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Abstract

This paper proposes a method for computing fast approximations to sup-
port vector decision functions in the field of object detection. In the
present approach we are building on an existing algorithm where the set
of support vectors is replaced by a smaller, so-called reduced set of syn-
thesized input space points. In contrast to the existing method that finds
the reduced set via unconstrained optimization, we impose astructural
constraint on the synthetic points such that the resulting approximations
can be evaluated via separable filters. For applications that require scan-
ning large images, this decreases the computational complexity by a sig-
nificant amount. Experimental results show that in face detection, rank
deficient approximations are 4 to 6 times faster than unconstrained re-
duced set systems.

1 Introduction

It has been shown that support vector machines (SVMs) provide state-of-the-art accuracies
in object detection. In time-critical applications, however, they are of limited use due to
their computationally expensive decision functions. In particular, the time complexity of
an SVM classification operation is characterized by two parameters. First, it is linear in the
number of support vectors (SVs). Second, it scales with the number of operations needed
for computing the similarity between an SV and the input, i.e. the complexity of the kernel
function. When classifying image patches of sizeh×w using plain gray value features, the
decision function requires anh · w dimensional dot product for each SV. As the patch size
increases, these computations become extremely expensive. As an example, the evaluation
of a single20 × 20 patch on a320 × 240 image at 25 frames per second already requires
660 million operations per second.

In the past, research towards speeding up kernel expansionshas focused exclusively on the
first issue, i.e. on how to reduce the number of expansion points (SVs) [1, 2]. In [2] Burges
introduced a method that, for a given SVM, creates a set of so-called reduced set vectors
(RSVs) that approximate the decision function. This approach has been successfully ap-
plied in the image classification domain — speedups on the order of 10 to 30 have been re-
ported [2, 3, 4] while the full accuracy was retained. Additionally, for strongly unbalanced
classification problems such as face detection, the averagenumber of RSV evaluations can
be further reduced using cascaded classifiers [5, 6, 7]. Unfortunately, the above example
illustrates that even with as few as three RSVs on average (asin [5]), such systems are not
competitive for time-critical applications.



The present work focuses on the second issue, i.e. the high computational cost of the kernel
evaluations. While this could be remedied by switching to a sparser image representation
(e.g. a wavelet basis), one could argue that in connection with SVMs, not only are plain
gray values straightforward to use, but they have shown to outperform Haar wavelets and
gradients in the face detection domain [8]. An interesting solution was proposed by [9]:
here, image patch correlations are computed efficiently in the frequency domain. Below
we will present a reduced set method that combines the simplicity of SVMs on plain gray
values with the speed advantage of more sophisticated imagerepresentations. To this end,
we borrow an idea from image processing: by constraining theRSVs to have a special
structure, they can be evaluated via separable convolutions. This works for most standard
kernels (e.g. linear, polynomial, Gaussian and sigmoid) and decreases the average compu-
tational complexity of the RSV evaluations fromO(h · w) to O(r · (h + w)), wherer is a
small number that allows the user to balance between speed and accuracy. To evaluate our
approach, we examine the performance of these approximations on the MIT+CMU face
detection database (used in [10, 11, 8, 5, 6]).

2 Burges’ method for reduced set approximations

The present section briefly describes Burges’ reduced set method [2] on which our work is
based. For reasons that will become clear below,h×w image patches are written ash×w
matrices (denoted by bold capital letters) whose entries are the respective pixel intensities.
In this paper, we refer to this as the image-matrix notation.

