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Abstract. The detection of anomalous or novel images given a training
dataset of only clean reference data (inliers) is an important task in
computer vision. We propose a new shallow approach that represents
both inlier and outlier images as ensembles of patches, which allows us
to effectively detect novelties as mean shifts between reference data and
outliers with the Hotelling T 2 test. Since mean-shift can only be detected
when the outlier ensemble is sufficiently separate from the typical set
of the inlier distribution, this typical set acts as a blind spot for novelty
detection. We therefore minimize its estimated size as our selection rule
for critical hyperparameters, such as, e.g., the size of the patches is crucial.
To showcase the capabilities of our approach, we compare results with
classical and deep learning methods on the popular datasets MNIST and
CIFAR-10, and demonstrate its real-world applicability in a large-scale
industrial inspection scenario.

Keywords: Image novelty detection · independent component analysis
· mean-shift.

1 Introduction

Novelty detection is a semi-supervised approach to anomaly detection where all
available training data belongs to a single class. The task is to learn the class
boundary of the reference class such that the model can classify test data into
known (inliers) and novel examples (outliers). Such models output a score based
on a single input example that can be used for classification. As a consequence,
the decision process is not robust against noise contamination or overlapping
distributions between inliers and outliers.

This motivates the main idea of our approach to novelty detection: repre-
senting both training and test images as ensembles of image patches. Instead of
establishing a relation of a single test data point to an inlier distribution, this
allows us to compare the training and test ensembles against each other which is
inherently more robust. The literature provides a broad range of statistics for
testing whether two datasets originate from the same distribution. Here, we use
the Hotelling T 2 test [6] for this purpose. It is based on computing the mean shift
between the training and test ensembles which is particularly simple to compute
and therefore suitable for large datasets.
? Supported by Bundesministerium für Bildung und Forschung (BMBF, 01IS19083A)
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Fig. 1: Patch distribution of the two largest principal components of CIFAR-10
showcasing different mean shifts between reference data (blue) and anomalies
(yellow). Note the considerable overlap of both distributions.

In our experiments, we found that the success of this approach critically
depends on the details of how the patch ensemble is extracted from the input
images. The most important parameters are the number and the size of the patches
and the image basis in which the patches are represented. These parameters
depend on the specific dataset and thus have to be found by an automatic model
selection procedure. Our approach is based on the observation that a mean shift
can only be detected when the outlier ensemble is sufficiently separate from the
typical set of the inlier distribution. The typical set has a total probability close
to one which is a consequence of the asymptotic equipartition property [AEP;
3]. Any outlier which falls inside the volume occupied by the typical set has no
chance of being detected (see Fig. 1). Thus, the typical set acts as a blind spot
for novelty detection which needs to be kept as small as possible. By estimating
the volume of the typical set, an optimal parameter set can be found for each
dataset.

In this work, we contribute a shallow algorithm based on the Hotelling T 2

test and independent component analysis (ICA) for image novelty detection with
overlapping distributions. Notably, the hyperparameters of our model are selected
using typical set theory for finding a patch ensemble which optimally represents
the input images. We show in extensive experiments on raw pixel data that our
approach not only achieves comparable results to Deep Learning approaches on
MNIST and CIFAR-10, but is also applicable to a large-scale industrial inspection
scenario, due to its simple architecture and fast predictions3.

2 Related work

We refer the reader to [14] for a good overview over the general techniques for
novelty detection and focus on images in the following. In terms of image novelty
detection, current approaches rely on compression [1], generative models [4],
feature engineering [18], or known statistics of images [7]. Well-known instances
of the compression class are variational Autoencoders [9] or probabilistic PCA [17].
Besides, there exist autoencoders that are specialized to novelty detection, such
3 https://github.com/matherm/mean-shift

