
Center-surround patterns emerge as optimal predictors
for human saccade targets

Max Planck Institute for Biological Cybernetics,
Empirical Inference Department,

Tübingen, GermanyWolf Kienzle

Max Planck Institute for Biological Cybernetics,
Empirical Inference Department,

Tübingen, Germany, &
University of Applied Sciences, Cognitive Systems Group,

Konstanz, GermanyMatthias O. Franz

Max Planck Institute for Biological Cybernetics,
Empirical Inference Department,

Tübingen, GermanyBernhard Schölkopf

Max Planck Institute for Biological Cybernetics,
Empirical Inference Department, Tübingen, Germany,

Technical University of Berlin,
Modelling of Cognitive Processes Group,

Berlin, Germany, &
Bernstein Center for Computational Neuroscience,

Berlin, GermanyFelix A. Wichmann

The human visual system is foveated, that is, outside the central visual field resolution and acuity drop rapidly.
Nonetheless much of a visual scene is perceived after only a few saccadic eye movements, suggesting an effective
strategy for selecting saccade targets. It has been known for some time that local image structure at saccade targets
influences the selection process. However, the question of what the most relevant visual features are is still under debate.
Here we show that center-surround patterns emerge as the optimal solution for predicting saccade targets from their local
image structure. The resulting model, a one-layer feed-forward network, is surprisingly simple compared to previously
suggested models which assume much more complex computations such as multi-scale processing and multiple feature
channels. Nevertheless, our model is equally predictive. Furthermore, our findings are consistent with neurophysiological
hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought
previously.
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Introduction

The human visual system scans the world by directing
the center of gaze from one location to another via rapid
eye movements, called saccades. In the period between
saccades the direction of gaze is held fixed for a few
hundred milliseconds (fixations). It is principally during
fixations that information enters the visual system
(Matin, 1974). Remarkably, however, we constantly per-
ceive a coherent, high-resolution scene despite the visual
acuity of the eye quickly decreasing away from the center

of gaze. This suggests that saccade targets are not chosen
at random, but according to an effective strategy.
It has been known for a long time that cognitive, or top-

down effects, such as the observer’s task, thoughts, or
intentions have an effect on saccadic selection (Hopfinger,
Buonocore, &Mangun, 2000; Oliva, Torralba, Castelhano,
& Henderson, 2003; Yarbus, 1967). Another well-known
fact is that the incoming image itself can have properties
that attract the saccadic system. As an example, a bright
spot in a dark scene is likely to attract our attention,
regardless of top-down effects. Today there is a consid-
erable amount of evidence that such bottom-up cues
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influence saccadic targeting (Baddeley & Tatler, 2006;
Bruce & Tsotsos, 2006; Krieger, Rentschler, Hauske,
Schill, & Zetzsche, 2000; Li, 2002; Mannan, Ruddock, &
Wooding, 1997; Parkhurst, Law, & Niebur, 2002; Parkhurst
& Niebur, 2003; Privitera & Stark, 2000; Raj, Geisler,
Frazor, & Bovik, 2005; Rajashekar, Cormack, Bovik, &
Geisler, 2002; Reinagel & Zador, 1999; Renninger,
Coughlan, Verghese, & Malik, 2005; Tatler, Baddeley,
& Gilchrist, 2005), for reviews see Henderson (2003), Itti
and Koch (2001), and Krauzlis, Liston, and Carello (2004).
A prominent study is that of Reinagel and Zador (1999),
who showed that the local contrast (i.e., the local standard
deviation of intensities) tends to be larger at the center of
gaze. Krieger et al. (2000) found regularities also in higher
order statistics. Many studies established connections
to the underlying physiology by assuming biologically
plausible image filters (Baddeley & Tatler, 2006; Bruce &
Tsotsos, 2006; Itti, Koch, & Niebur, 1998; Tatler et al.,
2005) and using statistical tests to prove their relevance.
Perhaps the most popular biologically inspired model is
due to Itti et al. (1998), which combines contrast, orien-
tation, and color features, as suggested in Koch and
Ullman (1985). Parkhurst et al. (2002) tested this model
against real eye movement data and found that it is
capable of explaining a significant amount of the variance
in fixation locations.
Much of the ongoing work in the field is devoted to

improving the predictivity of existing models by extend-
ing them in various directions, e.g., by modeling the
influence of global scene statistics (Harel, Koch, &
Perona, 2007; Peters, Iyer, Itti, & Koch, 2005; Torralba,
Oliva, Castelhano, & Henderson, 2006). Unfortunately,
despite the variety of existing modelsVor perhaps
because of itVa precise description of the typical spatial
structure of saccade targets remains elusive. This is partly
due to the fact that most plausible image features are
correlated with each other (in particular, with contrast),
and so, with enough test examples, many different models
can be shown to have a significant effect on saccadic
targeting.
In this work we derive a description of typical saccade

targets directly from eye movement data via system
identification. Unlike previous studies where the relevant
structure is determined manuallyVe.g. selecting Gabors
as visual filtersVwe do not make any assumptions in this
regard, but numerically infer them from data. This
approach is more common in neurophysiology when
modeling response properties of neurons (Victor, 2005).
There, a generic model (e.g., linear or quadratic) is fitted
to experimental spike data such that it describes the
stimulus-response relationship of the neuron. Insight about
the neuron’s functionality is gained by analyzing the fitted
model in terms of relevant input patterns. Here, we apply
the same idea but to saccades instead of spikes: we model
the relationship between spatial intensity patterns in
natural images and the response of the saccadic system.
This allows us to identify the most relevant image patterns

that guide the bottom-up component of the saccadic
selection system, which we refer to here as perceptive
fields. Perceptive fields are analogous to receptive fields
but at the psychophysical level (Jung & Spillmann, 1970;
Neri & Levi, 2006; Wichmann, Graf, Simoncelli,
Bülthoff, & Schölkopf, 2005).
The main result of this work is to show that the

perceptive fields of the saccadic targeting system are
simple center-surround patterns of a single spatial scale,
and that a very simple model with these receptive fields
has the same predictive power as much more complicated
models. Besides the simplicity of our model, a substantial
difference from previous results lies in the fact that our
model emerges from data through numerical optimization,
instead of being designed by hand. Thus, it provides for
the first time a view of the saccadic selection system
which is unbiased with respect to design choices that are
otherwise unavoidable.

