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Abstract—In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks

requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly

restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative

method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only

linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images

which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and

denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-

resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution and

denoising performance are comparable to existing methods.

Index Terms—Principal component analysis, kernel methods, image models, image enhancement, unsupervised learning.

�

1 INTRODUCTION

PRIOR knowledge about the statistics of specific image

classes affords numerous applications in image proces-

sing such as super-resolution [14], [23], denoising [32], [44],

[51], segmentation [30], or compression [5]. The prior can be

coded either implicitly by directly learning the mapping

between inputanddesiredoutput (as in [14], [23]), or explicitly
by finding a suitable imagemodel. In imagemodeling,we can

roughly distinguish between approaches that try to estimate

aspects of the underlying probability distribution using a

fixed set of basis elements such aswavelets [5], [44], projected

profiles of objects [18] or geometrical primitives [29], [40], and

approaches that try to find basis sets with certain optimality

properties ranging from Principal Component Analysis

(PCA) [41], Independent Component Analysis (ICA) [4],
[24] to sparse coding [36].

Interestingly, all of the latter approaches model images
as linear combinations of transparent basis images. Many
researchers have pointed out, however, that this does not
reflect the generation process of natural images (e.g., [40]).
Here, one of the main contributing factors is occlusion which
is highly nonlinear. This suggests the use of techniques that
can cope with nonlinear combinations of basis images. One
of these techniques is Kernel Principal Component Analysis
(KPCA) [43]. In contrast to linear PCA, KPCA is capable of
capturing part of the higher-order statistics which are
particularly important for encoding image structure [11].

Capturing these higher-order statistics can require a large

number of training examples, particularly for larger image

sizes and complex image classes such as patches taken from

natural images. This causes problems for KPCA, since KPCA

requires to store and manipulate the kernel matrix the size of

which is the square of the number of examples. To overcome

this problem, a new iterative algorithm for KPCA, the Kernel

Hebbian Algorithm (KHA) is introduced. It is based on the

generalized Hebbian algorithm (GHA) which was intro-

duced as an online algorithm for linear PCA [34], [41]. The

resulting algorithm estimates the kernel principal compo-

nents with linear order memory complexity, making it

applicable to large problems.
In a previous application, KPCA was used for the

denoising of handwritten digits [32], a relatively restricted

class of images requiring a smaller number of training

examples. With the KHA, the application domain can be

extended to more complex image classes such as faces or

natural images. Since KPCA is an unsupervised learning

technique, the obtained image model can be used for other

tasks as well. In our case, we apply the same image model

in a single-frame super-resolution task where the details of

a high-resolution image are restored from a single low-

resolution image. This problem could previously be solved

only in a supervised setting by encoding a fixed relation-

ship between pairs of high and low-resolution images [14],

[23]. The results presented here indicate that a generic

KPCA model can achieve a comparable performance to

other, more specialized computer vision algorithms.
The remainder of this paper is organized as follows:

Section 2 briefly introduces PCA, GHA, and KPCA. Section 3

formulates the KHA. Experimental results are presented in

Section 4 and conclusions are drawn in Section 5.
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2 PRINCIPAL COMPONENT MODELS

2.1 Linear Principal Component Analysis and
Generalized Hebbian Algorithm

Given a set of l centered observations xk ¼ IRN , k ¼ 1; . . . ; l,

and
P

l
k¼1xk ¼ 0, PCA diagonalizes the covariance matrix1

C ¼ 1

l

Xl

j¼1
xjxj

>: ð1Þ

For lower-dimensional data, this is readily performed by
solving the eigenvalue equation

�v ¼ Cv ð2Þ

for eigenvalues � � 0 and eigenvectors vi 2 IRN n f0g (cf.,
e.g., [21]). The resulting set of mutually orthogonal
eigenvectors defines a new basis along the directions of
maximum variance in the data. The pairwise decorrelated
expansion coefficients in this new basis are called the
principal components (PCs) of the data set. From the point of
view of image modeling, the PCA basis has the interesting
property that, among all basis expansions, it minimizes the
reconstruction error when the expansion is truncated to a
smaller number of basis vectors. Thus, a class of high-
dimensional images can be described by a low-dimensional
model containing only a few PCs.

Computationally, it can be advantageous to solve the
eigenvalue problem by iterative methods which do not
need to compute and store C directly. This is particulary
useful when the size of C is large such that the memory
complexity becomes prohibitive. One widely used iterative
PCA method is the so-called Generalized Hebbian Algorithm
(GHA) by Sanger [41]. The GHA is a training algorithm for
a linear, single-layer feedforward neural network of the
form y ¼ Wx acting on the training examples xk. After
training, each output of the network represents the
projection on one eigenvector vi of C, ordered by decreas-
ing eigenvalue. If we are interested in the eigenvectors
corresponding to the r largest eigenvalues then W is an
r�N weight matrix which is modified according to the
update rule

Wðtþ 1Þ ¼ WðtÞ þ �ðtÞðyðtÞxðtÞ> � LT½yðtÞyðtÞ>�WðtÞÞ:
ð3Þ

Here, the argument t denotes a discrete moment in time
when an example xðtÞ is selected randomly from the xk

(with uniform probability over all xk) and presented to the
network. �ðtÞ is a learning rate parameter, and LT½�� sets all
elements above the diagonal of its matrix argument to zero,
thereby making it lower triangular. In a local stability
analysis, Oja [34] (for r ¼ 1) and Sanger [41] (for r � 1)
showed that the rows of W tend to the eigenvectors vi of C
as t ! 1 for properly chosen initialization and learning
rate (see Section 3.1). Intuitively, this can be seen by looking
at (3): The first, Hebbian term yðtÞxðtÞ> in the brackets tries
to maximize the output variance and, thus, will orient each
row of W toward the largest eigenvector, whereas the
diagonal elements in the second term LT½yðtÞyðtÞ>� prevent
W from growing infinitely. The off-diagonal elements

remove the contribution of the respective eigenvectors with
larger eigenvalues in each row of (3).

The GHA has been applied in several studies to compute
the PCs of natural images [20], [36], [41]. PCA image models
have been used, for instance, for image coding and texture
segmentation [41], and for explaining psychophysically
derived orientation tuning curves [2].