https://github.com/matherm/mean-shift
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as Latent Space Autoregression [1]. Density-based approaches model the training
data with a statistical parametric model x ∼ pθ(x), where the parameters θ are
learned by maximizing the likelihood function [4]. Here, the densities of input
examples pθ(x) are directly available, and anomalies can be classified by using
this density as a scoring rule. Kernel space methods project the data into a
feature space F by computing a nonlinear mapping φ(x). Anomaly detection is
conducted in feature space, where typically the norm of ||φ(x)|| is used as scoring
function [15]. Natural image statistics provide image priors that can be used to
derive suitable feature spaces for novelty detection [7]. Our approach is related
in the sense that we also optimize within the independent components (ICA)
framework, although our starting point is quite different. In contrast to existing
methods, we propose to transform the input images into patches and to compute
statistics of patch ensembles. A similar approach was proposed by [11] in an
out-of-distribution scenario, where they used a hypothesis testing framework to
test for typicality. However, they analyzed ensembles of multiple input images,
instead of ensembles of patches of a single input image, and they did not optimize
the typical set size.

3 Data preparation

Our method first transforms a given data set of reference input images I0, · · · , IN
into an ensemble X of patches. We describe these preparatory steps in this
section. For a given test image I∗, we apply the same preprocessing and extract
an ensemble x∗ of patches. We then measure the mean-shift of the ensemble mean
µ(x∗) with respect to the mean of all given training patches µ(X). The anomaly
score µshift(x) is based on the Hotelling T 2 test [6] and derived in section 4.
Finally, we describe how to automatically select optimal hyperparameters for the
method in section 5.

We process the input examples Ii(x, y) on a common scale and apply contrast
normalization as preprocessing [7]. The normalization step centers and projects
all given input examples onto the unit sphere with respect to the L2-norm. This
is achieved by first removing the pixel-wise mean and rescaling afterwards,

I′ =
I− 1

D

∑
x,y I(x, y)∥∥∥I− 1

D

∑
x,y I(x, y)

∥∥∥
L2

, (1)

where D is the number of pixels - treating colors as additional pixels - in the
image. To ensure the numerical stability of the algorithm, we globally divide all
examples by the standard deviation std(I′) over all of the N training examples.

Having a set of preprocessed images I = {I′0/s, . . . , I′N/s}, the important part
of our algorithm is to generate patch ensembles, instead of processing the full
image. There are several possible strategies for cropping square image patches
from an image and we tested different sampling strategies without noticing
significant differences. Therefore, we propose to simply crop the patches in a
sliding window fashion and extract all valid patches inside the image without
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crossing the border. The horizontal and vertical stride τ of the sliding window
helps controlling the total number of cropped patches. We did not notice a
performance-critical impact of this parameter and keep it fixed to τ = 2. This
means that the maximum number S of distinct image patches per input image is
only limited by the size D of the image and the patch size P , i.e., the larger the
patch size, the fewer patches can be extracted. To distinguish between an input
data point and ensembles of patches, we denote a single patch of the i-th example
by xi and use xi(s) for indexing the ensemble where necessary. We flatten the
extracted patches with c color channels and organize the vectors of all computed
reference patches in a long design matrix X ∈ RNS×M , where M = cP 2.

4 Mean-shift detection

We perform mean-shift detection with the Hotelling T 2 test [6]. This is a multi-
variate generalization of Student’s t-test and allows for computing the significance
of mean-shifts between two populations. First, we present the test in its classical
form. In the second part, we derive a feature space interpretation that reveals
relevant hyperparameters that are needed for model selection in section 5.