Methods

Analysis overview

The aim of this work is to find the functional relation-
ship between the appearance of a local image region and
its visual saliency, i.e., how likely it is to become the
target of a saccadic eye movement during free-viewing.
The basic idea of our approach to this problem is that of
fitting a linear model f(x) = wBx to eye movement data, i.e.,
such that f(x) describes the visual saliency of a local image
region whose visual appearance is represented by a
vector x Z Rn (here, x holds the pixel luminances from an
image region). The fitted weights w represent exactly the
optimal stimulus of the model (here, a luminance pattern),
and can therefore be interpreted as the characteristic visual
pattern that drives visual saliency.
This analysis is more generally known as system

identification and is commonly used for identifying bio-
logical systems (Victor, 2005), e.g., neuronal receptive
fields (Jones & Palmer, 1987) (“reverse correlation”). It is
also used in psychophysics, under the name of “classi-
fication images.” For example, Rajashekar, Bovik, and
Cormack (2006) used this approach to identify structural
cues that human observers use to perform visual search,
e.g., they had a subject search for a horizontal edge in noise
and found that the classification image (the weights w of a
fitted linear model) is also a horizontal edge. The authors
then concluded that during the search, the saccadic
targeting system was driven by the identified edge pattern.
In this work we want to arrive at a similar, but more
general result, namely we want to identify the character-
istic luminance patterns for a free-viewing task on natural
images. In other words, we want to find characteristic
patterns that drive bottom-up visual saliency.
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Unfortunately, unlike for specific search tasks as in
Rajashekar et al. (2006), a linear model is not appropriate
for describing visual saliency. One reason for this is that
linear models cannot describe systems that yield a positive
response to both a pattern x0 and to its inverse jx0, since
f(x0) = jf(jx0). This property is extremely restrictive. As
an example, if we merely extend the target in the visual
search task from Rajashekar et al. (2006) from a
horizontal edge to that same edge with both polarities
allowed (i.e., also upside down), a linear model would not
be valid anymore, since its output on a horizontal edge is
exactly the negative of the output on the same edge upside
down. In practice, if a linear model is fitted to such data,
the complementary data samples will essentially cancel
each other, resulting in an unstructured, or at least very
noisy classification image.
Here, we therefore use a nonlinear generalization of the

linear approach: we fit a nonparametric model f(x) =
~!i8i(x), where x is an image patch and 8i are nonlinear
basis functions. In this model, the fitted parameters are the
weights !i. An advantage of this approach to nonlinearity
is that the model is still linear in the fitted parameters (!i),
and yet implements a nonlinear relationship through its
nonlinear basis functions 8i(x).

In this work we use Gaussian radial basis functions 8i(x) =
exp(j+ªªxi j xªª2), centered at examples of recorded
salient and non-salient image regions xi. In this case, our
nonparametric model takes the form of a support vector
machine (Schölkopf & Smola, 2002). This particular
choice of nonlinearity brings two advantages. First, the
resulting model is very general in the sense that it is able
to capture stimulus-response relationships of any order.
Second, Gaussian radial basis functions satisfy a positive
definiteness property (see Extracting perceptive fields
section), which means that the resulting nonlinear analysis
is indeed a straightforward generalization of the traditional
linear approach. More precisely, we show below that due
to this property the concept of the optimal stimulus being
just the weight vector w in a dot-product with the input
(wBx) directly translates to the nonlinear case.
The proposed approach is summarized by the cartoon in

Figure 1: to see this, consider the space of image patches,
i.e. the vector space in which each dimension corresponds
to a pixel value (luminance) within an image patch. For
illustration purposes, we assume that there are only two
pixels in a patch, and that the image plane is the space of
image patches. Now, the dots in panel (a) denote the
recorded examples xi of salient (white) and non-salient

Figure 1. A cartoon illustrating the computation of nonlinear perceptive fields. (a) denotes saccade targets (white dots) and non-targets
(black dots) in the space of image patches (here, the image plane). (b) shows the fitted kernel model (black lines are level curves, brighter
areas denote higher target probability), a weighted sum of Gaussian radial basis functions, centered at the data points. (c) the perceptive
fields are the maximally excitatory and inhibitory stimuli (red plus signs). They are found by gradient search (red zigzag line). (d) the
saliency model: a Gaussian radial basis function is placed at each of the four perceptive fields, resulting in the function represented by the
red level curves.
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(black) image regions, i.e. two-dimensional vectors that
describe the local luminance values at locations in natural
scenes where people did (white) or did not (black) look in
our experiment. The initial step of our analysis consists of
fitting a nonlinear real-valued function f(x) to the data,
such that f(x) takes on larger values if x is salient, and
smaller (negative) values otherwise. In this paper, we use
a nonparametric model for f taking the form of a sum of
weighted Gaussian bumps 8i(x) = exp(j+ªªxi j xªª2).
The fitted model is illustrated in panel (b) by the black
level curves and shaded background. Note that there are
four extremal points in this example (denoted by the red
plus signs in panel (c)), namely two maxima and two
minima. The image patches at these locations correspond
to the optimal stimuli of the fitted model f (and hopefully
of the underlying system as well), since it is at these
locations where the value of f, the saliency, is either
extremely high or low. The key step in our analysis is that
from the fitted nonlinear model f, the optimal stimuli can
be determined via gradient search (red zigzag line). In this
paper we refer to the optimal stimuli as the nonlinear
perceptive fields, stressing the fact that these luminance
patterns are similar to receptive fields, but stem from a
psychophysical experiment, not from neurophysiological
recordings. The cartoon here is realistic in the sense that f
has two maxima and two minima. This is also true for our
actual data set, the four perceptive fields are shown in
Figure 3. Our analysis concludes with the proposition of a
simple bottom-up saliency model based on this result
(Figure 4), i.e., a radial basis function network with only
four basis functions, centered on the perceptive fields (red
level curves in Figure 1, panel d). We show that this simple
model, being purely data-driven, is as predictive as the
more complex models based on “biologically plausible”
intuition.