2.2 Kernel Principal Component Analysis

Linear PCA is an appropriate model for data that are
generated by a Gaussian distribution, or data that are best
described by second-order correlations. In fact, PCA is
based only on second-order correlations (cf. (1)) without
taking higher-order statistics into account. It is well known,
however, that the distribution of natural images is highly
non-Gaussian, and that all the “interesting” structures in
images such as edges or corners cannot be described by
second-order correlations [11]. This motivates the use of a
nonlinear analysis technique that can capture higher-order
dependencies in the data.

In KPCA, this nonlinearity is introduced by first mapping
the data into another space F using a nonlinear map
� : IRN ! F , before a standard linear PCA is carried out in
F using themapped examples�ðxkÞ [43]. Themap� and the
space F are determined implicitly by the choice of a kernel
functionkwhich computes thedotproduct between two input
examples x and ymapped into F via

kðx;yÞ ¼ �ðxÞ � �ðyÞ: ð4Þ

One can show that, if k is a positive definite kernel, then there
exists a map � into a dot product space F such that (4)
holds. The space F then has the structure of a so-called
Reproducing Kernel Hilbert Space (RKHS) [42].

The identity (4) is important for KPCA since PCA in F
can be formulated entirely in terms of inner products of the
mapped examples.2 Thus, we can replace all inner products
by evaluations of the kernel function. This has two
important consequences: first, inner products in F can be
evaluated without computing �ðxÞ explicitly. This allows
us to work with a very high-dimensional, possibly infinite-
dimensional RKHS F . Second, if a positive definite kernel
function is specified, we need to know neither � nor F
explicitly to perform KPCA since only inner products are
used in the computations.

Commonly used examples of such positive definite
kernel functions are the polynomial kernel of degree d 2 IN,
kðx;yÞ ¼ ðx � yÞd or the Gaussian kernel of width � > 0,
kðx;yÞ ¼ expð�kx� yk2=2�2Þ, each of them implying a
different map and RKHS. The corresponding RKHSs are
ðNþd�1Þ!
d!ðN�1Þ! -dimensional for the polynomial kernel [42], and
infinite-dimensional for the Gaussian kernel. For more
examples of classes of kernels and a detailed description of
the properties of each kernel class, readers are referred to
[22], [42].

Coming back to computing PCA in F , we can rewrite the

covariance matrix of the mapped examples (2) by stacking

them into the matrix � ¼ �ðx1Þ>; . . . ;�ðxlÞ>
� �>

as
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1. More precisely, the covariance matrix is defined as the expectation
E½xx>�; C is an estimate based on a finite set of examples.

2. This can be verified by replacing x in (1) with �ðxÞ and substituting
the right side of (1) for C in (2). Then, all solutions v with � 6¼ 0 must lie in
the span of �ðx1Þ; . . . ;�ðxlÞf g in F ; hence, (2) is equivalent to �ð�ðxkÞ � vÞ ¼
�ðxkÞ � Cv for all k ¼ 1; . . . ; l.



C ¼ 1

l
�>�; ð5Þ

assuming that the data are centered in F (i.e.,
Pl

k¼1

�ðxkÞ ¼ 0Þ.3 We now have to find the eigenvalues � � 0 and
eigenvectors v 2 F n f0g satisfying

�v ¼ Cv: ð6Þ

Since all solutions v with � 6¼ 0 lie within the span of
�ðx1Þ; . . . ;�ðxlÞf g (cf. footnote 2), we may consider the

following equivalent problem

��v ¼ �Cv; ð7Þ

and represent v in terms of an l-dimensional vector q as

v ¼ �>q. Combining this with (5) and (7) and defining an

l� l kernel matrixK byK ¼ ��> leads to l�Kq ¼ K2q. The

solution can be obtained by solving the kernel eigenvalue

problem [43]

l�q ¼ Kq: ð8Þ

As we said before, the resulting kernel PCs (KPCs) are linear
combinations of inner products of the data points, i.e., there is
no need to compute � explicitly since everything can be
expressed in terms of kernel functions. In contrast to PCA,
ICA, or sparse coding, KPCs consist of nonlinear interactions
between the data points. In terms of image modeling, this
means that images aremodeled as nonlinear combinations of
the input images by using the kernel function. As a
consequence, KPCA becomes also sensitive to higher-order
statistical properties of the input, i.e., the obtained KPCs
depend also on interactions between more than two pixels.
The exact nature of the interactions that can be modeled
depends to a large degree on the chosen kernel and is
unknown in most cases. Certain polynomial kernels of
degree d, for instance, are capable of modeling all multi-
plicative interactionsbetweenup todpixels [12].Note that the
modeling capability of PCA is retainedbyKPCA: It allows for
a truncated expansion in only a few KPCs. However, the
truncated expansion minimizes the reconstruction error in
the RKHS, not in the input space as in linear PCA. This seems
like an odd optimization principle, but it is not clear from the
outset whether the Euclidian error norm is a better error
measure for such complex objects as images. In fact, several
applications have shown thatKPCAcan lead tobettermodels
than PCA [27], [32], [42].

The large variety of used kernel functions [22], [42]
indicates that there is no single best kernel for all possible
applications. Accordingly, the choice of a good kernel
depends on the problem of interest. While there exist
several methods for choosing optimal kernels for a given
supervised learning problem [7], [10], [48], [49], the best
choice of the kernel in unsupervised learning remains
elusive because of the lack of proper evaluation criteria. In
our experiments, we used the Gaussian kernel. Since there
exists no principled method for finding the kernel width �
in unsupervised learning, we chose the default value � ¼ 1
which lead to visually satisfying results. For a number of
reasons, the Gaussian is considered a default “general
purpose kernel” in the kernel methods community. Among
these are its universal approximation capabilities (the

associated RKHS is dense in the space of continuous
functions, cf. [45]), its translation invariance, and its
desirable regularization properties: It can be shown to
correspond to a smoothness regularizer which penalizes
derivatives of all orders (see, e.g., [16], [42]). To see this, first
note that KPCA can be rewritten as an optimization
problem. For centered data, the first principal component
is the minimal norm vector v subject to the constraint that
the variance of v>�ðxiÞ is 1 on the training set. Second, note
that the minimal norm can be interpreted as a smoothness
regularizer. We have

kvk2 ¼ �>q
� �>

�>q ¼
X
i;j

qiqjkðxi;xjÞ:

For the Gaussian kernel, we can rewrite this asX
i;j

qiqjkðxi;xjÞ ¼ kPfk2; ð9Þ

where fðxÞ ¼
P

i qikðxi;xÞ is the projection onto v in F , i.e.,
the feature extraction function, and P is a derivative
operator of all orders [38]—therefore, KPCA with the
Gaussian kernel maximizes the smoothness of the feature
extractor f , subject to a variance constraint.