Assume that an SVM has been successfully trained on the problem at hand. Let
{X1, . . .Xm} denote the set of SVs,{α1, . . . αm} the corresponding coefficients,k(·, ·)
the kernel function andb the bias of the SVM solution. The decision rule for a test pattern
X reads

f(X) = sgn

(

m
∑

i=1

yiαik(Xi,X) + b

)

. (1)

In SVMs, the decision surface induced byf corresponds to a hyperplane in the reproducing
kernel Hilbert space (RKHS) associated withk. The corresponding normal

Ψ =

m
∑

i=1

yiαik(Xi, ·) (2)

can be approximated using a smaller, so-called reduced set (RS) {Z1, . . .Zm′} of size
m′ < m, i.e. an approximation toΨ of the form

Ψ′ =
m

′

∑

i=1

βik(Zi, ·). (3)

This speeds up the decision process by a factor ofm/m′. To find suchΨ′, we fix a desired
set sizem′ and solve

min ‖Ψ−Ψ′‖2RKHS (4)

for βi andZi. Here,‖ · ‖RKHS denotes the Euclidian norm in the RKHS. The resulting RS
decision functionf ′ is then given by

f ′(X) = sgn





m′

∑

i=1

βik(Zi,X) + b



 . (5)

In practice,βi,Zi are found using a gradient based optimization technique. Details can be
found in [2].



3 From separable filters to rank deficient reduced sets

We now describe the concept of separable filters in image processing and show how this
idea extends to a broader class of linear filters and to a special class of nonlinear filters,
namely those used by SVM decision functions. Using the image-matrix notation, it will
become clear that the separability property boils down to a matrix rank constraint.

3.1 Linear separable filters

Applying a linear filter to an image amounts to a two-dimensional convolution of the image
with the impulse response of the filter. In particular, ifI is the input image,H the impulse
response, i.e. the filter mask, andJ the output image, then

J = I ∗H. (6)

If H has sizeh × w, the convolution requiresO(h · w) operations for each output pixel.
However, in special cases whereH can be decomposed into two column vectorsa andb,
such that

H = ab
> (7)

holds, we can rewrite (6) as
J = [I ∗ a] ∗ b>, (8)

since the convolution is associative and in this case,ab
> = a ∗b>. This splits the original

problem (6) into two convolution operations with masks of sizeh×1 and1×w, respectively.
As a result, if a linear filter is separable in the sense of equation (7), the computational
complexity of the filtering operation can be reduced fromO(h · w) to O(h + w) per pixel
by computing (8) instead of (6).

3.2 Linear rank deficient filters

In view of (7) being equivalent torank(H) ≤ 1, we now generalize the above concept to
linear filters with low rank impulse responses. Consider thesingular value decomposition
(SVD) of theh× w matrixH,

H = USV
>, (9)

and recall thatU andV are orthogonal matrices of sizeh × h andw × w, respectively,
whereasS is diagonal (the diagonal entries are the singular values) and has sizeh × w.
Now let r = rank(H). Due torank(S) = rank(H), we may writeH as a sum ofr rank
one matrices

H =
r
∑

i=1

siuivi
> (10)

wheresi denotes theith singular value ofH andui, vi are theiths columns ofU andV

(i.e. theith singular vectors of the matrixH), respectively. As a result, the correspond-
ing linear filter can be evaluated (analogously to (8)) as theweighted sum ofr separable
convolutions

J =

r
∑

i=1

si [I ∗ ui] ∗ vi
> (11)

and the computational complexity drops fromO(h × w) to O(r · (h + w)) per output
pixel. Not surprisingly, the speed benefit depends onr, which can be seen to measure the
structural complexity1 of H. For square matrices (w = h) for instance, (11) does not give
any speedup compared to (6) ifr > w/2.

1In other words, the flatter the spectrum ofHH
>, the less benefit can be expected from (11).



3.3 Nonlinear rank deficient filters and reduced sets

Due to the fact that in 2D, correlation is identical with convolution if the filter mask is
rotated by 180 degrees (and vice versa), we can apply the above idea to any image filter
f(X) = g(c(H,X)) whereg is an arbitrary nonlinear function andc(H,X) denotes the
correlation between images patchesX andH (both of sizeh× w). In SVMs this amounts
to using a kernel of the form

k(H,X) = g(c(H,X)). (12)