Eye movement recording

A database of 200 natural images was recorded using a
12 bit Canon EOS 1Ds Digital SLR and a number of
professional L-grade Canon lenses (24–70/f2.8, 70–200/
f2.8, 135/f2) in several zoos in Southern Germany
(Supplementary Figure 1). To minimize the photogra-
pher’s bias for scene selection, we took 1626 images and
then randomly selected a subset of 200 of them. To
remove the centering bias, scenes were photographed at
very high resolution (4064 ! 2704) and then cropped to
1024 ! 768, centered at a random position. The images
were then converted to 8 bit grayscale. Each of our 14
subjects viewed all 200 scenes (4 sessions with 50 trials)
on a linearized 19W Iiyama CRT at 60 cm distance (1024 !
768 full screen resolution, 100 Hz refresh rate). All
subjects were paid for the participation and were naive
with respect to the purpose of our study. The order of
presentation was different and random for each subject.
Each trial started with a fixation cross at a random

location on the screen on a gray background at the mean
intensity of all images. The cross was shown for a random
duration, drawn from a Gaussian distribution with a mean
of 3 s and a standard deviation of 1 s, however with the
restriction that no duration was less than 1 s. Then the
scene was displayed for a random duration (mean 2 s,
standard deviation 0.5 s, minimum 1 s). Subjects were
instructed to merely “look around in the scene” while
keeping the head still; subjects’ heads were stabilized
using a chin rest. Eye movements were recorded with an
Eyelink II video eye-tracker using pupil tracking at 250 Hz,
calibrated with the standard software (9 point grid). All
subjects had calibration errors below 0.5 degrees with an
estimated average measurement error of 0.40 (T0.14 SD)
degrees. We classified all eye movements with a speed
above 26.8 degrees per second (93 pixels per sample) as
saccades. Saccade targets were extracted from the images
at the median position of consecutive scene samples
between two saccades.
We took great care to monitor and compensate for drift in

the recording equipment during the experiment by display-
ing an 4 ! 3 calibration grid at the start of each session as
well as after every 10 trials. Subjects were instructed to
fixate the calibration grid. In a postprocessing step, a
separate affine transformation compensating for measure-
ment errors was fit to the grid data using least squares, and
then linearly interpolated over the entire session. The
calibration data were also used to compute leave-one-out
estimates of the measurement error which was linearly
interpolated between two calibration steps. All trials with
an estimated leave-one-out error above 1.0 deg were
discarded, along with trials where the subject had missed
the initial fixation target or the calibration grid. Saccade
targets closer than 0.5 degrees to the image boundary were
discarded, too, to avoid problems in the subsequent patch
extraction (Figure 2a). This yielded 18,065 fixations with
an estimated leave-one-out error of 0.54 (T0.19 SD)
degrees. The mean saccade length was 7.0 (T5.3 SD)
degrees. Fixations lasted for 250 (T121 SD) milliseconds.

Non-target locations

An equal number (18,065) of non-target locations was
generated using the actual target locations, but from
different images. This is a common procedure in the eye
movement literature (Reinagel & Zador, 1999) and ensures
that the locations of targets and non-targets are identically
distributed. In this way learning artifacts due to possible
variations in the local statistics of different image regions
are prevented. This is illustrated in Figure 2b.

Patch extraction

At each target and non-target location, we extracted a
13 ! 13 image patch and stored it in a 169-dimensional
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vector xi. A label variable yi Z {1, j1} was associated
with every patch, denoting target or non-target, respectively.
The size of the local neighborhood is a crucial

parameter to our analysis. If it is chosen smaller than the
relevant feature size the resulting model will fail. If it is
too large, the number of dimensions which carry relevant
structure will be small compared to the noninformative,
noisy features. While some studies use patch sizes related
to the 2–3 degree size of the fovea, e.g., Reinagel and
Zador (1999), we instead optimized the patch size directly
within the fitting framework. The rationale behind this is
that saliency may be optimally predicted by a pattern that
extends over much larger (or smaller) areas than the
fovea. For example, it is not clear how much spatial
context (e.g. dark background) a fovea-sized bright spot
may need to be regarded as salient by the visual system.
To this end, we built 11 complete data sets with different
patch sizes, covering the full range of possibly reasonable
patch sizes, i.e. 11 different sizes, equally spaced on a
logarithmic scale ranging between 0.47 degrees (corre-
sponding to 13 ! 13 pixels at full resolution, and roughly
equal to the standard deviation of the measurement noise)
and 27 degrees (the height of the screen).

Another important parameter in our method is the
spatial resolution of the image patches, as it places a
lower bound on the granularity of the identified structure.
If spatial resolution is chosen too low, the analysis might
miss small relevant features. If chosen too high, the
amount of data will not be sufficient to estimate the
perceptive fields robustly. Here, we chose a spatial
resolution of 13 ! 13 pixels, regardless of the patch size.
13 ! 13 patches were extracted by subsampling the
image, using a Gaussian low pass filter to reduce aliasing
effects. The 13 ! 13 choice is reasonable as we confirmed
in a number of control experiments: after the optimal
patch size of 5.4 degrees was found (as described in the
next section), we generated additional control data sets, all
with a patch size of 5.4 degrees, but at higher resolutions
up to 41 ! 41. We found that the perceptive fields and the
predictivity of the model did not change at resolutions
above 13 ! 13, suggesting that high frequency informa-
tion above the Nyquist limit of the 13 ! 13 patch (1.2 cpd)
are not necessary for predicting visual saliency.
We subtracted the mean intensity from each patch to

reduce irrelevant variance in the data. This amounts to the
assumption that the DC component of an image region

Figure 2. Extraction of local image patches from recorded eye movements. (a) The dots denote fixation locations from all 14 subjects on a
natural image. Each location yielded an entry in our database of target patches, shown to the right. (b) Non-target patches were extracted
from the same image, but using fixation locations that were recorded on a different, unrelated scene (small image). Note how contrast is
visibly increased in the target patches. Differences in the spatial structure, however, are hardly noticeable.
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does not contribute to its visual saliency. We verified in a
control experiment that the models’ performance indeed
drops slightly (but not significantly) when the mean is not
subtracted. In that case, the obtained perceptive fields are
identical. As expected, however, their DC component is
not zero, but very close to the average DC component
over the entire data set.

