linear regression, this would require the computation of roughly 9.5 billion
independent terms for the fifth-order Wiener kernel. Moreover, even for
much lower-dimensional problems, it usually takes tens of thousands of
samples until a sufficient convergence of the cross-correlation technique is
reached.

Even if all entries of the fifth-order Wiener kernel were known, it would
be still hard to interpret the result in terms of its effect on the input sig-
nal. The implicit representation of the Volterra series allows for the use
of preimage techniques (e.g., Scholkopf & Smola, 2002) where one tries to
choose a point z in the input space such that the nonlinearly mapped image
in F, ¢(z), is as close as possible to the representation in the RKHS. In the
case of the fifth-order Wiener kernel, this amounts to representing Hs[x] by
the operator (z"x)° with an appropriately chosen preimage z € R*°. The
nonlinear map z + z° is invertible, so that we can use the direct technique
described in Scholkopf and Smola (2002) where one applies the implicitly
given Volterra operator from equation 3.17 to each of the canonical base vec-
tors of R¥® resulting in a 256-dimensional response vector e. The preimage
is obtained as z = /e. The result in Figure 2 (right) demonstrates that the
original linear kernel is already recognizable after using 2500 samples. The
example shows that preimage techniques are capable of revealing the input
structures to which the Volterra operator is tuned, similar to the classical
analysis techniques in linear systems.
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Figure 3 Representation of a Volterra or Wiener system by (a) a cascade of
a linear system (preimage) and a static nonlinearity f(x) (e.g., (1 + x)? or e¥,
depending on the choice of the kernel) and (b) a set of several parallel cascades
(reduced set).

5 Conclusion

We have presented a unifying view of the traditional Wiener and Volterra
theory of nonlinear systems and newer developments from the field of
kernel methods. We have shown that all properties of discrete Volterra and
Wiener theory are preserved by using polynomial kernels in a regularized
regression framework. The benefits of the new kernelized representation
can be summarized as follows:

1. The implicit estimation of the Wiener and Volterra series allows for
system identification with high-dimensional input signals. Essen-
tially, this is due to the representer theorem: although a higher-order
series expansion contains a huge number of coefficients, it turns out
that when estimating such a series from a finite sample, the informa-
tion in the coefficients can be represented more parsimoniously using
an example-based implicit representation.

2. The complexity of the estimation process is independent of the or-
der of nonlinearity. Even infinite Volterra series expansions can be
estimated.

3. Regularization techniques can be naturally included in the regres-
sion framework to accommodate measurement noise in the system
outputs. As we have shown, one still can extract the corresponding
Wiener operators from the regularized kernel solution while preserv-
ing their orthogonality with respect to the input. The analysis of a
system in terms of subsystems of different orders of nonlinearity can
thus be extended to noisy signals.

4. Preimage techniques reveal input structures to which Wiener or
Volterra operators are tuned. These techniques try to represent the
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system by a cascade consisting of a linear filter followed by a static
nonlinearity (see Figure 3a).

5. Asin standard linear regression, the method also works for nongaus-
sian input. At the same time, convergence is considerably faster than
in the classical cross-correlation procedure because the estimation is
done directly on the data. Both regression methods omit the inter-
mediate step of estimating cross-correlations, which converges very
slowly.

Although we obtained useful experimental results for problems where
the number of terms in the Wiener expansion largely exceeds the number
of training examples, this will not always be feasible, for example, in cases
where the Volterra kernels cannot be approximated by smooth functions.
In this sense, we cannot circumvent the curse of dimensionality. However,
if the system to be identified has a suitably smooth underlying structure,
the proposed technique (in particular, the regularized variant) can take
advantage of it.

The preimage method in our experiment works only for Volterra kernels
of odd order. More general techniques exist (Scholkopf & Smola, 2002), in-
cluding the case of other kernels and the computation of approximations in
terms of parallel cascades of preimages and nonlinearities (reduced sets; cf.
Figure 3b). In the case of a second-order system, the reduced set corresponds
to an invariant subspace of the Volterra operator (cf. Hyvarinen & Hoyer,
2000). It can be shown that the entire class of discrete Volterra systems
can be approximated by cascades where the nonlinearities are polynomials
of sufficient degree (Korenberg, 1983) and that any doubly-finite discrete
Volterra series can be exactly represented by a finite sum of such cascades
(Korenberg, 1991). There also exists an iterative technique of directly fitting
such cascade expansions to the training data by choosing the preimages
from a fixed set of candidates generated from the data and adapting the
nonlinearity (Korenberg, 1991). Each iteration requires only the inversion of
a(p+1) x (p + 1) matrix (p being the degree of nonlinearity); thus, conver-
gence can be very fast depending on the training data. The resulting paral-
lel cascades will generally be different from reduced-set expansions, which
have a fixed number of elements and a prescribed nonlinearity defined by
the kernel. However, both cascade representations can be converted into
their corresponding Volterra series expansions, which makes a comparison
of the results possible.

Having seen that Volterra and Wiener theory can be treated just as a
special case of a kernel regression framework, one could argue that this
theory is obsolete in modern signal analysis. This view is supported by
the fact that on many standard data sets for regression, polynomial kernels
are outperformed by other kernels, such as the gaussian kernel. So why
do we not replace the polynomial kernel by some more capable kernel and
forget about Wiener and Volterra theory altogether? There are at least two
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arguments against this point of view. First, our study has shown that in
contrast to other kernels, polynomial kernel solutions can be directly trans-
formed into their corresponding Wiener or Volterra representation. Many
entries of the Volterra kernels have a direct interpretation in signal pro-
cessing applications (examples in Mathews & Sicuranza, 2000). This inter-
pretability is lost when other kernels are used. Second, Wiener expansions
decompose a signal according to the order of interaction of its input el-
ements. In some applications, it is important to know how many input
elements interact in the creation of the observed signals, such as in the
analysis of higher-order statistical properties (an example on higher-order
image analysis can be found in Franz & Scholkopf, 2005).
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