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Abstract
Most laser scanners in engineering are extended versions of tactile measuring machines. These
high precision devices are typically very expensive and hardware modifications are not possible
without impairing the precision of the device.

For these reasons we built our own laser-scanner system. It is based on a multi-camera
reconstruction system developed for fast 3D face reconstructions. Based on this camera system,
we developed a laser-scanner using GPU accelerated stereo-matching techniques and a hand-held
line-laser probe. The resulting reconstruction is solely based on the known camera positions
and parameters. Thus, it is not necessary to track the position and movement of the line-laser
probe. This yields an inexpensive laser-scanner system where every hardware component can be
modified individually for experiments and future extensions of the system.
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1 Introduction

There are two main principles used for laser measurements [11]: time-of-flight and triangu-
lation scanners. Time-of-flight (TOF) scanners measure the time a laser pulse needs from
the emitter to the scene and back to the camera. Because they allow a large measuring
distance, they are used for airborne 3D scanning in geo-sciences as in [16] and for range
sensing in robotics as in [10]. Thus, for hand-held scanning at low distances this technique is
not applicable.

Triangulation scanners measure the displacements of a laser line as seen from one or more
cameras placed in a known distance to the laser emitter. They usually provide a much better
precision than TOF scanners, but can only be used at short distances. In engineering, they
are used for reverse engineering and quality measurements [15]. This type of scanners are
used for example for hand-held triangulation scanners for real-time meshing as given in [3].
This algorithm simplifies the use of triangulation scanners mounted on measurement arms,
which are usually very expensive.

Therefore, we describe in this paper how to build a low cost laser scanner based on
the multi-camera 3D-reconstruction system we presented in [4] and a hand-held line-laser
probe. This enables us to experiment and modify every individual step and component of
the method at low costs and without impairing the complete system.
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To this end, we first discuss related work and necessary prerequisites in Sections 2 and 3
before we describe the individual steps of our method: calibration (Section 4), line extraction
(Section 5) and depth estimation (Section 6). We close with some results of our method and
give a brief outlook to our further plans in Sections 7 and 8.

2 Related Work

Since TOF scanners require high-precision time measurements [11] these devices are usually
expensive. Thus, for low cost scanning devices triangulation scanners are the most appropriate
technology. A low cost laser scanner is described in [17]. Here, a web-cam and a line-laser
probe is used. Because neither the laser position nor the intrinsic camera parameters are
known, a known background pattern is used for camera calibration. The 3D coordinates of
the laser line are approximated based on the plane of the line-laser probe’s light fan.

While laser scanning techniques reconstruct only a single laser point or line at a time,
e.g. [15], it might be faster and cheaper to use no lasers at all and reconstruct larger regions
at a time. Structured light methods project a set of light pattern onto the scene. Similar to
triangulation laser scanners they reconstruct the 3D information from the displacement of
these light patterns for known camera positions [13, 7, 19]. Because of the light projection,
these methods require a dark environment minimizing interfering light sources.

It is also possible to generate depth information without a light source. Stereo matching
approaches like [8, 12, 14, 18, 4] use two or more cameras with known positions. They detect
similar image regions in multiple images and use the camera positions to triangulate the
depth information. However, stereo-matching is a low precision reconstruction method. It is
prone to systematical errors from light conditions, reflections, and repetitions in the images.

Our laser scanning system uses traditional triangulation scanner techniques as in [11] as
well as low cost scanner techniques, see e.g. [17]. We have no information about the position
of the line-laser probe. So, the 3D reconstruction is based solely on the displacements of the
laser line in images taken by the cameras in our multi-camera-system. No target markers or
background patterns are required, because the camera positions are known a priori. Thus,
this approach is similar to the stereo-matching method we used in [4].

3 Prerequisites

A triangulation laser scanner usually consists of at least one camera and a line-laser probe.
We use the multi-camera system with four color cameras, see Figure 1 (left), we built in
a previous project [4, 9]. This camera system was designed for stereo-matching and 3D
face reconstruction and recognition. The cameras are mounted in a planar upside down
Y-constellation, see Figure 1 (middle). Thus, each pair of cameras has a different disparity
direction to avoid potential problems with features aligned with a single disparity direction.
The four cameras are synchronized such that the cameras take the images at the same time.