3 ITERATIVE KPCA

3.1 Kernel Hebbian Algorithm

The size of the kernel matrix scales with the square of the
number of examples. Thus, it becomes computationally
infeasible to directly solve the kernel eigenvalue problem
for a large number of examples. As noted in the introduc-
tion, a similar problem occurs with linear PCA when the
covariance matrix becomes large. This motivated the
introduction of the GHA which does not require the storage
and inversion of the covariance matrix. Here, we propose a
similar approach by reformulating the GHA in a RKHS to
obtain a memory-efficient approximation of KPCA.

The GHA update rule of (3) is represented in the
RKHS F as

Wðtþ 1Þ ¼WðtÞ þ �ðtÞðyðtÞ�ðxðtÞÞ>

� LT½yðtÞyðtÞ>�WðtÞÞ;
ð10Þ

where the rows of WðtÞ are now vectors in F and
yðtÞ ¼ WðtÞ�ðxðtÞÞ. �ðxðtÞÞ is a pattern presented at time t

which is randomly selected from the mapped data points
f�ðx1Þ; . . . ;�ðxlÞg. For notational convenience, we assume
that there is a function JðtÞ which maps t to i 2 f1; . . . ; lg
ensuring �ðxðJðtÞÞÞ ¼ �ðxiÞ and denote �ðxðJðtÞÞÞ simply
by �ðxðtÞÞ.4 From the direct KPCA solution, it is known that
wðtÞ can be expanded in the mapped data points �ðxiÞ. This
restricts the search space to linear combinations of the �ðxiÞ
such that WðtÞ can be expressed as

WðtÞ ¼ AðtÞ� ð11Þ
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3. The centering issue will be dealt with later.

4. The original development of the GHA relies on infinitely many
examples to achieve convergence. Since we are dealing with finite sample
sizes, we construct the sequence fxðtÞg by using a JðtÞ that concatenates
random permutations of fxig until a sufficient degree of convergence is
reached. Typically, this will require repeated sweeps through the entire
data set.



with an r� l matrix AðtÞ ¼ ða1ðtÞ>; . . . ; arðtÞ>Þ> of expan-
sion coefficients. The ith row ai ¼ ðai1; . . . ; ailÞ of AðtÞ
corresponds to the expansion coefficients of the ith
eigenvector of K in the �ðxiÞ, i.e., wiðtÞ ¼ �>aiðtÞ. Using
this representation, the update rule becomes

Aðtþ 1Þ� ¼AðtÞ�þ �ðtÞ

yðtÞ�ðxðtÞÞ> � LT½yðtÞyðtÞ>�AðtÞ�
� �

:
ð12Þ

The mapped data points �ðxðtÞÞ can be represented as
�ðxðtÞÞ ¼ �>bðtÞ with a canonical unit vector bðtÞ ¼
ð0; . . . ; 1; . . . ; 0Þ> in IRl (only the JðtÞth element is 1). Using
this notation, the update rule can be written solely in terms
of the expansion coefficients as

Aðtþ 1Þ ¼ AðtÞ þ �ðtÞ yðtÞbðtÞ> � LT½yðtÞyðtÞ>�AðtÞ
� �

:

ð13Þ

Representing (13) in component-wise form gives

aijðtþ 1Þ

¼
aijðtÞ þ �yiðtÞ � �yiðtÞ

Pi
k¼1 akjðtÞykðtÞ if JðtÞ ¼ j

aijðtÞ � �yiðtÞ
Pi

k¼1 akjðtÞykðtÞ otherwise;

(
ð14Þ

where

yiðtÞ ¼
Xl
k¼1

aikðtÞ�ðxkÞ � �ðxðtÞÞ ¼
Xl
k¼1

aikðtÞkðxk;xðtÞÞ: ð15Þ

This does not require �ðxÞ in explicit form, thus providing a
practical implementation of the GHA in F . For stationary
input distributions, the learning rate is typically chosen as
�ðtÞ ¼ 1

t since, in this case, local convergence can be
guaranteed (see paragraph on convergence below). In many
practical applications [21], especially for nonstationary
input in an online setting, � can be set to a small constant
value to keep the solution adaptive. A should be randomly
initialized to avoid possible convergence problems (see
below).

During the derivation of (13), it was assumed that the data
are centered in F which is not true, in general, unless explicit
centering is performed. Centering can be done by subtracting
the mean of the data from each pattern. Then, each pattern
�ðxðtÞÞ is replaced by e��ðxðtÞÞ ¼ �ðxðtÞÞ � �ðxÞ, where �ðxÞ
is the sample mean �ðxÞ ¼ 1

l

Pl
k¼1 �ðxkÞ. The centered

algorithm remains the same as in (14) except that (15) has to
be replaced by the more complicated expression

yiðtÞ ¼
Xl
k¼1

aikðtÞðkðxðtÞ;xkÞ � �kkðxkÞÞ

� aiðtÞ
Xl
k¼1

ðkðxðtÞ;xkÞ � �kkðxkÞÞ
ð16Þ

with �kkðxkÞ ¼ 1
l

Pl
m¼1 kðxm;xkÞ and aiðtÞ ¼ 1

l

Pl
m¼1 aimðtÞ.

5

�kkðxkÞ for each k; i ¼ 1; . . . ; l can be calculated once at the

beginning of the whole procedure. This is directly applic-
able in a batch setting (i.e., the patterns are fixed and known
in advance); in an online setting, one should instead use a
sliding mean, in order to be able to adapt to changes in the
distribution. For the details of the online algorithm, readers
are referred to [26]. It should be noted that not only in
training but also in testing, each pattern should be centered
using the training mean.

