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Abstract

This paper proposes a method for computing fast approxamsito sup-
port vector decision functions in the field of object deteati In the

present approach we are building on an existing algorithrre/the set
of support vectors is replaced by a smaller, so-called rediset of syn-
thesized input space points. In contrast to the existindatethat finds
the reduced set via unconstrained optimization, we imposteuatural

constraint on the synthetic points such that the resultppy@imations
can be evaluated via separable filters. For applicatioris¢lqaire scan-
ning large images, this decreases the computational caityply a sig-

nificant amount. Experimental results show that in facealiete, rank
deficient approximations are 4 to 6 times faster than uncaingtd re-
duced set systems.

1 Introduction

It has been shown that support vector machines (SVMs) peastate-of-the-art accuracies
in object detection. In time-critical applications, howevthey are of limited use due to
their computationally expensive decision functions. Intigalar, the time complexity of
an SVM classification operation is characterized by two patars. First, itis linear in the
number of support vectors (SVs). Second, it scales with tielyer of operations needed
for computing the similarity between an SV and the input,the complexity of the kernel
function. When classifying image patches of size w using plain gray value features, the
decision function requires dn- w dimensional dot product for each SV. As the patch size
increases, these computations become extremely expeAsiam example, the evaluation
of a single20 x 20 patch on 820 x 240 image at 25 frames per second already requires
660 million operations per second.

In the past, research towards speeding up kernel exparsgrfecused exclusively on the
firstissue, i.e. on how to reduce the number of expansion®8Vs) [1, 2]. In [2] Burges
introduced a method that, for a given SVM, creates a set affled reduced set vectors
(RSVs) that approximate the decision function. This apgihdaas been successfully ap-
plied in the image classification domain — speedups on theraf10 to 30 have been re-
ported [2, 3, 4] while the full accuracy was retained. Adattlly, for strongly unbalanced
classification problems such as face detection, the avenagber of RSV evaluations can
be further reduced using cascaded classifiers [5, 6, 7]. tinfately, the above example
illustrates that even with as few as three RSVs on averaga (8%, such systems are not
competitive for time-critical applications.



The present work focuses on the second issue, i.e. the higputational cost of the kernel
evaluations. While this could be remedied by switching tparser image representation
(e.g. a wavelet basis), one could argue that in connectitin 8¥Ms, not only are plain
gray values straightforward to use, but they have shown tpesform Haar wavelets and
gradients in the face detection domain [8]. An interestialytson was proposed by [9]:
here, image patch correlations are computed efficientlhénftequency domain. Below
we will present a reduced set method that combines the siityptif SVMs on plain gray
values with the speed advantage of more sophisticated inepgesentations. To this end,
we borrow an idea from image processing: by constrainingRB¥s to have a special
structure, they can be evaluated via separable convotutibimis works for most standard
kernels (e.qg. linear, polynomial, Gaussian and sigmoid)datreases the average compu-
tational complexity of the RSV evaluations frafh - w) to O(r - (b + w)), wherer is a
small number that allows the user to balance between spekacanracy. To evaluate our
approach, we examine the performance of these approxinsatio the MIT+CMU face
detection database (used in [10, 11, 8, 5, 6]).

2 Burges’ method for reduced set approximations

The present section briefly describes Burges’ reduced sitoth§2] on which our work is
based. For reasons that will become clear below;w image patches are written As< w
matrices (denoted by bold capital letters) whose entriesta respective pixel intensities.
In this paper, we refer to this as the image-matrix notation.