If H has rankr, we may split the kernel evaluation intor separable correlations plus a
scalar nonlinearity. As a result, if the RSVs in a kernel expansion such as (5) satisfy
this constraint, the average computational complexity decreases fromO(m′ · h · w) to
O(m′ · r · (h + w)) per output pixel. This concept works for many off-the-shelfkernels
used in SVMs. While linear, polynomial and sigmoid kernels are defined as functions of
input space dot products and therefore immediately satisfyequation (12), the idea applies
to kernels based on the Euclidian distance as well. For instance, the Gaussian kernel reads

k(H,X) = exp(γ(c(X,X) − 2c(H,X) + c(H,H))). (13)

Here, the middle term is the correlation which we are going toevaluate via separable filters.
The first term is independent of the SVs — it can be efficiently pre-computed and stored in
a separate image. The last term is merely a constant scalar independent of the image data.
Finally, note that these kernels are usually defined on vectors. Nevertheless, we can use
our image-matrix notation due to the fact that the squared Euclidian distance between two
vectors of gray valuesx andz may be written as

‖x− z‖2 = ‖X− Z‖2F , (14)

whereas the dot product amounts to

x
>
z =

1

2

(

‖X‖2F + ‖Z‖2F − ‖X− Z‖2F
)

, (15)

whereX andZ are the corresponding image patches and‖ · ‖F is the Frobenius norm for
matrices.

4 Finding rank deficient reduced sets

In our approach we consider a special class of the approximations given by (3), namely
those where the RSVs can be evaluated efficiently via separable correlations. In order to
obtain such approximations, we use a constrained version ofBurges’ method. In particular,
we restrict the RSV search space to the manifold spanned by all image patches that —
viewed as matrices — have a fixed, small rankr (which is to be chosen a priori by the user).
To this end, theZi in equation (3) are replaced by their singular value decompositions

Zi ← UiSiVi
>. (16)

The rank constraint can then be imposed by allowing only the first r diagonal elements of
Si to be non-zero. Note that this boils down to using an approximation of the form

Ψ′

r =

m′

∑

i=1

βik(Ui,rSi,rVi,r
>, ·) (17)

with Si,r beingr× r (diagonal) andUi,r, Vi,r beingh× r, w× r (orthogonal2) matrices,
respectively. Analogously to (4) we fixm′ andr and findSi,r, Ui,r, Vi,r andβi that mini-
mize the approximation errorρ = ‖Ψ−Ψ′

r‖
2

RKHS
. The minimization problem is solved via

2In this paper we call a non-square matrix orthogonal if its columns are pairwise orthogonal and
have unit length.



gradient decent. Note that when computing gradients, the image-matrix notation (together
with (14) or (15), and the equality‖X‖2F = tr(XX

>)) allows a straightforward computa-
tion of the kernel derivatives w.r.t. the components of the decomposed RSV image patches,
i.e. the row, column and scale information inVi,r, Ui,r andSi,r, respectively. However,
while the update rules forβi andSi,r follow immediately from the respective derivatives,
care must be taken in order to keepUi,r andVi,r orthogonal during optimization. This
can be achieved through re-orthogonalization of these matrices after each gradient step.

In our current implementation, however, we perform those updates subject to the so-called
Stiefel constraints [12]. Intuitively, this amounts to rotating (rather than translating) the
columns ofUi,r andVi,r, which ensures that the resulting matrices are still orthogonal,
i.e. lie on the Stiefel manifold. LetS(h, r) be the manifold of orthogonalh × r matrices,
the (h, r)-Stiefel manifold. Further, letU⊥

i,r denote an orthogonal basis for the orthogo-
nal complement of the subspace spanned by the columns ofUi,r. Now, given the ’free’
gradientG = ∂ρ/∂Ui,r we compute the ’constrained’ gradient

Ĝ = G−Ui,rG
>
Ui,r , (18)

which is the projection ofG onto the tangent space ofS(h, r) atUi,r. The desired rotation
is then given [12] by the (matrix) exponential of theh× h skew-symmetric matrix

A =

(

Ĝ
>
Ui,r −(Ĝ>

U
⊥

i,r)
>

Ĝ
>
U

⊥

i,r 0

)

(19)

in the sense that the updated version ofUi,r equals the firstr columns of
[

Ui,r,U
⊥

i,r

]

exp(tA), (20)

wheret is a user-defined step size parameter (which can be chosen e.g. via line search).