Complexity. At each update of (13), we need to store the
r� l coefficient matrix A (r is the number of PCs to be
computed, l the number of examples) and the training set
requiringOðl�NÞwhereN is thedimensionality of the input
space. The entire memory complexity of the KHA is then
Oðr� lþ l�NÞ which, for large sample sizes, compares
favorably with the Oðl2Þ complexity of standard KPCA.
However, this comes at the price that now time complexity
depends on thedimensionality of the input: Ifwe assume that
the evaluation of the kernel function typically is of time
complexity OðNÞ (this is the case for the Gaussian and the
polynomial Kernel), then the time complexity of the KHA for
each presentation of a pattern is Oðr� l�N þ r2 � lÞ. For
high-dimensional input, time complexity can be lowered by
precomputing and storing part of the kernel matrix. If we
store an l0 � l0-size portion of the kernel matrix, the time and
the memory complexity become Oðr� ðl� l0Þ �N þ r2 � lÞ
and Oðr� lþ l�N þ l0 � l0Þ, respectively. The time com-
plexity reduces to Oðr� lþ r2 � lÞ when we store the entire
kernelmatrix, as KPCAdoes, but this, of course, wouldmake
the primary motivation for using the KHA obsolete. Clearly,
the entire time complexity of the KHA strongly depends on
the number of updates. This, in turn, will depend to a large
degree on the problem at hand and the required accuracy of
theKPCs.Complicatedproblemswithonlya small numberof
examples may require a large number of repeated sweeps
through all data points before sufficient accuracy is achieved.
In our experiments, we had to sweep between 40 to 800 times
through theentiredata set toobtainvisually satisfyingresults.

Convergence. Unfortunately, there are no results in the
literature about the convergence speed of the GHA or its
global convergence properties for general initial conditions.
There is, however, a theorem by Oja (for r ¼ 1) and Sanger
(for r � 1) on the local convergence of the GHA [34], [41]6

that directly carries over to the KHA. Their results are based
on the stability analysis of an associated ordinary differ-
ential equation. They could show that under certain
conditions the asymptotically stable limits of this differential
equation are possible limits of the GHA. Since then,
extensive simulations confirmed that the limits of the
GHA and its associated differential equation are “usually”
the same, i.e., the conditions of Oja’s and Sanger’s theorems
usually hold in practice [35].

The convergence properties of the GHA are equally valid
for the KHA. This can be stated formally as:

Theorem 1. For a finite set of centered data, A initially in
general position, and learning rate �ðtÞ ¼ 1

t , the rows of W in
(10) (and, equivalently, the rows of A in (13)) will approach
the first r normalized eigenvectors of the correlation matrix C
in the RKHS, ordered by decreasing eigenvalue.
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5. A Matlab example implementation can be downloaded at http://
www.kyb.tuebingen.mpg.de/prjs/comp_vision_robotics/nat_image/kha/
kha.htm.

6. In [41], Sanger actually claimed to have found a proof for global
convergence. Later, authors [35], [50] noticed that his convergence proof is
only valid locally around the equilibrium points. There are, however, global
convergence proofs for closely related learning rules [8], [50].



Proof. Requiring the data and A to be initially in general
position excludes pathological configurations in which
the KHA cannot converge. If A were initialized such that
its rows are the zero vector or orthogonal to the
eigenvectors, then it would never change irrespective
of the data. Similarly, if the input data was always
orthogonal to the initialization of A, we would run into
problems. For the proof, we note that for a finite set of
data fx1; . . . ;xlg, we can induce from a given kernel k a
kernel PCA map into IRl [42]

�l : x ! K�1
2ðkðx;x1Þ; . . . ; kðx;xlÞÞ;

satisfying

�lðxiÞ>�lðxjÞ ¼ kðxi;xjÞ:

By applying the GHA in the space spanned by the kernel
PCA map, (i.e., replacing each occurrence of �ðxÞ with
�lðxÞ in (10), and noting that this time, W lies in IRl

rather than in F ), we obtain an algorithm in IRl which is
exactly equivalent to the KHA in F . The local conver-
gence of the KHA then follows from the local conver-
gence of the GHA for �ðtÞ ¼ 1

t in IRl as stated in
Theorem 1 in [41]. tu
It should be noted that, in practice, this approach cannot

be taken to construct an iterative algorithm since it involves
the computation of K�1

2. Fig. 1 shows the first three PCs of a
toy data set, extracted by both KPCA and KHA with a
polynomial kernel of degree 2. The visual similarity of the
PCs (ignoring the sign difference) obtained from the KPCA
and KHA illustrates the capability of KHA to approximate
the full KPCA solution. The convergence behavior of the
KHA in this example is shown in Fig. 2.

3.2 Applications

The KHA extends the range of possible KPCA applications
considerably since now larger data sets can be processed.We
will demonstrate the potential of the KHA in two image

reconstruction tasks, single-frame super-resolution and
denoising.

Single-frame super-resolution refers to the task of
constructing a high-resolution enlargement of a single7 low-
resolution, pixel-based image. In contrast to the usual
interpolation and sharpening (e.g., [25]), newhigh-resolution
details are added to the reconstruction. This can only be done
by relying on prior knowledge about the image class to be
processed.

In previous work, single-frame super-resolution was
mainly done in a supervised learning setting [13], [23]: During
the training phase, pairs of low-resolution patches and the
corresponding high-resolution patches are collected. In the
super-resolution phase, each low-resolution patch of the
input image is compared to the stored low-resolution patches
and the high-resolution patch corresponding to the nearest
low-resolution patch is selected. Here, we propose an
alternative approach to super-resolution based on KPCA
which isanunsupervised learningmethod. Insteadofencoding
a fixed relationship between pairs of high and low-resolution
image patches, we rely on the generic model of the high-
resolution images obtained from KPCA. To reconstruct a
super-resolution image from a low-resolution image which
was not contained in the training set, we first scale up the
image x to the same size as the high-resolution training
images, map the scaled image Sx into the RKHS F using �,
thenperformcentering, andproject it into theKPCAsubspace
corresponding to a limited number r of KPCs to get P�ðSxÞ:

P�ðSxÞ ¼
Xr
i¼1

wi � ð�ðSxÞ � �ðxÞÞ
� �

wi; ð17Þ

where wi is the KHA estimate of the ith eigenvector of C

wi ¼
X
k

aik�ðxkÞ

and �ðxÞ ¼ 1
l

Pl
k¼1 �ðxkÞ is the sample average. In terms of

the kernel function, this expression can be written as
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Fig. 1. Two-dimensional toy example, with data generated in the
following way: x-values have uniform distribution in ½�1; 1�, y-values are
generated from yi ¼ �x2i þ �, where � is normal noise with standard
deviation 0.2. From left to right, contour lines of constant value of the first
three PCs for 150 data points obtained from KPCA and KHA with
degree-2 polynomial kernel. The KHA results were obtained after
150,000 updates. The learning rate was constant and set to 0.05.