Data splits

Dependencies between the local image structure at two
different locations in the data set (regardless whether
target or non-target) can lead to artifacts or over-
estimation of our model’s predictivity. There are two
main sources of such dependencies. First, two locations in
the same image may be closer than half the patch size, i.e.,
the extracted patches overlap. Second, two target locations
in the same image may be generated by the same subject
within one trial.
The following two measures were taken to minimize

such dependencies. First, the data (targets and non-targets)
were divided into a training (two thirds) and a test set (one
third). This was done such that both sets contained data
from all 200 images, but never from the same subject on
the same image. Second, whenever the model’s predictiv-
ity was estimated, we used 8-fold cross-validation esti-
mates with the folds split image-wise, i.e., such that no
validation or test fold contained any data from images in
the corresponding training fold.

Fitting the nonparametric model

A model

f ðxÞ ¼
Xm

i¼1

!iexpðj+Ýxi j xÝ2Þ; ð1Þ

was fitted to the training split of the data (m = 24,370
patches) using the support vector algorithm (Schölkopf &
Smola, 2002), which minimizes the regularized risk

R fð Þ ¼
Xm

i¼1

max 0; 1jyif xið Þð Þ þ 1

2
ÝfÝ2; ð2Þ

with respect to the weights !i. The first term in Equation 2
denotes the data fit. It is zero, indicating a perfect fit,
whenever yif(xi) Q 1. It attempts to push f(xi) to values Q1
if yi = 1, and to values ej1 if yi = j1. If successful, this
will result in a margin of separation between the two
classes, with f taking values in [j1, 1]. The number of
points falling inside this margin will depend on the
strength of the regularization, measured by ªªfªª2. The
smaller ªªfªª2, the smoother the solution f. The tradeoff

between data fit and smoothness is controlled by the
parameter 1. The model is nonparametric, and its descrip-
tive power grows with m, the number of data points it is
fitted to. In fact, with the choice of Gaussian radial basis
functions (Equation 1), it is sufficiently flexible to fit any
smooth stimulus-response relationship in the data (Steinwart,
2001). Figures 1a and 1b illustrate a fitted model with
Gaussian radial basis functions.
While it is in principle possible to use a range of different

regularizers ªªfªª2, a convenient choice is the one employed
by support vector machines. By means of a nonlinear
mapping induced by the kernel exp(j+ªªxi j xªª2), it
represents the function f as a vector in a high-dimensional
space, and then uses the squared length of that vector as a
regularizer. Moreover, the decision function in that space is
linear, and the problem of finding it can be reduced to a so-
called quadratic program. A support vector machines is but
one example of a kernel method, a class of methods which
have recently also gained popularity as models in
psychology (Jäkel, Schölkopf, & Wichmann, 2007). They
all deal with nonlinearity by employing kernels that
correspond to dot products in high-dimensional spaces,
allowing for the construction of geometric algorithms in
such spaces that correspond to nonlinear methods in the
input domain.
In addition to the weights !i, there are three design

parameters that have to be set: + , 1, and the patch size d.
These were determined by maximizing cross-validation
estimates of the model’s accuracy, using an eight fold,
images-wise split of the training set. We conducted an
exhaustive search on an 11 ! 9 ! 13 grid with the grid
points equally spaced on a log scale such that d = 0.47,I,
27 degrees, + = 5 I 10j5I, 5 I 103, and 1 = 10j3,I, 104,
resulting in the optimal values 1 = 1, A = 1, d = 5.4 degrees.
Performance was relatively stable with respect to changes
of d in the range from 2.5 to 8.1 degrees, and changes of 1
and + up to a factor of 3 and 10, respectively. Note that
finding the optimal weights !i for a given set of the three
design parameters is a convex problem and has therefore no
local minima. As a result, an exhaustive grid search
optimizes all parameters in our model globally and jointly.

Extracting perceptive fields

The fitting method described above belongs to the
family of kernel methods. In that framework the type of
basis functions 8i(x) = exp(j+ªªxi j xªª2) is referred to
as the kernel k(xi, x). An essential feature of kernel
methods is that suitable kernelsVsuch as the Gaussian
radial basis function employed in our modelVmust satisfy
a positive definiteness property (Schölkopf & Smola,
2002), in which case it can be shown that

kðxi;xÞ ¼ 6ðxiÞ;6ðxÞ
! "

; ð3Þ
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i.e., the kernel corresponds to a dot product in some
implicit feature space F , induced by a feature mapping 6.
6 is implicitly defined by the kernel and is usually
nonlinear. By virtue of Equation 3, however, a standard
linear fitting algorithm can be used, such as ridge
regression, logistic regression, Fisher discriminant, or
support vector machines. In effect, while the resulting
kernel model f(x) = ~i=1

m !ik(xi, x) is nonlinear in its input
x, the theoretical and practical benefits of linear methods
are retained.
Here, we show that the same property also provides a

straightforward nonlinear generalization of linear percep-
tive (or receptive) field analysis. The proposed approach
is based on the preimage problem in kernel methods
(Scholkopf et al., 1999). Due to Equation 3, the fitted
kernel model f(x) is linear in the implied feature space F ,

f
#
x
$
¼ <;6ðxÞh i; ð4Þ

where < = ~i=1
m !i6(xi). Thus, in F , < is the linear

perceptive field of f. In order to visualize <, we exploit the
fact that the feature mapping 6 maps image patches to
vectors in F . The goal is to invert the feature mapping at
<, which yields an image patch z = 6j1(<) correspond-
ing to the receptive field. Since not every vector in F has
such a preimage in the space of image patches, z is
defined as the patch whose image in F is closest to <, i.e.,
z = arg minxªª< j 6(x)ªª2. In case of a Gaussian radial
basis kernel this amounts to solving