Assume that an SVM has been successfully trained on the golsit hand. Let
{Xi,...X,»} denote the set of SV41, ..., } the corresponding coefficients(-, -)
the kernel function and the bias of the SVM solution. The decision rule for a testqratt
X reads

f(X) = sgn (Z yicik(Xq, X) + b) : 1)

i=1

In SVMs, the decision surface induced figorresponds to a hyperplane in the reproducing
kernel Hilbert space (RKHS) associated withThe corresponding normal

\I/ = Zyiaik(Xi, ) (2)
i=1

can be approximated using a smaller, so-called reducedR&Ht{&;, . ..Z,, } of size
m’ < m, i.e. an approximation t& of the form

v = Zﬁik(zi,')- (3)
i=1

This speeds up the decision process by a factet 6. To find such¥’, we fix a desired
set sizen’ and solve
min | ¥ — || fps 4

for 5; andZ;. Here,|| - ||rkus denotes the Euclidian norm in the RKHS. The resulting RS
decision functionf’ is then given by

F(X) =sgn | Y Bik(Zi, X) 4+ | . (5)
i=1

In practice,3;, Z, are found using a gradient based optimization techniqu&iBe&an be
foundin [2].



3 From separable filters to rank deficient reduced sets

We now describe the concept of separable filters in imageegsiicg and show how this
idea extends to a broader class of linear filters and to a alpeleiss of nonlinear filters,
namely those used by SVM decision functions. Using the irragé&ix notation, it will
become clear that the separability property boils down ta#imrank constraint.

3.1 Linear separable filters

Applying a linear filter to an image amounts to a two-dimenai@onvolution of the image
with the impulse response of the filter. In particulad i§ the input imageH the impulse
response, i.e. the filter mask, ahdhe output image, then

J=IxH. (6)

If H has sizeh x w, the convolution require®(h - w) operations for each output pixel.
However, in special cases whdflecan be decomposed into two column vectandb,
such that

H=ab' 7

holds, we can rewrite (6) as
J=[Ixa]xb', (8)

since the convolution is associative and in this cadd, = axb . This splits the original
problem (6) into two convolution operations with masks aédix 1 andl xw, respectively.
As a result, if a linear filter is separable in the sense of g8ognd7), the computational
complexity of the filtering operation can be reduced frorth - w) to O(h + w) per pixel
by computing (8) instead of (6).

3.2 Linear rank deficient filters

In view of (7) being equivalent teank(H) < 1, we now generalize the above concept to
linear filters with low rank impulse responses. Considersihgular value decomposition
(SVD) of theh x w matrixH,

H=USV', (9)

and recall thalU andV are orthogonal matrices of sizex h andw x w, respectively,
whereasS is diagonal (the diagonal entries are the singular valueg)reas sizeh x w.

Now letr = rank(H). Due torank(S) = rank(H), we may writeH as a sum of rank
one matrices

H= Z siuiviT (10)
=1

wheres; denotes théth singular value oH andu;, v; are theiths columns ofU andV
(i.e. thesth singular vectors of the matril), respectively. As a result, the correspond-
ing linear filter can be evaluated (analogously to (8)) aswh&ghted sum of- separable
convolutions

IJ=) silxu]xv;" (11)
1=1

and the computational complexity drops fraB{~ x w) to O(r - (h + w)) per output
pixel. Not surprisingly, the speed benefit depends owhich can be seen to measure the
structural complexityof H. For square matriceso(= h) for instance, (11) does not give
any speedup compared to (6)if> w/2.

In other words, the flatter the spectrumHH ", the less benefit can be expected from (11).



3.3 Nonlinear rank deficient filters and reduced sets

Due to the fact that in 2D, correlation is identical with cohtion if the filter mask is
rotated by 180 degrees (and vice versa), we can apply theedtea to any image filter
f(X) = g(c(H, X)) whereg is an arbitrary nonlinear function andH, X) denotes the
correlation between images patcleandH (both of sizeh x w). In SVMs this amounts
to using a kernel of the form

k(H.X) = g(c(H, X)). (12)