5 Experiments

This section shows the results of two experiments. The first part illustrates the behavior of
rank deficient approximations for a face detection SVM in terms of the convergence rate
and classification accuracy for different values ofr. In the second part, we show how an
actual face detection system, similar to that presented in [5], can be sped up using rank
deficient RSVs. In both experiments we used the same trainingand validation set. It
consisted of19 × 19 gray level image patches containing 16081 manually collected faces
(3194 of them kindly provided by Sami Romdhani) and 42972 non-faces automatically
collected from a set of 206 background scenes. Each patch wasnormalized to zero mean
and unit variance. The set was split into a training set (13331 faces and 35827 non-faces)
and a validation set (2687 faces and 7145 non-faces). We trained a 1-norm soft margin
SVM on the training set using a Gaussian kernel withσ = 10. The regularization constant
C was set to1. The resulting decision function (1) achieved a hit rate of97.3% at 1.0%
false positives on the validation set usingm = 6910 SVs. This solution served as the
approximation targetΨ (see equation (2)) during the experiments described below.

5.1 Rank deficient faces

In order to see howm′ andr affect the accuracy of our approximations, we compute rank
deficient reduced sets form′ = 1 . . . 32 andr = 1 . . . 3 (the left array in Figure 1 illustrates
the actual appearance of rank deficient RSVs for them′ = 6 case). Accuracy of the re-
sulting decision functions is measured in ROC score (the area under the ROC curve) on the
validation set. For the full SVM, this amounts to0.99. The results for our approximations
are depicted in Figure 2. As expected, we need a larger numberof rank deficient RSVs
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Figure 1: Rank deficient faces. The left array shows the RSVs (Zi) of the unconstrained
(top row) and constrained (r decreases from3 to 1 down the remaining rows) approxi-
mations form′ = 6. Interestingly, ther = 3 RSVs are already able to capture face-like
structures. This supports the fact that the classification accuracy forr = 3 is similar to
that of the unconstrained approximations (cf. Figure 2, left plot). The right array shows the
m′ = 1 RSVs (r = full, 3, 2, 1, top to bottom row) and their decomposition into rank one
matrices according to (10). For the unconstrained RSV (firstrow) it shows an approximate
(truncated) expansion based on the three leading singular vectors. While forr = 3 the
decomposition is indeed similar to the truncated SVD, note how this similarity decreases
for r = 2, 1. This illustrates that the approach is clearly different from simply finding un-
constrained RSVs andthenimposing the rank constraint via SVD (in fact, the norm (4) is
smaller for ther = 1 RSV than for the leading singular vector of ther = full RSV).

than unconstrained RSVs to obtain similar classification accuracies, especially for small
r. Nevertheless, the experiment points out two advantages ofour method. First, a rank as
low as three seems already sufficient for our face detection SVM in the sense that for equal
sizesm′ there is no significant loss in accuracy compared to the unconstrained approxima-
tion (at least form′ > 2). The associated speed benefit over unconstrained RSVs is shown
in the right plot of Figure 2: the rank three approximations achieve accuracies similar to
the unconstrained functions, while the number of operations reduces to less than a third.
Second, while for unconstrained RSVs there is no solution with a number of operations
smaller thanh ·w = 361 (in the right plot, this is the region beyond the left end of the solid
line), there exist rank deficient functions which are not only much faster than this, but yield
considerably higher accuracies. This property will be exploited in the next experiment.

5.2 A cascade-based face detection system

In this experiment we built a cascade-based face detection system similar to [5, 6], i.e.
a cascade of RSV approximations of increasing sizem′. As the benefit of a cascaded
classifier heavily depends on the speed of the first classifierwhich has to be evaluated on
the whole image [5, 6], our system uses a rank deficient approximation as the first stage.
Based on the previous experiment, we chose them′ = 3, r = 1 classifier. Note that this
function yields an ROC score of0.9 using 114 multiply-adds, whereas the simplest possible
unconstrained approximationm′ = 1, r = full needs 361 multiply-adds to achieve a ROC
score of only0.83 (cf. Figure 2). In particular, if the threshold of the first stage is set to
yield a hit rate of95% on the validation set, scanning the MIT+CMU set (130 images,507
faces) withm′ = 3, r = 1 discards91.5% of the false positives, whereas them′ = 1,
r = full can only reject70.2%. At the same time, when scanning a320× 240 image3, the