z ¼ arg max
x

<;6ðxÞh i; ð5Þ

(Scholkopf et al., 1999). Interestingly, this definition of a
nonlinear perceptive field coincides with that of the
maximally excitatory stimulus, since the argmax argument
is actually just f(x) (see Equation 4). This not only provides
an alternative interpretation of z, but shows that we can
solve the optimization problem (Equation 5), without
having to compute the dot product in the (potentially high
dimensional) feature space F . By minimizing instead of
maximizing Equation 5, we find the maximally inhibitory
stimulus. In the feature space F this corresponds to the
vector which is closest to <, but points in the opposite
direction. Note that due to the nonlinear nature of 6, z is
in general not unique, i.e., there can be multiple perceptive
fields. For illustration, Figure 1c shows the optimal stimuli
as red pluses.
To compute the perceptive fields, we solved Equation 5

using the method of steepest descent/ascent (Figure 1c,
red zigzag line). Note that the f in Equation 1 defines a
smooth function, and, since the Gaussian radial basis
function is bounded, so is f, and hence all minima and
maxima exist. Initial values for the gradient search were
random patches with pixels drawn from a normal
distribution with zero mean and standard deviation 0.11,

the mean value in the training data. As mentioned above,
the result of the gradient search is not unique. Thus, in
order to find all perceptive fields, we solved the
optimization problem many times with different initial
values. This could be intractable, since f could have a
large number of extremal points. In our case, however, we
found that this was not a problem. After running the
search 1,000 times, we found only 4 distinct solutions.
This was verified by clustering the 1,000 optima using
k-means. The number of clusters k was found by
increasing k until the clusters were stable. Interestingly,
the clusters for both minima and maxima were already
highly concentrated for k = 2, i.e., within each cluster, the
average variance of a pixel was less than 0.03% of the
pixel variance of its center patch. This result did not
change if initial values were random natural patches
(standard deviation 0.11) or the training examples xi.
As an aside, note that our method can be interpreted as

“inverting a neural network.” This technique was also
used by Lehky, Sejnowski, and Desimone (1992) to
characterize neurons in the monkey striate cortex invert-
ing a multi-layer perceptron. Further system identification
methods based on neural networks can be found in Lau,
Stanley, and Dang (2002) and Prenger, Wu, David, and
Gallant (2004). The use of kernel methods for neuronal
modeling was proposed by Wu, David, and Gallant
(2006), and first steps toward perceptive field analysis in
psychophysics using kernel methods were made by
Wichmann et al. (2005).

The saliency model

The perceptive fields represent the most excitatory or
inhibitory regions in stimulus space (Figure 1c, red pluses),
the number of which is determined by the complexity of the
underlying system. Interestingly, as described in the Results
section, we found that the saccadic system can be modeled
with four perceptive fields only. Motivated by this
observation, we constructed a simple saliency model by
placing radial basis functions centered at the perceptive
fields, i.e., a simple feed-forward network

sðxÞ ¼
X4

i¼1

"i8iðxÞ; ð6Þ

with four radial basis units 8i = exp(j+ªªzi j xªª2),
centered at the patterns z1Iz4 (Figures 3a–3d). The
network weights "i were fitted by optimizing the same
objective as before (Equation 2), using the optimal values
for + , 1, and d reported above. This yielded "1 = 0.94 and
"2 = 1.70 for the excitatory units and "3 =j1.93, "4 =j1.82
for the inhibitory units. Figure 1d illustrates this procedure.
To compare our model to the model by Itti et al. (1998),

we used the publicly available Matlab code (http://www.
saliencytoolbox.net). All parameters were set to their
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default values with the following two exceptions. First, we
disabled color features, since our stimuli were grayscale
only. Second, we chose the normalization scheme “stand-
ard,” which lead to the highest predictivity among all
choices (curiously, the more recent normalization scheme,
“iterative”, performed worse, regardless of the number of
iterations). The reported ROC scores in the Results section
are averages over eight folds of the test data.

Results

Eye movement data

Eye movements of 14 human subjects were recorded
during free viewing of static grayscale natural scenes,
which were displayed on a 19-inch Iiyama CRT at 60 cm
viewing distance. Every subject viewed 200 images, each
one for on average three seconds. After each saccade, an
image patch around the targeted location in the scene was
extracted (see Methods section for details). We also
generated an equally sized control set of non-target
patches selected by using the locations of fixations in a

unrelated images. In total, 36,130 target and non-target
patches were extracted. Figure 2 shows examples of our
data set (see also Supplementary Figure 1).
As can be seen from Figure 2, target patches typically

have higher contrast than non-target patches. Averaged
over the entire data set of 200 natural scenes, the root
mean-squared (RMS) contrast (the standard deviation of
pixels in a patch) in the target patches was 1.26-fold higher
than in the non-target patches, 0.120 (T5.7 I 10j4 SEM)
versus 0.095 (T5.4 I 10j4 SEM). The relevance of RMS
contrast has been a well-known result at least since
Reinagel and Zador’s work (Reinagel & Zador, 1999). In
contrast, finding characteristic differences in the spatial
structure of the patches is a much harder problem, as
Figure 2 suggests. This difficulty does not change if the
two sets are compared in terms of their principal
components (Rajashekar et al., 2002) or their independent
components (Bell & Sejnowski, 1997; Olshausen & Field,
1996) (see Supplementary Figure 1).

Nonlinear system identification

As described above, the kernel model can have multiple
perceptive fields, both “excitatory” in the sense that

Figure 3. The four nonlinear perceptive fields revealed by our analysis. They represent the image structure which is most (a, b) or least
(c, d) likely to become a saccade target. To the right of the two excitatory perceptive fields (a, b), their radial profiles (averaged over all
directions) are shown. They both have center-surround structure. The patterns that do not draw saccades (“inhibitory”) (c, d) are plotted
together with their average horizontal and vertical profiles. The signal-to-noise ratio in the inhibitory patches is not as high as in the
excitatory patches (note the different scales on the vertical axes), making the latter more difficult to interpret. The profiles suggest low-
frequency, ramp-like structures and may allow shadows to be ignored.
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eye-movements are more likely to be directed toward
image patches resembling the excitatory perceptive field
and “inhibitory” in the sense that eye-movements are less
likely to be directed toward image patches resembling the
inhibitory perceptive field. The number of which is
determined by the data, i.e., the saccadic selection
process. Here, the analysis yielded two excitatory and
two inhibitory perceptive fields, which are depicted in
Figure 3.
The excitatory perceptive fields (Figures 3a and 3b) have