Fig. 2. The average l2 distance in the RKHS of the first three
eigenvectors and their estimates obtained by the KHA. The sign of
each PC has been corrected for the computation.

7. This should not be confused with aggregation from multiple frames
where a single high-resolution frame is extracted from a sequence of low-
resolution images (cf., e.g., [3]).



P�ðSxÞ ¼
Xr
i¼1

Xl
m¼1

qimkðxm; SxÞ �
1

l

Xl
m;n¼1

qimkðxm;xnÞ
 !

wi:

ð18Þ

Via the projection P , the scaled image is mapped to an

image which is consistent with the statistics of the high-

resolution training images. However, at that point the

projection is still centered and lives in F which can be

infinite-dimensional. To obtain the reconstruction in the

input space, the projection P�ðSxÞ is first decentered by

adding the sample average �ðxÞ

P�ðSxÞ þ �ðxÞ ¼
Xl
k¼1

gk�ðxkÞ þ
1

l

Xl
k¼1

�ðxkÞ

¼
Xl
k¼1

gk þ
1

l

� �
�ðxkÞ;

ð19Þ

where

gk ¼
Xr
i¼1

wi � ð�ðSxÞ � �ðxÞÞ
� �

aik

¼
Xr
i¼1

Xl
m¼1

aimkðxm; SxÞ �
1

l

Xl
m;n¼1

aimkðxm;xnÞ
 !

aik:

ð20Þ

In the next step, we need to find a corresponding point

in IRN—this is a preimage problem. To solve it, we

minimize kP�ðSxÞ þ �ðxÞ � �ðzÞk2 over z 2 IRN .8 Note
that this objective function can be computed in terms of
inner products and, thus, in terms of the kernel (4). For the
minimization, we use gradient descent [6] with starting
points obtained from the method of [28].

Image denoising refers to the task of constructing a
noise-free image from a noisy input image. Since image
denoising is a standard problem in the image processing
community, the readers are referred to [17] for a brief
survey. From the point of view of a KPCA model, image
denoising can be regarded as the same problem as image
super-resolution: The projection method from the super-
resolution task can be applied to image denoising as well.
The only difference is that the scaling of the input image is
omitted which is not necessary for denoising.

We consider two scenarios in our experiments. In the
first scenario, the KPCA model is trained on clean image
patterns which are distinct from the test images, as it was
done before in the super-resolution task. KPCA has already
been applied in this scenario to the denoising of digit
images and demonstrated promising results [32]. This was
possible because the class of digit images is small enough
for the direct computation of KPCA. Presently, we focus on
more complex image classes such as faces that require a
larger number of training examples. In these cases, the
direct computation of KPCA is no more feasible, but
requires the use of the KHA.
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Fig. 3. Face reconstructionbasedonPCAandKHA for varyingnumber rof
PCs. Below, enlarged reconstruction examples are shown for the second
face (top) and third face (bottom) in the order 1) original image, 2) reduced
resolution image, 3) PCA reconstruction with 1,024 components, and
4) KHA reconstructionwith 1,024 components. Note that, in contrast to the
KHA, PCA tries to approximate the reduced resolution imagewhereas the
KHA tries to come up with a high-resolution image that is consistent with
the statistics of the original image.

Fig. 4. Face reconstruction examples obtained from KPCA and KHA with

256 PCs trained on 1,000 and 5,000 examples, respectively. Occasional

erroneous reconstruction of images indicates that KPCA requires a large

amount of data to properly sample the underlying structure.

Fig. 5. Face reconstruction based on PCA and KHA with 256 PCs with

different input image resolutions.

8. Note that, usually, exact preimages will not exist [42].



In the second scenario, no clean training images are
required. Instead, it is assumed that the noise mainly
contaminates KPCs corresponding to small eigenvalues.
Thus, a truncated KPC expansion of the noisy image leads
automatically to a denoising effect. In this scenario, the
KHA is trained and tested on the same data set. This
approach is similar to wavelet-based methods [37], [44] and
linear PCA-based methods [1] for image denoising in the
sense that the objective is to find a good feature space in
which the noise shows low power or is concentrated on a
small subspace. The main difference, however, is that the
KPCA model finds features that are data-dependent (in
contrast to wavelet-based methods) and nonlinear (in
contrast to linear PCA-based methods).

4 EXPERIMENTS

From a machine learning point of view, an image is simply
a point in an image space whose dimensionality is equal to
the number of pixels in the image. If the class of images is
moderately constrained (e.g., face images) or if the image
size is small enough, the learning of a KPCA model poses
no serious problems since the image space can be sampled
densely enough. However, for rather large images with
arbitrarily high complexity (e.g., natural images) the
necessarily limited amount of training data leads to
overfitting, where one obtains a model which explains the
training data perfectly but fails to generalize to unknown
data. In these cases, we adopt a patch-based approach where

a large image is regarded as a composition of patches (small
subimages). Accordingly, this section describes two distinct
sets of experiments according to the classes of images
considered: The single-patch case regards a small image as a
single pattern and the multipatch case regards a large image
as a set of small patches.

The best choice of the learning parameter � and the
number of updates for the convergence of the KHA
depends on the data set. In our case, the updates finished
when the squared distance between two solutions from
consecutive updates was smaller than a given threshold.
We used a fixed learning rate � of 0.05 throughout the
experiments.

Single-patch case: Super-resolution and denoising of

face images. Here, we consider a database of face images.
The Yale Face Database B contains 5,760 images of
10 persons [15]. Five thousand images were used for
training while 10 randomly selected images which are
disjoint from the training set were used to test the method
(note that the same person in different views is likely to
occur in training and test set as there are only 10 persons in
the database). Since the direct computation of KPCA for this
data set is not practical on standard hardware, the KHA
was utilized. In training, (60� 60)-sized face images were
fed into the KHA using a Gaussian kernel with � ¼ 1.