If H has rankr, we may split the kernel evaluation intoseparable correlations plus a
scalar nonlinearity. As a result, if the RSVs in a kernel exgdan such as (5) satisfy
this constraint, the average computational complexityelses fronO(m’ - h - w) to
O(m’ - r - (h+ w)) per output pixel. This concept works for many off-the-shelfnels
used in SVMs. While linear, polynomial and sigmoid kernets defined as functions of
input space dot products and therefore immediately satighation (12), the idea applies
to kernels based on the Euclidian distance as well. Forrastahe Gaussian kernel reads

kE(H,X) = exp(7(¢(X, X) — 2¢(H, X) + ¢(H, H))). (13)
Here, the middle term is the correlation which we are goingyvaduate via separable filters.
The first term is independent of the SVs — it can be efficientyr@omputed and stored in
a separate image. The last term is merely a constant scdigpéndent of the image data.
Finally, note that these kernels are usually defined on vectdevertheless, we can use

our image-matrix notation due to the fact that the squaragdidian distance between two
vectors of gray valueg andz may be written as

Il — 2)|* = [1X — Z||%, (14)
whereas the dot product amounts to

1
x'z= o (XI5 +112]5 - X - ZF) (15)

whereX andZ are the corresponding image patches gngl is the Frobenius norm for
matrices.

4 Finding rank deficient reduced sets

In our approach we consider a special class of the approxinggiven by (3), namely
those where the RSVs can be evaluated efficiently via selgacabrelations. In order to
obtain such approximations, we use a constrained versiBamfes’ method. In particular,
we restrict the RSV search space to the manifold spanned! imafe patches that —
viewed as matrices — have a fixed, small rarflwhich is to be chosen a priori by the user).
To this end, theéZ; in equation (3) are replaced by their singular value decasitipos

Z; — U;S,V,;". (16)
The rank constraint can then be imposed by allowing only tisésfidiagonal elements of
S; to be non-zero. Note that this boils down to using an appraion of the form
U= Bik(UirSir Vi, ') (17)
=1
with S; - beingr x r (diagonal) andJ; ., V; , beingh x r, w x r (orthogonad) matrices,
respectively. Analogously to (4) we fix’ andr and findS, ., U, ., V; , and; that mini-
mize the approximation errgr= || — U’ ||% ;<. The minimization problem s solved via

2In this paper we call a non-square matrix orthogonal if itsicms are pairwise orthogonal and
have unit length.



gradient decent. Note that when computing gradients, tlagé&matrix notation (together
with (14) or (15), and the equalityX||2 = tr(XX ")) allows a straightforward computa-
tion of the kernel derivatives w.r.t. the components of theainposed RSV image patches,
i.e. the row, column and scale information¥Vi ., U; ,, andS; .., respectively. However,
while the update rules fg8; andS; ,. follow immediately from the respective derivatives,
care must be taken in order to ke&jy , andV; ,. orthogonal during optimization. This
can be achieved through re-orthogonalization of theseiceatafter each gradient step.

In our current implementation, however, we perform thosgates subject to the so-called
Stiefel constraints [12]. Intuitively, this amounts toatihg (rather than translating) the
columns ofU, , andV, ,, which ensures that the resulting matrices are still orbimady
i.e. lie on the Stiefel manifold. Le3(h, ) be the manifold of orthogonal x » matrices,
the (h, r)-Stiefel manifold. Further, leU;, denote an orthogonal basis for the orthogo-
nal complement of the subspace spanned by the columbk pf Now, given the 'free’
gradientG = dp/0U, , we compute the 'constrained’ gradient

G=G-U;,G'U,,, (18)

which is the projection o& onto the tangent space ®h, r) atU; .. The desired rotation
is then given [12] by the (matrix) exponential of thex h skew-symmetric matrix

G'U,, —(GTU:)T

in the sense that the updated versioif. equals the first columns of
[Ui,r, Ui, ] exp(tA), (20)

wheret is a user-defined step size parameter (which can be chosencelige search).