a clear center-surround structure, the inhibitory perceptive
fields (Figures 3c and 3d) show a very flat, ramp-like
structure. This indicates that the saccadic selection system
is maximally attracted by center-surround patterns, while
regions with very slowly varying intensity have few
saccades to them. The spatial extent of center regions in
the excitatory patterns was estimated by fitting Difference-
of-Gaussians using the parameterization from Croner and
Kaplan (1995). The on-center pattern led to a center
diameter of 1.40 degrees, for the off-center pattern we
found 1.42 degreesVa near perfect on-off-center pair.
Existing hypotheses on saccadic selection and bottom-

up saliency implicate orientated excitatory features such
as Gabor filters (Baddeley & Tatler, 2006; Bruce &
Tsotsos, 2006; Itti et al., 1998; Mannan, Ruddock, &
Wooding, 1996). Our perceptive fields are not edge-like,
however, but center-surround: in terms of information
processing in the mammalian visual systems center-
surround receptive fields are typically found earlier, i.e.
in the retina, the LGN and mid-brain structures such as the
superior colliculus (SC), whereas orientated receptive
fields are predominantly found cortically.

Control experiments

To ensure that the center-surround patterns and no
artifacts emerge from the data we designed two control
experiments.
First, we checked whether the center-surround patterns

can emerge trivially, only due to the uncertainty in the
gaze position measurements, e.g. by a subtle blurring or
averaging effect. In particular, we wanted to know if our
center-surround result can be generated from qualitatively
different perceptive fields, such as orientated edges. In
other words, we wanted to know if our result can be
generated blurred version of a very different true percep-
tive field. Thus, we designed a control experiment which
is exactly the same analysis method, only that the data are
not recorded from human subjects, but simulated using a
known perceptive field (Supplementary Figure 3): we
generated two synthetic eye movement data sets with known
underlying features, namely a contrast (squared DoG)
filter and an edge (squared Gaussian derivative) filter,
respectively. The simulated gaze positions were corrupted
with random “measurement” noise, and the resulting
perceptive fields were computed. This experiment was

repeated for different detector scales and noise levels
ranging from zero to about five times the standard
deviation of the estimated true measurement noise, which
was 0.54 (T0.19 SD) degrees. In addition, different spatial
scales for the true features were tested. We found that the
perceptive fields either showed the true underlying
structure, or no structure at all if the “measurement” noise
was too high (above roughly twice the estimated true
measurement noise level). This indicates that our method
does not generate spurious structure, regardless of the
level of measurement uncertainty or the scale of the true
feature. In particular, the perceptive fields computed from
edge data were never center-surround or vice versa (see
Supplementary Figure 3). In addition, this experiment
shows that the frequency components of the center-
surround patterns in Figure 3 are not significantly affected
by the measurement noise: while the uncertainty in the
position measurements (standard deviation 0.4 deg) suggests
that no frequencies above about 1 cpd can be resolved, the
passband of our center-surround patches is one order of
magnitude below this limit (around 0.15 cpd), and hence
unlikely to be influenced by this effect. Furthermore, the
center surround perceptive fields Supplementary Figure 3
(8% feature size, 100% noise) have a passband at roughly
the double frequency (0.3 cpd), and are still correctly
identified by our method.
In a second control experiment, we checked for a

possible bias due to the choice of our image database (cf.
Figure 2). While natural scenes are an arguably reasonable
choice, it is unclear whether the center-surround structure
of our perceptive fields changes for a different stimulus
set. To test this hypothesis, we recorded a second set of
(real) eye movements using stimuli which contained
mostly man-made objects, such as office scenes. This
yielded 19,036 saccade targets. Here, the mean saccade
length was 6.9 (T5.6 SD) degrees, fixations lasted for 243
(T118 SD) milliseconds on average. Reassuringly, this
also yielded only two excitatory perceptive fields with
center-surround structure (on- and off-center), despite the
fact that the local structure in that data set is governed by
somewhat different features, e.g. long and sharp edges
(see Supplementary Figure 4).
Thus we conclude that the center-surround structure of

the perceptive fields in Figures 3a and 3b indeed reflects
the behavior of the visual system, and is not an artifact
due to measurement error, bias in our method, or the
particular choice of stimuli presented to the subjects.

A simple saliency model

Motivated by the above results, we constructed a simple
computational model for visual saliency. Although the
term saliency was originally introduced for allocation of
both covert and overt visual attention (Koch & Ullman,
1985), it has become common practice to use it as a
quantity monotonically related to the “probability of

Journal of Vision (2009) 9(5):7, 1–15 Kienzle, Franz, Schölkopf, & Wichmann 9

http://www.journalofvision.org/lookup/suppl/doi:10.1167/9.5.7/-/DCSupplementaries/9.5.7_supplement.html
http://www.journalofvision.org/lookup/suppl/doi:10.1167/9.5.7/-/DCSupplementaries/9.5.7_supplement.html
http://www.journalofvision.org/lookup/suppl/doi:10.1167/9.5.7/-/DCSupplementaries/9.5.7_supplement.html
http://www.journalofvision.org/lookup/suppl/doi:10.1167/9.5.7/-/DCSupplementaries/9.5.7_supplement.html


looking somewhere” (Henderson, 2003; Itti & Koch,
2001). It is in that sense that we use the term here.
The proposed saliency model is shown in Figure 4. It

consists of a simple feed-forward network with four radial
basis units 8i = exp(j+ªªzi j xªª2), centered at the
perceptive field patterns z1Iz4 (Figures 3a–3d). The
weights "i were fit to the data to maximize predictivity
(see Methods section).
Note that this is not a pure linear-nonlinear-linear

model. The perceptive fields inside the radial basis
functions 8i(x) are not only linear filters corresponding
to relevant subspaces. Rather, they define excitatory ("i 9
0) or inhibitory ("i G 0) regions in the space of image
patches. A connection to linear-nonlinear-linear models
can be made, however, by expanding the square in the
radial basis function ªªzi j xªª2 = zi

Bzi + xBx j 2zi
B x.