For the super-resolution experiments, the test images

were blurred and subsampled to a 20� 20 grid and scaled

up to the original scale (60� 60) by turning each pixel into

a 3� 3 square of identical pixels, before doing the
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Fig. 6. Face image denoising based on PCA and KHA with 256 PCs, Wiener filter, and wavelet from Matlab. The SNR value was 7.58dB, 8.29dB,

8.45dB, and 8.31dB, respectively.

Fig. 7. Preimages of the first three eigenvectors with RKHS projections varying from �2� to 2� (where � is the standard deviation along each

principal axis). Note that moving from �� to � generates a morph between two faces.



reconstruction. To avoid an overflow during the computa-
tion of the exponential term in the kernel, each pixel value
was scaled to an interval around zero (½�0:05; 0:05�). Fig. 3
shows reconstruction examples obtained using different
numbers of PCs. For comparison, reconstructions obtained
from linear PCA are also displayed. While the images
obtained from linear PCA look like somewhat uncontrolled
superpositions of different face images, the images ob-
tained from its nonlinear counterpart are more face-like. In
spite of its less realistic results, linear PCA was slightly
better than the KHA in terms of mean squared error (9.20
and 8.48 for KHA and PCA, respectively, for 100 PCs). This
stems from the characteristics of PCA which is constructed
to minimize the MSE while KHA is not concerned with the
MSE in the input space. Instead, it seems to force the
images to be contained in the manifold of face images.
Similar observations have been reported in [31]. Interest-
ingly, a small number of examples and a sparse sampling
of this manifold can have the consequence that the KHA
reconstruction looks like the face of a person different from
the one used to generate the test image. In a sense, this
means that the errors performed by KPCA are errors along
the manifold of faces. Fig. 4 demonstrates this effect by
comparing results from KPCA on 1,000 example images
(corresponding to a sparse sampling of the face manifold)
and KHA on 5,000 training images (denser sampling). As
the examples show, some of the misreconstructions that are
made by KPCA due to the lack of training examples were
corrected by the KHA using a larger training set.

To see the effect of varying input image resolution on the
reconstruction result, another set of experiments was
performed with different resolutions of 10� 10, 20� 20,
and 40� 40 as shown in Fig. 5. A graceful degradation of
reconstruction performance was observed from both PCA
and KPCA models as the input image resolution decreases.
However, theKHAresults lookuniformlybetter than thoseof
PCA, especiallywhen the input image is very small (10� 10).

For denoising of face images, the first scenario of clean
training images was considered (cf., Section 3.2). Gaussian
noise was added to the test images of Fig. 3 with an
average SNR of 3.12dB. We applied the KPCA model used
for face image super-resolution with no additional training
and no modification of the experimental setting, except for
the omission of the smoothing and resizing steps. For

comparison, linear PCA, Wiener filters,9 and wavelet-based
methods10 were also applied. The results (Fig. 6) indicate
that the proposed model is general enough to be applied to
more than one specific application, while still having an
acceptable performance in each of them. Compared to
other methods, the SNR of the KHA reconstruction was
not the best. However, visual inspection shows that the
KHA solutions are more realistic. For example, the KHA
reconstruction of the first face image in Fig. 6 is much
brighter than the original which results in a deteriorated
SNR mainly because of the difference in average bright-
ness. However, it is visually more face-like than the other
reconstructions.

By moving along the directions of the eigenvectors in the
RKHS and computing the corresponding preimages, one
can directly visualize what the KPCA model has learned.
As an example, Fig. 7 shows the preimages along the
principal axes corresponding to the three largest eigenva-
lues. In contrast to linear eigenfaces (i.e., eigenvectors of
face images) [46], the nonlinear eigenfaces obtained from
the KHA are more face-like. This can be explained if we
assume that the data have a cluster structure and that the
Gaussian kernel parameter � is small compared to the
distances between the clusters, but large compared to the
distances within the clusters. Then, KPCA becomes similar
to linear PCA performed on each cluster of similar (close in
terms of the distance in input space) images: In this case, the
kernel matrix is almost block diagonal, and accordingly, the
eigenvectors of the kernel matrix become similar to the
eigenvectors of each cluster. As a result, the eigenvectors
are superpositions of similar images (cf. (7)) such that their
preimages do not show the superposition artifacts usually
encountered in linear eigenfaces. On the other hand, the
distance structure within a block (a set of patterns close to
each other) is similar to the Euclidean distance in the input
space if the block size is small enough.11

In addition, within the projection interval defined by the
standard deviation of sampling points along the eigenvector
(Fig. 7), the eigenfaces show a morphing behavior from one
face class to another as wemove along the principal axis. The
corresponding trajectory is not entirely contained in the
training set, but is actually learned from the training
samples.12 Outside this region, the sampling of patterns
becomes very sparse as indicated by the increasing distance
to the nearest training pattern in Fig. 8. Here, we observe a
rather uncontrolled superposition of face images similar to
linear PCA. This supports the previously mentioned mani-
fold interpretation: assuming that the data are sampled
densely enough, the KPCA image model reconstructs the
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Fig. 8. RKHS distance to the nearest training pattern when moving along

the third principal axis.

9. We applied Matlab’s spatially adaptive Wiener filter with window size
(3� 3), (5� 5), and (7� 7). The best result (in terms of SNR) was obtained
for window size (5� 5).

10. Matlab’s wavelet toolbox was utilized. Denoising was done by
thresholding in each wavelet basis. The wavelet bases investigated include
Haar and Symmlets 4, 6, and 8. The threshold value varied from 20 to 80
with an interval of 5. The best result was obtained with Symmlet4 and
threshold 45.

11. This becomes evident when the function fðzÞ ¼ ez is expanded in a
Taylor series about zero. When the absolute values of z approach zero,
the higher-order terms in the series tend to vanish such that f becomes
linear. Thus, the kernel is approximately 1� kx� yk2, a conditionally
positive definite kernel which for KPCA is equivalent to x � y due to the
centering [42].

12. Similar observations have been reported in [39] where KPCA was
used to model 3D objects from 2D views.



manifold defined by the image class. Note that it has recently
been pointed out that for certain kernels, KPCA corresponds
to several known manifold dimensionality reduction algo-
rithms [19].