5 Experiments

This section shows the results of two experiments. The fadtifjustrates the behavior of
rank deficient approximations for a face detection SVM imgiof the convergence rate
and classification accuracy for different values-ofin the second part, we show how an
actual face detection system, similar to that presente8linchn be sped up using rank
deficient RSVs. In both experiments we used the same trammiyvalidation set. It
consisted ofi9 x 19 gray level image patches containing 16081 manually catbéices
(3194 of them kindly provided by Sami Romdhani) and 42972-fames automatically
collected from a set of 206 background scenes. Each patcimevasalized to zero mean
and unit variance. The set was split into a training set (1¥a8es and 35827 non-faces)
and a validation set (2687 faces and 7145 non-faces). Weetta 1-norm soft margin
SVM on the training set using a Gaussian kernel wite: 10. The regularization constant
C was set tal. The resulting decision function (1) achieved a hit rat®@aB8% at 1.0%
false positives on the validation set using = 6910 SVs. This solution served as the
approximation targe® (see equation (2)) during the experiments described below.

5.1 Rank deficient faces

In order to see hown’ andr affect the accuracy of our approximations, we compute rank
deficientreduced setsfet’ = 1...32andr = 1...3 (the left array in Figure 1 illustrates
the actual appearance of rank deficient RSVs forrthe= 6 case). Accuracy of the re-
sulting decision functions is measured in ROC score (tha aneler the ROC curve) on the
validation set. For the full SVM, this amounts@®9. The results for our approximations
are depicted in Figure 2. As expected, we need a larger nuaflvank deficient RSVs
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Figure 1: Rank deficient faces. The left array shows the R&@ykdf the unconstrained
(top row) and constrained- (decreases from to 1 down the remaining rows) approxi-
mations form’ = 6. Interestingly, the- = 3 RSVs are already able to capture face-like
structures. This supports the fact that the classificatmui@acy forr = 3 is similar to
that of the unconstrained approximations (cf. Figure 2 dkft). The right array shows the
m’ = 1 RSVs ¢ = full, 3,2, 1, top to bottom row) and their decomposition into rank one
matrices according to (10). For the unconstrained RSV (fing) it shows an approximate
(truncated) expansion based on the three leading singataors. While forr = 3 the
decomposition is indeed similar to the truncated SVD, nate this similarity decreases
for r = 2,1. This illustrates that the approach is clearly differentfirsimply finding un-
constrained RSVs arttienimposing the rank constraint via SVD (in fact, the norm (4) is
smaller for the- = 1 RSV than for the leading singular vector of the= full RSV).

than unconstrained RSVs to obtain similar classificatiocueacies, especially for small
r. Nevertheless, the experiment points out two advantagesrahethod. First, a rank as
low as three seems already sufficient for our face detectitv | the sense that for equal
sizesm'’ there is no significant loss in accuracy compared to the wstcained approxima-
tion (at least forn’ > 2). The associated speed benefit over unconstrained RSVsvisish
in the right plot of Figure 2: the rank three approximationkiave accuracies similar to
the unconstrained functions, while the number of operati@duces to less than a third.
Second, while for unconstrained RSVs there is no soluticdh winumber of operations
smaller tharh - w = 361 (in the right plot, this is the region beyond the left end & Holid
line), there exist rank deficient functions which are noyyanlich faster than this, but yield
considerably higher accuracies. This property will be eitpt in the next experiment.

5.2 A cascade-based face detection system

In this experiment we built a cascade-based face detecyisters similar to [5, 6], i.e.

a cascade of RSV approximations of increasing size As the benefit of a cascaded
classifier heavily depends on the speed of the first classifiech has to be evaluated on
the whole image [5, 6], our system uses a rank deficient afpadion as the first stage.
Based on the previous experiment, we chosenthe= 3, » = 1 classifier. Note that this
function yields an ROC score 6f9 using 114 multiply-adds, whereas the simplest possible
unconstrained approximation’ = 1, » = full needs 361 multiply-adds to achieve a ROC
score of only0.83 (cf. Figure 2). In particular, if the threshold of the firsage is set to
yield a hit rate 005% on the validation set, scanning the MIT+CMU set (130 ima§6g3,
faces) withm’ = 3, r = 1 discards91.5% of the false positives, whereas theé = 1,