Here, zi
Bzi is a constant, xBx is the signal energy of the

input patch x, and jzi
B x is a linear filter. Thus, we can

write the radial basis units as exp(aizi
Bx + b), with a

positive constant ai and an offset b which depends only on
the signal energy (b acts akin to a contrast gain-control
mechanism trading-off pure contrast and local image
structure). In particular, for any fixed energy, the
perceptive fields in our model indeed behave like linear
filters, followed by an exponential nonlinearity.
To assess the predictivity of this model, we used a set of

200 independent test images, divided into 8 sets of 25 to
compute error bars. A standard measure for the predictiv-
ity of saliency models is the Wilcoxon-Mann-Whitney
statistic (the probability that a randomly chosen target
patch receives higher saliency than a randomly chosen

negative one), which for our model was 0.64 (T0.011 SEM).
We also tested the saliency model by Itti et al. (1998)
on our data set and found its performance to be 0.62
(T0.022 SEM). Furthermore, tested on the office stimuli of
our second control experiment, our modelVwhile trained
on natural imagesVstill led to 0.62 (T0.010 SEM),
whereas the model by Itti et al. yielded 0.57 (T0.024
SEM). Two important conclusions can be drawn from
these results: first, our model is at least as predictive on
natural scenes as the best existing models. Second, even if
we disregard the admittedly not dramatic differences in
predictivity, the models differ substantially in terms of
complexity. The model by Itti et al. implements contrast
and orientation features at multiple scales with lateral
inhibition, while our model uses merely four features at a
single scale within a simple feed-forward network. The
good performance of our model on office scenes, on which
the model was not trained, indicates that our model does
not overfit. Rather, due to its simplicity, it seems to be
more robust than Itti et al.’s model, yielding stable results
if the stimulus type varies.
The above results are perhaps not surprising, since also

in the model by Itti et al., the most stable feature seems to
be luminance contrast, computed with Difference-
of-Gaussian operators: Parkhurst et al. (2002) found that
for natural scenes, luminance contrast it is more predictive
than color or edge contrast. Also, Itti (2006) reported that
under increased simulation realism (e.g., foveation, wide
screen, etc.), the predictivity of the color and orientation
channels degraded, whereas contrast remained the most
stable feature in his model. This is consistent with our
proposition that the most basic bottom-up feature for
saccadic selection is one-scale center-surround.

Model behavior

In order to characterize the behavior of our model in a
realistic environment, we illustrate its response to actual
natural image patches. To this end, we randomly collected
50,000 patches from randomly chosen natural images and
sorted them according to the saliency output predicted by
our model s(x). The most and least salient 100 patches are
shown in Figure 5. Patches in the left panel (a) are the
most salient, those in shown in the center panel (b) are the
least salient ones.
We should like to stress two observations: First, there is

a visual increase in contrast toward the salient patches,
which is in agreement with the well-known result that
local contrast is an essential relevant feature (Reinagel &
Zador, 1999). Indeed, the average RMS contrast was
0.136 (T0.002 SEM) in the 100 most salient patches and
0.044 (T0.001 SEM) in the 100 least salient patches. The
second observation is that RMS contrast alone should not
be equated with visual saliency. To illustrate this, the 100
least salient patches from panel (b) are plotted again in the
right panel (c) of Figure 5, this time with their RMS

Figure 4. The proposed saliency model. It computes the visual
saliency of an image location based on local image structure. The
input is linearly filtered by the four kernels shown on the bottom
(these are the perceptive fields from Figure 3), and the outputs
are fed into an exponential point nonlinearity. The local signal
energy, xBx, inhibits the inputs of the nonlinearities, which results
in a tradeoff between pure contrast and structural cues (see also
Figure 5). The nonlinearly transformed signals are weighted
according to their excitatory or inhibitory nature and summed into
a saliency value s(x).
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contrast adjusted to that of the most salient patches in
panel (a). This shows that the structure of the most salient
patches tends to be of medium spatial frequency and
localized at the patch centers. The structure of the least
salient stimuli, on the other hand, is more ramp-like, i.e.,
not localized at the centers, but at the edges or corners of
the patches, and has stronger low-frequency components,
as shown in panel (d). Note that this behavior is not
surprising, but reflects the structural differences between
the excitatory and inhibitory perceptive fields in the model
(Figure 4). In summary, we arrive at a similar conclusion
as Krieger et al. (2000), who analyzed higher-order
structure in saccade targets. They concluded that “the
saccadic selection system avoids image regions which are

dominated by a single orientated structure. Instead it
selects regions containing different orientations, like
occlusions, corners, etc.” (p. 208, first paragraph).

Discussion

A fair comparison between saliency models is difficult
to achieve for several reasons. First, there are strong
correlations between plausible image features. For exam-
ple, most conceivable image features are correlated with
RMS contrast: since this quantity is increased at saccade

Figure 5. Image patches sorted by visual saliency. This figure was generated by feeding 50,000 randomly selected natural image patches
through our model (Figure 4) and sorting them according to their predicted saliency. Panel (a) shows the 100 most salient, (b) the least
salient patches. Apparently, contrast is much higher in salient patches, which is in agreement with previous work. But there are also
structural differences. Panel (c) shows the 100 least salient patches again, but with their r.m.s. contrast scaled to that of the 100 most
salient patches in panel (a). Panel (d) shows the frequency components of the patches in panels a, b, and c (averaged over all spatial
directions and over all 100 patches, respectively). We observe that the structure of salient patches is typically corner-like, and localized
around the patch center, while the structure of the non-salient patches is more ramp-like and has stronger low-frequency components.
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targets, most saliency measures are correlated with
contrast, and so seemingly different models are all roughly
equally predictive (Baddeley & Tatler, 2006; Bruce &
Tsotsos, 2006; Itti et al., 1998; Reinagel & Zador, 1999;
Tatler et al., 2005). Another dilemma is that basically all
studies have used different stimulus sets. Even if the
stimulus class is identical in two studies, a particular set
of images can still be “easy” or “difficult” (in the sense of
how obvious salient regions are). As a result, it has hitherto
not been possible to reliably quantify differences between
models, in particular, the effect that different types of image
features have on predictivity (and hence, plausibility).
What distinguishes our approach and results from those