In our case, we compare the pixel-wise mean

µ =
1

NS

N∑
i

S∑
s

xi(s) (2)

computed over all training patches with the pixel-wise mean

µ∗ =
1

S

S∑
s

x∗(s). (3)

of the patches x∗ extracted from a single test example. The unnormalized Hotelling
T 2 test statistic for a dependent test sample is given by

T̃ 2 = (µ∗ − µ)TΣ−1(µ∗ − µ), (4)

where
Σ =

1

NS − 1
(X− µ)T (X− µ) (5)

is the covariance matrix of the training dataset X. In other words, the Hotelling
T̃ 2 statistic is the Mahalanobis distance between the two mean vectors. Note that
because our samples are equally sized, we neglect the constant normalization
factor NS2

NS+S for simplicity.
To obtain a feature space interpretation, the Mahalanobis distance can be

computed by first whitening the data with a whitening transformation A and
then computing the standard L2 distance of the whitened mean vectors. This
allows us to reveal relevant hyperparameters, such as the noise floor and the
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rotation freedom. Due to the linearity of A, this is equivalent to applying A to
the mean difference vector in the original pixel space:

T̃ 2 = ‖A(µ∗ − µ)‖L2
(6)

The whitening transformation A can be decomposed into an orthogonal matrix W
containing the Eigenvectors of the covariance matrix Σ as columns, a diagonal
scaling matrix S−1/2, and an arbitrary rotation matrix R, such that

A = RS−1/2W, (7)

with Σ = WTSW, WWT = I, and R ∈ SO(M). The matrix S consists of the
variances si, · · · , sM along the components in W.
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Fig. 2: Mean-shifts and variances of the first 16 principal components of φ for the
deer class of CIFAR-10 with patch size P = 22. The left half of (a) and (b) shows
the statistics with unoptimized rotation matrix, the right half after optimization.

In this transformation, we also reduce the data dimensionM to k by removing
the noise floor. This is done by truncating the matrices W and S by removing
the dimensions with smallest variance. Across experiments, we found it helpful
to control the number of informative variables k by a rule, instead of fixing the
number of retained features. We retain all components up to a fixed threshold
of explained variance [7], in our case 90%. We denote this number by k = k90.
Furthermore, it is known that whitened data stay whitened under rotation, so
we can apply an arbitrary rotation matrix R without changing the T̃ 2 statistic.
We will cover the choice of this rotation freedom in more detail in section 5 and
show why it is crucial for model selection.

For visualization, it is useful to decompose the T̃ 2 statistic into the feature
vector

φ(x) = Aµ(x) (8)

and the derived anomaly score

µshift(x) = ‖φ(x)− φ(X)‖L2
. (9)

Fig. 1 depicts the two largest components of φ(x) and φ(x∗) of the CIFAR-10
dataset showing the large overlap between both distribution. Nevertheless, a
mean shift is still detectable in some components despite of the large variance of
the feature vectors φ(x), see Fig. 2.
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5 Typical set size minimization

For learning the model, we need to find a suitable whitening matrix A of the image
patches. The matrices S−1/2 and W can be computed by standard Eigenvector
decomposition of the covariance matrix Σ. However, during this procedure, also
the remaining hyperparameters Θ = {P,R} need to be set. Again, P is the patch
size, and R the arbitrary rotation. Fig. 3 shows the visual impact of the patch size
P on the ensemble statistics. Depending on the size, the appearance of the classes
changes drastically, particularly in terms of dissimilarity between neighboring
image patches. This observation motivates the use of an entropy-related measure
of dissimilarity or disorder for hyperparameter selection. Since we do not observe
the outliers, we can only manipulate the statistics of the transformed reference
data. In the introduction, we argued that a good strategy for model selection is
to keep the size |A(·)| of the typical set as small as possible as this limits the
blind spot of the mean shift detection mechanism. A central relationship between
the size of the typical set and the entropy of the feature distribution [3, 11] is

log |A(φ)| ≤ f(H[φ]), (10)

where f(·) is a monotonically increasing function which satisfies certain constraints.
This means that in order to keep the blind spot small, we need to minimize the
entropy of φ .