To extend this camera system to a laser scanner, two line-laser probes are used, see
Figure 1 (right). Each of these probes consists of a laser emitter and a cylindrical lens. The
lens spreads the laser beam to a fan such that a laser line is projected. An additional lens
is used to focus the fan to a certain distance. This results in a sharper projection of the
laser line. The two probes differ by the color of the laser and the light intensity: The red
probe emits a 15mW laser line, the green probe emits a 5mW laser line. Using multiple laser
colors allows to adapt to different material properties of scanned objects. The different light
intensities are partially compensated by the sensor of the color cameras, which has twice as
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Figure 1 A system of four Point Grey Flea®2 FireWire 800 cameras (left) arranged in an upside
down Y-constellation (middle). Red and green line-laser probe (right).

much green as red pixels.
Unlike usual triangulation laser scanners, in our system the position of the line-laser

probe is unknown. The operator holds one of the line-laser probes in his hand and points
it towards the scanned object. For each camera, the visible 2D laser line is extracted, see
Section 5. A specialized stereo-matching algorithm is used to reconstruct the 3D coordinates
of all points on this line, see Section 6.

4 Calibration

Since we use a hand-held laser probe, there is no calibration of the laser probes required. So,
for the calibration of the scanning system the following parameters are required:

1.1 Camera parameters:
a. Aperture angle α of the cameras.
b. Image height h and width w in pixels of the cameras given by their resolution.

1.2 Relative positions of the cameras.

The aperture angle is computed from the physical width of the area on a planar wall that
is visible in the camera image at a one meter distance of the camera to the wall.

The cameras are mounted on a Y-shaped frame of angle plates, see Figure 1 (left) and
(middle). Thus, there is one central camera, which will be used as reference for the other
three so-called outer cameras. In an ideal camera system the cameras are perfectly co-planar,
have parallel view directions, and the central camera has the same distance t̂ to all three
outer cameras in physical space. The outer cameras are mounted in (normalized) direction
t̂i ∈ R2, i = 1, 2, 3, from the central camera, where the angles of t̂i to the horizontal image
direction are 90◦, 210◦, 330◦. In image space the cameras have the relative positions ti = t · t̂i,
where t is the distance measured in pixels of the image centers of the cameras. This can be
computed as t = t̂/s, where s = 2 tan(α/2) · z/w is the size of one pixel in physical space, if
the cameras are placed at a known distance z from a planar wall. This yields the theoretical
relative camera positions ti in image space.

Because of imprecisions in the construction of the Y-frame, the ti have to be corrected.
There is a translational error, because in practice the outer cameras do not have the same
distance to the central camera. Due to the construction of the Y-frame, we assume that the
relative rotational errors of the cameras around the view direction and the horizontal image
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direction are negligible and the relative rotational errors around the vertical image direction
are relatively small. Therefore, we assume that the latter can be estimated sufficiently
accurate by an additional translational error.

To estimate the translational errors, the true distances in image space of a calibration
object captured by all four cameras at the same time are computed. We use as calibration
object a simple red laser-point projected onto a planar wall at distance z to the cameras.
This laser-point gives a point pi, i = 1, 2, 3, 4, in each camera’s image. In an ideal camera
system, pi, i = 1, 2, 3, should appear in the image of the i-th outer camera at position p4 + ti,
if p4 is the point in the central camera. Thus, the translational error is

ci = p4 + ti − pi, for i = 1, 2, 3.

To measure pi for each image, the center of the laser-point is detected as the maximum color
value after applying a Gaussian blur filter to the image.

5 Line Extraction

For triangulation scanners based on stereo-matching of camera images, the depth of a 3D
point can only be computed if it is visible by at least two cameras, see Section 6. Then,
stereo-matching is the process of finding corresponding points in the camera images of two
different cameras at different perspectives. To accelerate this process we only use points that
are on laser lines. So, these laser lines have to be extracted from the images.