3For multi-scale processing the detectors are evaluated on an image pyramid with 12 different
scales using a scale decay of 0.75. This amounts to scanning 140158 patches for a320× 240 image.
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Figure 2: Effect of the rank parameterr on classification accuracies. The left plots shows
the ROC score of the rank deficient RSV approximations (cf. Section 4) for varying set sizes
(m′ = 1 . . . 32, on a logarithmic scale) and ranks (r = 1 . . . 3). Additionally, the solid line
shows the accuracy of the RSVs without rank constraint (cf. Section 2), here denoted by
r = full. The right plot shows the same four curves, but plotted against the number of
operations needed for the evaluation of the corresponding decision function when scanning
large images (i.e.m′ · r · (h + w) with h = w = 19), also on a logarithmic scale.

three separable convolutions plus nonlinearity require55ms, whereas the single, full kernel
evaluation takes208ms on a Pentium 4 with 2.8 GHz. Moreover, for the unconstrained
cascade to catch up in terms of accuracy, the (at least)m′ = 2, r = full classifier (also
with an ROC score of roughly0.9) should be applied afterwards, requiring another0.3 ∗
2 ∗ 208 ms ≈ 125ms.

The subsequent stages of our system consist of unconstrained RSV approximations of size
m′ = 4, 8, 16, 32, respectively. These sizes were chosen such that the numberof false
positives roughly halves after each stage, while the numberof correct detections remains
close to95% on the validation set (with the decision thresholds adjusted accordingly). To
eliminate redundant detections, we combine overlapping detections via averaging of posi-
tion and size if they are closer than0.15 times the estimated patch size. This system yields
93.1% correct detections and0.034% false positives on the MIT+CMU set. The current
system was incorporated into a demo application (Figure 3).For optimal performance, we
re-compiled our system using the Intel compiler (ICC). The application now classifies a
320x240 image within54ms (vs.238ms with full rank RSVs only) on a 2.8 GHz PC. To
further reduce the number of false positives, additional bootstrapped (as in [5]) stages need
to be added to the cascade. Note that this will not significantly affect the speed of our sys-
tem (currently14 frames per second) since0.034% false positives amounts to merely 47
patches to be processed by subsequent classifiers.

6 Discussion

We have presented a new reduced set method for SVMs in image processing, which cre-
ates sparse kernel expansions that can be evaluated via separable filters. To this end, the
user-defined rank (the number of separable filters into whichthe RSVs are decomposed)
provides a mechanism to control the tradeoff between accuracy and speed of the resulting
approximation. Our experiments show that for face detection, the use of rank deficient
RSVs leads to a significant speedup without losing accuracy.Especially when rough ap-
proximations are required, our method gives superior results compared to the existing re-



Figure 3: A sample output from our demonstra-
tion system (running at 14 frames per second).
In this implementation, we reduced the number
of false positives by adjusting the threshold of
the final classifier. Although this reduces the
number of detections as well, the results are still
satisfactory. This is probably due to the fact that
the MIT+CMU set contains several images of
very low quality that are not likely to occur in
our setting, using a good USB camera.

duced set methods since it allows for a finer granularity which is vital in cascade-based
detection systems. Another property of our approach is simplicity. At run-time, rank defi-
cient RSVs can be used together with unconstrained RSVs or SVs using the same canonical
image representation. As a result, the required changes in existing code, such as in [5], are
small. In addition, our approach allows the use of off-the-shelf image processing libraries
for separable convolutions. Since such operations are essential in image processing, there
exist many (often highly optimized) implementations. Finally, the method can well be used
to train a neural network, i.e. to go directly from the training data to a sparse, separable
function as opposed to taking the SVM ’detour’. A comparisonof that approach to the
present one, however, remains to be done.
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