obtained previously is not a significantly higher predic-
tivity on natural scenes, but a different critical aspect: our
nonlinear system identification technique does not make
any assumptions about the shape, scale, or number of the
perceptive fields. Rather, they result from the data as those
patterns which maximize predictivity: our perceptive
fields are the optimal predictors for saccade targets. This
is in contrast to previous studies which either assumed
relevant structure by the choice of image features (Gabor
or others), or used linear identification methods (Rajashekar
et al., 2006; Tavassoli, van der Linde, Bovik, & Cormack,
2007).
An interesting question is how fine the spatial structure

of perceptive fields can in principle be resolved, given the
spatial uncertainty introduced by the measurement error of
the eye tracker. Namely, in a linear setting, the observed
measurement standard deviation of 0.4 deg would (under
the assumption of the measurements being Gaussian
distributed) effectively filter out all frequency components
in the perceptive field above around 1 cpd. This value is
suspiciously close to the Nyquist frequency of our optimal
perceptive fields (1.2 cpd), which might lead to the
conclusion that our approach ignores potentially relevant
high frequency components of visual saliency. However,
this is not the case, since the significant frequency
components of the perceptive fields are one order of
magnitude lower, around 0.15 cpd (Figure 3). Moreover,
note that due to the nonlinearity of our model, the above
mentioned equivalence between position uncertainty and
blur does not hold anymore, i.e., the spatial detail of the
perceptive fields is not limited by the measurement noise,
but only by the patch resolution. That the optimal patch
resolution (1.2 cpd) is only incidentally related to the
cutoff frequency corresponding to the measurement error
(1 cpd) is further supported by the fact that the predictivity
of the model does not increase with patch resolution: as
described in Patch extraction section, increasing the
resolution up to 41 ! 41 (allowing frequencies of up
to 3.8 cpd to enter the model) does not change the model’s
predictivity or its perceptive fields. In summary, our
nonlinear model is indeed able to pick up high frequency
components well beyond the limit suggested by the
measurement error, however, these components are not
part of the optimal solution to predicting eye movements.

While our results are consistent with the majority of
previous studies (Itti, 2006; Krieger et al., 2000; Parkhurst
et al., 2002; Reinagel & Zador, 1999), it is interesting to
note that they seem to contradict the results from the
recent studies by Tatler et al. (2005) and Baddeley and
Tatler (2006) which are very similar to ours: there, the
authors found that high frequency edges (2.7 cpd) are the
most predictive feature for visual saliency. As we argued
above, this contradictory finding cannot be attributed to an
inherent insensitivity of our method to high-frequency
details. Indeed, Baddeley and Tatler (2006) use a similar
architecture to ours, with a different type of nonlinearity that
could be, in principle, closely approximated by our network.
In contrast to our approach, the authors tested a set of six
fixed filter types chosen a priori among which a high-
frequency oriented bandpass performed best. All of the six
filter types investigated operate in the frequency range
between 0 and 3.8 cpd tested in our study and thus constitute
possible outcomes of our method. However, whereas our
recovered perceptive fields are safely within the range of
stable reconstruction, we cannot exclude the possibility that
the high-frequency structure found by Baddeley et al. might
be too sensitive to noise to be reconstructed by our method.
Within the stable frequency range, we did not observe any
tendency in performance toward the higher frequencies. We
currently do not have a plausible explanation for this obvious
discrepancy which remains a subject for further study.
The question where in the brain saliency computations

take place has recently become a focus of research interest
(Henderson, 2003; Itti & Koch, 2001; Treue, 2003). Our
center-surround perceptive fields result from a psycho-
physical experiment but are strikingly similar to physio-
logical receptive fields in the primate visual system. This
is not an uncommon phenomenon: Neri and Levi (2006)
review a number of examples where related experiments in
psychophysics and physiology show similarities between
measurements in human observers in single neurons.
The size of the on-/off-centersV1.40 and 1.42

degreesVis very similar to that reported for receptive
fields in superior colliculus (SC) of monkey by Cynader
and Berman (1972): at 7.0 degrees eccentricityVthe
average saccade length in our dataVthey found center
sizes of 1 to 2 degrees in the superficial layer and around
3 degrees in the intermediate and deep layers. The role of
SC in allocating (as opposed to generating) saccadic eye
movements has been known for a long time (Goldberg &
Wurtz, 1972), and has received increased empirical
support recently (Basso & Wurtz, 1997; Krauzlis & Dill,
2002; Kustov & Robinson, 1996; McPeek & Keller,
2002, 2004). A short review by Krauzlis et al. (2004)
concludes “Although the SC is best known for its role in
the motor control of saccades, it appears to serve a more
general function related to evaluating possible targets,
defining the goal for orienting movements, and in
updating the representation of the goal as the movement
is executed. (p. 1450)”. Thus the collicular pathway for
eye-movement generation is actively involved in fixation
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target selection and, verily likely, saccade initiation
regulation. Thus the fact that our psychophysical percep-
tive fields not only resemble physiological receptive fields
but match important size and tuning properties of SC cells
may not only be a coincidence but be taken as evidence
for a role of SC in bottom-up visual saliency computa-
tions. We speculate that a substantial part of bottom-up
saliency computations might be carried out sub-cortically,
perhaps directly in the superior colliculus. Many previous
models explicitly or tacitlyVby the choice of oriented
filtersVassumed that visual saliency is computed in visual
cortex. Our results suggest that bottom-up saliency driven
eye-movements may be controlled and executed via a fast
pathway involving the SC and that cognitively controlled
top-down eye-movements may be computed cortically.
In summary, we have presented a novel nonlinear

system identification technique with which we can derive
perceptive fields from human saccade targets. Our
technique should work with mostVif not allVstimulus
sets. In our case, we used natural images as input. Based
on this technique we derived a nonlinear model that:

1. is extremely simple compared to previously sug-
gested models;

2. predicts human saccade targets in natural scenes at
least as well as previously suggested models;

3. generalizes to a novel image set better than
previously suggested models;

4. is free of prior assumptions regarding the shape,
scale, or number of filters;

5. can be implemented with optimal filters resembling
those in the SC in shape, size and spatial frequency
tuning, suggesting that bottom-up visual saliency
may be computed sub-cortically in SC.
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