Directly minimizing entropy of stochastic variables is heavily studied in the
field of sparse coding and Independent Component Analysis [ICA; 2]. A central
measure in that field is the so-called negentropy, which is the negative of entropy.
Negentropy has an appealing feature that arises from the maximum entropy
principle, i.e., given a fixed variance the maximum entropy distribution is a
Gaussian [3]. This relation can be utilized by the construction of a negentropy
approximation [2] that uses the Gaussian distribution as contrast

J [φ] ∝
k∑
i

(g(φi)− g(γ))2, (11)

where g = log cosh(·), γ ∼ N (0, 1), and φ is centered. As a consequence, the
model selection rule simplifies to a linear search over the patch size P and a
non-convex optimization of the rotation matrix R,

argmax
P,R

J [φ], (12)

with P ∈ [14,
√
D/c− τ ] and R ∈ SO(k). We chose 14 as minimum patch size to

avoid the pathological case of selecting too small patches containing zero image
content, such as black spots in MNIST. Again, the rotation matrix R needs only
to be optimized as this model freedom highly impacts the negentropy measure,
but does not change the Mahalanobis distance (Eq. 4). While P is found by
a grid search, optimizing the rotation matrix R is a non-convex problem, in
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(a) Cats (14, 14),
J [φ] = 0.019

(b) Planes (14, 14),
J [φ] = 0.030

(c) Cats (30, 30),
J [φ] = 0.017

(d) Planes (30, 30),
J [φ] = 0.031

Fig. 3: Patch ensembles from two classes of CIFAR-10, cats and planes, with two
different patch sizes. The plane class has a more homogeneous appearance (e.g.
blue sky), while the cat class is more chaotic (e.g. cat pose) yielding a smaller
negentropy J .

particular, the solution is constrained to be an orthogonal matrix. As a first step,
we decompose the gradient via the chain rule,

∇RJ = ∇φJ∇Rφ, (13)

where ∇φJ is a 1× k row vector and ∇Rφ is a k × k2 matrix. We organize the
resulting 1× k2 gradient ∇RJ as k × k matrix for further processing. Note that
our problem is different to standard ICA, as we are computing the gradient w.r.t.
to the average across multiple patches (cf. Eq. 8), instead of a single patch.

The orthogonality constraint can be enforced by performing gradient ascent
only inside the Lie group SO(k) [gradient flow ; 12]. Hence, the gradient ∇RJ
of the loss function represents an infinitesimal rotation which has the form of
a skew-symmetric matrix. The set of all skew-symmetric matrices is called the
Lie algebra so(k) associated with the Lie group SO(k). Every skew-symmetric
matrix Θ can be uniquely parameterized by a vector r of dimension k(k − 1)/2,
denoted as the Plücker coordinates. The rotation matrix R associated to its
generating skew-symmetric matrix Θ is R = exp(Θ).

In order to compute a valid gradient step beyond the neighborhood of R, the
gradient direction needs to be expressed by the Lie bracket. We refer to [12] for
the full derivation of the relation between the two gradient expressions using the
commutator

∇ΘJ = (∇RJ )T R−RT (∇RJ ) . (14)

We initially set R0 ∼ N (0, I) and compute the feature vectors φi using Eq. 8.
Afterwards we compute the negentropy J using Eq. 11 and the gradient w.r.t.
R using Eq. 14. From there, we compute the corresponding parameter vector r
for gradient ascent by taking the upper triangular matrix of ∇ΘJ corresponding
to the Plücker coordinates. Unfortunately, rotation matrices for k > 2 are not
commutative. Hence we cannot make additive steps of ascent in so(k) and need
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SVM KDE VAE LSA DSVD µshift
plane 0.630 0.658 0.688 0.735 0.617 0.731
car 0.440 0.520 0.403 0.580 0.659 0.711
bird 0.649 0.657 0.679 0.690 0.508 0.498
cat 0.487 0.497 0.528 0.542 0.591 0.609
deer 0.735 0.727 0.748 0.761 0.609 0.582
dog 0.500 0.496 0.519 0.546 0.657 0.620
frog 0.725 0.758 0.695 0.751 0.677 0.724
horse 0.533 0.564 0.500 0.535 0.673 0.718
ship 0.649 0.680 0.700 0.717 0.759 0.805
truck 0.508 0.540 0.398 0.548 0.730 0.751

0.586 0.610 0.586 0.641 0.648 0.675

Table 1: AUC on CIFAR-10.