Multipatch super-resolution of natural images. For a
realistic natural image super-resolution, we adopt the
method of [13], where the large image is decomposed into
its low-frequency components and a set of small patches
containing the local high-frequency information. Whereas
Freeman et al. [13] use a nearest neighbor classifier to select
appropriate high-frequency patches in the super-resolution

phase, we replace this classifier by the projection step

described above. During the training stage, images are

high-pass filtered and a set of image patches are collected

from the resulting high-frequency images. These image

patches are contrast-normalized [13] and then fed into the

KHA. In the super-resolution phase, the input image is

rescaled to the original resolution using bicubic interpola-

tion and band-pass filtered to remove the low-frequency

components. Then, the resulting high-frequency component

image is divided into a set of small image patches each of
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Fig. 9. Training images of size 396� 528. The training patterns are obtained by sampling 2,500 points at random from each image.

Fig. 10. Example of natural image super-resolution: (a) original image of resolution 396� 528, (b) low-resolution image ð198� 264Þ stretched to the

original scale, (c) reconstruction of the high-frequency component (contrast enhanced for better visibility), and (d) final KHA reconstruction.



which is reconstructed in the same way as in single patch
super-resolution. The resulting image contains only high-
frequency components which are then superimposed on the
bicubic interpolation to give the final reconstruction.

The KHA was trained on a set of 10,000 ð12� 12Þ-sized
image patches obtained from the images in Fig. 9. As above,
the parameter � was set to 1 which is small enough to
capture the nonlinear structure of the images. The recon-
struction of the high-frequency image is then obtained
based on the first 200 KPCs. This choice reflects a good
compromise between performance and computational cost.
Using more PCs, we obtained results which are as good or
slightly better. At present, we have no principled method
for choosing the optimal number of PCs. The number 200 is
motivated by the fact that in the face image super-resolution
experiments, the performance of KPCA appeared to
saturate around that number. In general, however, the
optimal number to choose can be expected to depend on the
problem at hand and on the amount of computational
resources one is able to invest. When applied to nonover-
lapping patches, the resulting image as a whole shows a
block structure since each patch is reconstructed indepen-
dently of its neighborhood. To reduce this effect, the

patches are chosen to overlap by five pixels into their
neighbors such that the overlapping regions can be
averaged.

A (396� 528)-size image not contained in the training set
was used for testing. The ð198� 264Þ-sized low-resolution
image was obtained by blurring and subsampling. Fig. 10
shows the super-resolution result. The final reconstruction
was postprocessed using high-boost filtering [17] to en-
hance the edges that become slightly blurred since only the
first 200 KPCs are used in the reconstruction. It should be
noted that the original KHA reconstruction of the high-
frequency components still contains blocking artifacts even
with the use of overlapping patches. This, however, does
not severely degrade the final result since the overall
structure is contained in the low-frequency input image and
the KHA reconstruction only adds the missing high-
frequency information. Regarding more advanced techni-
ques for the removal of blocking artifacts, readers are
referred to [13] where the spatial relationship between
patches is modeled based on Markov random fields (MRFs).

Fig. 11 shows more super-resolution results. The low-
resolution image is obtained in the same way as in Fig. 10.
For comparison, bicubic interpolation and a supervised
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Fig. 11. Comparison between different super-resolution methods. (a) Original image of resolution 284� 618, (b) low-resolution image ð142� 309Þ
stretched to the original scale, (c) bicubic interpolation, (d) supervised example-based learning based on nearest neighbor classifier,

(e) unsupervised KHA reconstruction of high-frequency component (contrast enhanced for better visibility), (f) unsupervised KHA reconstruction,

and (g) enlarged portions of (a)-(d), and (f) (from left to right).



learning technique based on a nearest neighbor classifier
such as the one used by [13] were also applied. Note,
however, that we did not implement the additional
processing stage of [13] that takes into account spatial
context in the matching of high and low-resolution image
patches. Again, for all the methods the final reconstructions
were high-boost filtered. In comparison to image stretching
(Fig. 11b), bicubic interpolation (Fig. 11c) produces far
better results. However, simple edge enhancement without
any prior knowledge failed to completely remove the
blurring effect. The two learning-based methods show a

better capability in recovering the complex local structure.
This, however, comes at the price of a certain specialization
to the encoded image class: whereas interpolation can be
applied to any image, we found in our experiments that a
KPCA model of faces performed poorly in reconstructing
natural images and vice versa.

As shown in Fig. 11, the KHA and the nearest neighbor-
based method showed a comparable performance. Some
insight into the differences in the modeling capabilities of
the two methods can be gained by enlarging the size of
reconstruction patch and performing super-resolution
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Fig. 12. Image super-resolution without high-frequency decomposition. (a) Original image of resolution 500� 300, (b) bicubic interpolation obtained

from low-resolution image ð150� 90Þ, (c) nearest neighbor reconstruction, (d) KHA reconstruction, and (e) enlarged portions of (a), low-resolution

image, (b), (c), and (d) (from left to right).

Fig. 13. Face image super-resolution based on nearest neighbor methods. First and second rows: original and low-resolution input images (20� 20),
respectively. Third row: reconstructions obtained by replacing KPCA with a nearest neighbor classifier in the single patch reconstruction

experiments. Fourth row: reconstructions obtained by the multipatch reconstruction method applied to the input image as a single patch. Fifth row:

reconstructions obtained by the KHA.



directly on the raw images. For this, a new KHA image
model was trained on raw image patches without high-pass
filtering. Then, during the super-resolution phase, the input
image was decomposed into ð16� 16Þ patches which were
reconstructed independently of the neighboring patches.
For comparison, the nearest neighbor-based model was
trained in the same way. As can be seen in Fig. 12e, the two
learning-based approaches again show better reconstruc-
tion results than bicubic interpolation. Although the KHA
reconstruction in Fig. 12e is more noisy, it better preserves
the overall tree structure when compared to the nearest
neighbor reconstruction (Fig. 12c). This difference can be
attributed to the better generalization capability of KPCA
which can be seen by applying the nearest neighbor method
to the face image super-resolution problem (i.e., single
patch application) (Fig. 13). In the simple nearest neighbor
reconstruction which replaces the input with the nearest
stored pattern based on the Euclidean distance in the input
image space, three faces were erroneously reconstructed
while the other reconstructions are far better than those of
the KHA as they happen to be near to one of the stored
patterns. The high-frequency restoration approach used for
the natural images failed to capture any details. This mainly
stems from the high dimensionality of the input images
(60� 60), since in this case the training patterns do not form
a sufficiently dense sampling of the input space. As a result,
high and low-frequency components from different images
are mixed together in the reconstruction. Overall, the results
indicate a better generalization capability of KPCA as
compared to the nearest neighbor classifier. This agrees
with the finding of Freeman et al. [13] that, due to its limited
generalization capability, the nearest neighbor method

alone was not sufficient to obtain satisfactory super-
resolution results.