r = full can only reject0.2%. At the same time, when scanning20 x 240 imagé, the

3For multi-scale processing the detectors are evaluatechamage pyramid with 12 different
scales using a scale decay of 0.75. This amounts to scand@ih& patches for 320 x 240 image.
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Figure 2: Effect of the rank parameteon classification accuracies. The left plots shows
the ROC score of the rank deficient RSV approximations (cftiSe 4) for varying set sizes
(m’ =1...32, 0n alogarithmic scale) and ranks=£ 1...3). Additionally, the solid line
shows the accuracy of the RSVs without rank constraint (€tiSn 2), here denoted by
r = full. The right plot shows the same four curves, but plotted agaire number of
operations needed for the evaluation of the correspondinggidn function when scanning
large images (i.en’ - r - (h + w) with h = w = 19), also on a logarithmic scale.

three separable convolutions plus nonlinearity reqiras, whereas the single, full kernel
evaluation take208ms on a Pentium 4 with 2.8 GHz. Moreover, for the unconstdhine
cascade to catch up in terms of accuracy, the (at least= 2, r = full classifier (also
with an ROC score of roughl§.9) should be applied afterwards, requiring anoth&r:

2 % 208 ms &~ 125ms.

The subsequent stages of our system consist of unconstiaiié approximations of size
m' = 4,8,16,32, respectively. These sizes were chosen such that the nuwhiiese
positives roughly halves after each stage, while the nurabeorrect detections remains
close t095% on the validation set (with the decision thresholds adjlistecordingly). To
eliminate redundant detections, we combine overlappitectens via averaging of posi-
tion and size if they are closer than 5 times the estimated patch size. This system yields
93.1% correct detections an@034% false positives on the MIT+CMU set. The current
system was incorporated into a demo application (Figur&®) optimal performance, we
re-compiled our system using the Intel compiler (ICC). Thelication now classifies a
320x240 image withirs4ms (vs.238ms with full rank RSVs only) on a 2.8 GHz PC. To
further reduce the number of false positives, additionat&twapped (as in [5]) stages need
to be added to the cascade. Note that this will not signifigaftect the speed of our sys-
tem (currentlyl4 frames per second) sin€e034% false positives amounts to merely 47
patches to be processed by subsequent classifiers.

6 Discussion

We have presented a new reduced set method for SVMs in imageg®ing, which cre-

ates sparse kernel expansions that can be evaluated vialslepfilters. To this end, the

user-defined rank (the number of separable filters into wittiehRSVs are decomposed)
provides a mechanism to control the tradeoff between acgwad speed of the resulting
approximation. Our experiments show that for face detactibe use of rank deficient
RSVs leads to a significant speedup without losing accurBepecially when rough ap-
proximations are required, our method gives superior tesa@mpared to the existing re-



Figure 3: A sample output from our demonstra-
tion system (running at 14 frames per second).
In this implementation, we reduced the number
of false positives by adjusting the threshold of
the final classifier. Although this reduces the
number of detections as well, the results are still
satisfactory. This is probably due to the fact that
the MIT+CMU set contains several images of
very low quality that are not likely to occur in
our setting, using a good USB camera.

duced set methods since it allows for a finer granularity Wwhscvital in cascade-based
detection systems. Another property of our approach islgityp At run-time, rank defi-
cient RSVs can be used together with unconstrained RSVs ®uSivig the same canonical
image representation. As a result, the required changegsting code, such as in [5], are
small. In addition, our approach allows the use of off-thelsimage processing libraries
for separable convolutions. Since such operations aretgis@ image processing, there
exist many (often highly optimized) implementations. Hinahe method can well be used
to train a neural network, i.e. to go directly from the traigidata to a sparse, separable
function as opposed to taking the SVM ’detour’. A comparisdrihat approach to the
present one, however, remains to be done.
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