SVM KDE VAE LSA DSVD µshift
0 0.988 0.885 0.998 0.993 0.980 0.997
1 0.999 0.996 0.999 0.999 0.997 0.993
2 0.902 0.710 0.962 0.959 0.917 0.986
3 0.950 0.693 0.947 0.966 0.919 0.979
4 0.955 0.844 0.965 0.956 0.949 0.971
5 0.968 0.776 0.963 0.964 0.885 0.981
6 0.978 0.861 0.995 0.994 0.983 0.995
7 0.965 0.884 0.974 0.980 0.946 0.973
8 0.853 0.669 0.905 0.953 0.939 0.969
9 0.955 0.825 0.978 0.981 0.965 0.977
0.951 0.814 0.969 0.975 0.948 0.982

Table 2: AUC on MNIST.

to map between the Lie algebra and SO(k) in every iteration by using exp(Θ).
The gradient flow update rule is then given by

RT
i+1 = exp(ηΘri)RT

i , (15)

with step size η and the skew-symmetric matrix Θri parametrized by ri at the i-th
iteration step. For acceleration, we use the ADAM optimizer [8] with η = 1e−2

and optimize for 20 epochs at maximum.

6 Evaluation

We compare our approach to the following standard algorithms: OC-SVM [10],
Kernel Density Estimator (KDE), and Variational Autoencoder (VAE) [9]. Fur-
thermore, we compare two algorithms especially designed for one-class clas-
sification and not rely on prior-knowledge or transfer learning: Latent Space
Autoregression (LSA) [1]4 and Deep SVD (DSVD) [15]5. We use the standard
measure of area under the receiver operating characteristic curve (AUC) for
evaluating performance [16].

First, we test the method on the CIFAR-10 challenge. For training, we use all
examples from the training split of a single class. Inlier data is the corresponding
test split of the particular class, consisting of 1000 examples. For the outlier
data, the same number of examples is sampled from the other classes of the
test split. Tab. 2 shows the results of the experiment. We see that on average
µshift yields the best results on CIFAR-10. It is interesting to note that the
bird class is difficult for DSVD and ours. We attribute this result to the almost
orthogonal feature spaces of inliers and outliers in this case (see further discussion
in Sect. 6.2). As a second example, we evaluate the methods on the MNIST
challenge. Again, for training, we use all examples from the training split of a
single class, consisting of 6000 examples. Inlier data is the corresponding test
split from the same class, consisting of 1000 examples. For the outlier data the
same number of examples is sampled from the other classes of the test split. Tab.
4 https://github.com/ChangYungHua/Latent-space-AR/
5 https://github.com/lukasruff/Deep-SVDD-PyTorch

https://github.com/ChangYungHua/Latent-space-AR/
https://github.com/lukasruff/Deep-SVDD-PyTorch
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Fig. 5: Example of a scanned wooden
texture with nozzle faults and color
drifts from the digital printing dataset.
Note that the nozzle faults are only 2px
and therefore difficult to see.

SVM KDE VAE LSA DSVD µshift
0 0.812 0.785 0.802 0.717 0.910 0.924
1 0.513 0.542 0.484 0.614 0.676 0.652
2 0.591 0.501 0.606 0.499 0.648 0.678
3 0.534 0.820 0.584 0.700 0.775 0.609
4 0.615 0.563 0.487 0.523 0.692 0.616
5 0.646 0.545 0.645 0.541 0.594 0.686
6 0.573 0.703 0.573 0.551 0.671 0.646
7 0.441 0.518 0.572 0.529 0.673 0.571
8 0.838 0.559 0.802 0.433 0.545 0.844
9 0.609 0.676 0.743 0.647 0.736 0.758
0.617 0.621 0.629 0.575 0.692 0.698

Table 3: AUC on the industrial digital
printing dataset.