Multipatch image denoising.Here, we adopt the second
scenario of Section 3.2 where the noise was assumed to
mainly contaminate the KPC subspace corresponding to
smaller eigenvalues. As a consequence, training and test set
are the same.

In the experiment, two different noisy images were
constructed by adding white Gaussian noise (SNR 7.72dB)
and salt andpepper noise (SNR 4.94dB) to the 256� 256-sized
Lena image [33]. From each image, 12� 12 overlapping
image patches were sampled at a regular interval of two
pixels. The KPCA image model for the Gaussian kernel
(� ¼ 1)was obtainedby training theKHAoneach training set
with a learning rate � of 0:05 for around 800 sweeps through
the data set. The denoised images were then obtained by
reconstructing the input imageusing the first rPCs fromeach
KPCA model. For comparison, the median filter, Matlab’s
Wiener filter, and wavelet-based methods were applied. The
parameters for the Wiener filter and wavelet-based methods
were chosen in the sameway as in the single-patch denoising
experiments. Two state-of-the-art methods [9], [37] were also
applied: Assuming Gaussian noise, Pizurica and Philips [37]
estimated the probability that a given coefficient in the
wavelet subspace contains a noise-free component. For our
simulation, different wavelet bases were utilized with
Symmlets2, 4, and 8 and Daubechies wavelet2, 4, and 8. In
[9], Choi and Baraniuk estimated the original signal by
projecting the noisy signal into Besov spaces in the wavelet
domain. The factor d for estimating the Besov norm varied
from 2.0 to 3.0 (as recommended in theMatlab code obtained
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TABLE 1
Performance of Different Denoising Methods



from the author’s Web site: http://www.dsp.rice.edu/
~choi/) with an interval of 0.5. Table 1 summarizes the
results. The superior performance of Pizurica and Philips’s
method and themedian filter for each type of noise are based
on prior knowledge of the noise source. On the other hand,
their reduced performance on the other noise type demon-
strates the risk of relying on such an assumption. In contrast,
the KHAperformswell for both noise types indicating that, if
nothing is known about the noise characteristics, the KHA
can be considered as an acceptable alternative to existing
methods. Similar to linear PCA, KPCAwould be expected to
work best if the noise characteristics are Gaussian, however,
not in the input domain, but in the feature space associated
with the kernel. The authors are not aware of any general
insights into when this can be the case, although it has been
observed that projections in feature spaces sometimes look
more Gaussian than in the input space (e.g., [42, p. 464]).
Figs. 14and15 showdenoised images for allmethodswith the
best parameter setting, respectively.

5 CONCLUSION

In this paper, we proposed a generative image model based
on a new method for iterative KPCA. In contrast to other

patch-based modeling approaches, KPCA allows for non-
linear interactions between its basis images. Moreover,
KPCA is capable of capturing part of the higher-order
statistics which are particularly important for encoding
image structure. To overcome the memory complexity of
KPCA, the KHA was proposed as a method for the efficient
estimation of kernel PCs. As a kernelization of the GHA, the
KHA allows for computing KPCA without storing the
kernel matrix, such that large data sets of high dimension-
ality can be processed. The presented super-resolution and
denoising experiments show that the generic image models
obtained from the KHA lead to a comparable performance
to existing computer vision and image processing ap-
proaches that are specifically tailored to these tasks.

Compared to existing super-resolution and denoising
methods, the experimental results obtained using the KHA
are promising. In terms of reconstruction quality, however,
it is difficult to compare our approach with the previous
ones in [23] and [13] since this largely depends on subjective
assessment, not on objective quantities such as the MSE
(which is—as the results on PCA indicate—a poor quality
measure for images). The main difference lies in the applied
learning method: The methods proposed by Hertzmann
et al. [23] and Freeman et al. [13] are based on supervised
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Fig. 14. Denoising Gaussian noise: (a) Original image, (b) input noisy image, (c) median filter, (d) Matlab’s wavelet denoising, (e) Matlab’s Wiener
filter, (f) Choi and Baraniuk’s method [9] (d ¼ 2:0), (g) Pizurica and Philips’s method [37] (Symmlets2), (h) PCA (r ¼ 20), and (i) KHA (r ¼ 40).



learning. In machine learning, it is generally believed that
when feasible, a supervised learning approach often leads
to the best results. However, at the same time, supervised
algorithms can have shortcomings in that the data may be
more expensive to obtain (since they require inputs and
outputs), and the solution can be less flexible in that it is
only useful for the exact task considered. This means that
once trained on a training set containing labeled data, the
above methods can only be used for the one image super-
resolution task it was trained for. In contrast, our image
model, which is only trained on high-resolution images, can
be directly applied to a variety of image restoration tasks,
including denoising and image super-resolution using
inputs of various resolutions, without retraining.

There are various directions for further work. The KHA,
as a general iterative algorithm of KPCA applicable to large
data sets, can significantly enlarge the application area of
KPCA, which as a generic machine learning technique also
enjoys some popularity in other fields including speech
processing [27], character recognition [42], object shape
modeling [47], etc. With respect to image modeling, the best
choice of the kernel remains elusive. We still do not know
which higher-order statistics are important for coding
image content. It is also unclear to what extent the different
available kernels are capable of modeling the occlusion and

superposition phenomena that contribute to the generation
of an image. A further investigation of these questions
could lead to the design of new kernels that specifically
incorporate the generation principles of natural images.
Finally, our current multipatch applications do not expli-
citly enforce spatial consistency between patches except by
averaging in overlapping regions. Similar to the approach
of [13], the explicit use of spatial context in the KPCA
reconstruction process might improve its modeling cap-
abilities considerably.
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Fig. 15. Denoising salt and pepper type noise: (a) original image, (b) input noisy image, (c) median filter, (d) Matlab’s wavelet denoising, (e) Matlab’s
Wiener filter, (f) Choi and Baraniuk’s method [9] (d ¼ 2:0), (g) Pizurica and Philips’s method [37] (Daubechies wavelet8), (h) PCA (r ¼ 20), and
(i) KHA (r ¼ 20).
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