2 summarizes the results. The image statistics of MNIST are completely different
from CIFAR-10. As a result, we see that a different set of algorithms performs
better on this dataset. However, µshift consistently achieves the best results on
the average.

Finally, we also test performance on an industrial digital printing dataset. The
dataset consists of ten different wooden textures that are printed and scanned
by an industrial inspection system at a resolution of 300 dpi. Fig. 5 shows the
clean reference, an error-free scan, and a scan with printing anomalies, such as
nozzle faults and color drifts. For training, the reference scan was divided into
7100 square non-overlapping 96× 96 RGB images. The 3308 inlier examples were
gathered in the same way from the additional error-free scan, the 3308 outlier
examples from the anomalous scan. The results in Tab. 3 show a similar trend
to CIFAR-10 and MNIST, confirming the comparatively good performance of
µshift in a large-scale industrial inspection scenario with large patch sizes.

6.1 Runtime

Due to the minimalistic design of the algorithm, the algorithm can operate very
efficiently on unseen test data. This is of particular importance for industrial use
cases. The computation of the test scores for the digital printing dataset took
about 800 ms (8270 FPS) on average using a single GPU 1080 GTX. The most
expensive operations are the extraction of the S patches and the single k ×M
matrix multiplication. Note, that both operations can be implemented efficiently
with a single 2D convolution plus a spatial averaging operation.

6.2 Limitations

The way we construct our features before applying the Hotelling T 2 test assumes
that the feature spaces of the reference and outlier examples are largely overlap-
ping and that there is a single mode. If this is not the case, it might well happen
that many outliers are located in orthogonal directions with respect to the feature
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Cats vs. 3 (J [φ]) 3 vs. Cats (J [φ])
P = 14 0.36 (0.020) 1.00 (0.005)
P = 18 0.15 (0.016) 0.99 (0.005)
P = 22 0.12 (0.024) 1.00 (0.008)
P = 26 0.11 (0.031) 1.00 (0.008)

Table 4: AUC of mean-shift detection for non-overlapping feature spaces.

space of the inliers. As a result, many features of these examples are mapped to
the null space of the whitening transform such that they cannot contribute to a
detectable mean shift. We already suspected that this effect might be responsible
for the poor performance of µshift on the bird class example in Tab. 2 since
the bird class in CIFAR-10 is very different from the other classes. In order to
confirm this intuition, we created an artificial test problem where we took our
references and inliers from the cats class of CIFAR-10 whereas the outliers came
from the three class of MNIST. Here, the outliers occupy a very low-dimensional
feature subspace that accounts for only a small proportion of the variance in
the reference class. Tab. 4 clearly shows that a mean-shift detection does not
work in this case. Interestingly, when reversing directions and using MNIST as
the reference class, mean-shift detection becomes possible again, because the
relatively rich feature space of the cats class has enough variance also in the
small subspace occupied by the MNIST features.

7 Conclusion

In this work, we propose a new algorithm for the task of image novelty detection
based on mean-shifts between the reference and the overlapping outlier patch
distributions. The decision function is based on comparing patch ensembles
instead of entire images which leads to an increased robustness and sensitivity
of the algorithm. The chosen patch size and representation turns out to be the
critical parameters for the success of this approach. A choice of these parameters
based on minimizing the size of the critical set leads to satisfactory results
that can even surpass deep learning methods. Our experiments show consistent
applicability over multiple datasets, both in standard novelty detection tasks
and in an industrial application scenario. Moreover, the computational load of
the proposed algorithm is relatively small which recommends its application to
large scale problems. A limitation of our method arises when the feature spaces
of inliers and outliers do not overlap or multiple modes appear. This causes the
outlier features to fall into the null-space of the whitening transform which makes
mean-shift detection impossible. For practical applications, domain knowledge
needs to be used to decide whether this special case prevails in the problem
at hand. If so, mean-shift detection on raw pixels is not desirable and utilizing
prior knowledge, feature extractors (e.g., [5, 13]) or models based on other loss
functions, such as reconstruction loss, are better suited.
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