For precise depth estimations, the extracted lines must be one pixel wide and the points
on the extracted lines need to be at sub-pixel accuracy. Furthermore, the extraction process
must be robust to noise and must execute in real time. To satisfy these requirements, we
adopt techniques from [2] and [5] in Steps 2.2. and 2.3. of our line extraction algorithm
below.

Our line extraction algorithm is applied to every image and consists of five steps described
below. It takes as input an image, which is given by I : {−w/2, . . . , w/2}×{−h/2, . . . , h/2} →
R3, (x, y) 7→ (r, g, b), where (x, y) are pixel coordinates. The three coordinate functions Ir,
Ig, and Ib of I represent the three color channels of the image.

Line Extraction Algorithm

2.1 Binarize the source image’s red channel Ir (analogously for the green channel)

BI(x, y) =
{

1, if Ir(x, y) > tI

0, otherwise.

The threshold tI is set manually. We use tI = 0.165.
This step removes most of the information from the image that is not necessary for the
line extraction. In BI the laser lines are several pixels wide.

2.2 Convolve the binary image BI with the phase coded disc OPCD

Q(x, y) = 1
πr2

r∑

u=−r

r∑

v=−r
BI(x+ u, y + v) ·OPCD(u, v) ∈ C, (1)

where OPCD is defined in (2) and the radius r of the disc is chosen to be larger than the
maximum width of the laser line. Details are discussed in Section 5.1.
This step yields an image with maximal values at the line centers. This line of maxima
is exactly one pixel wide.
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2.3 A sub-pixel accurate non-maximum suppression NMS is applied to |Q(x, y)| along
direction Arg(Q(x, y))/2 to mask the line of maxima from the rest of the image

N(x, y) = NMS
(
|Q(x, y)| , 1

2 Arg(Q(x, y))
)
∈ R,

where Arg(z) is the principal value of the phase of a complex number z. Details are
given in Section 5.2.

2.4 Binarize N(x, y)

BN (x, y) =
{

1, if N(x, y) > tN

0, otherwise.

The threshold tN is set manually. We use tN = 0.15.
This step yields a binary image with sequences of line center points, that are one pixel
wide, and have well defined start and end points.

2.5 Subsume the center points in BN to line segments. Line segments that are shorter than
50 points are ignored. Details are given in Section 5.3.

This line extraction algorithm is implemented in C++ and OpenGL Shading Language
GLSL. The GPU is used for

binarization of the images (Steps 2.1. and 2.4.),
convolution with the phase coded disc (Step 2.2.), and
non-maxima suppression (Step 2.3.).

Only the line tracing in Step 2.5. is computed on the CPU.

5.1 Phase Coded Disc

In Step 2.2. we use a convolution with a phase coded disc as in [2], which is defined as

OPCD(u, v) =
{

exp(2iArg(u+ iv)) , if
√
u2 + v2 ≤ r,

0 , if
√
u2 + v2 > r,

(2)

where exp(2iArg(u+ iv)) is the exponential representation of a complex number whose phase
is twice the phase of u+ iv ∼ (u, v). Note that Arg(u+ iv) is computed by atan2(v, u), the
four-quadrant arctangent function.

Due to the doubling of the phase in (2), the phase angles rotate twice through [0, 2π] as
(u, v) rotates once around the origin on the phase coded disc OPCD, see Figure 2. This has
the effect that points, whose phase differs by 90◦, have opposite phases (180◦ difference) on
OPCD. Thus, they attenuate in the convolution (1). On the other hand, points with the same
or opposite phases have the same phase on OPCD. Thus, they amplify in the convolution (1).

For the convolution of OPCD with the binarized image BI this has the effect, that the
magnitude |Q(x, y)| is relatively large, if at (x, y) the laser line contains the center of OPCD,
see Figure 2 (left). Otherwise, |Q(x, y)| is relatively small, see Figure 2 (right). So, after
convolving BI with OPCD, the maxima of |Q| are located on the center of the laser line.
However, lines with 90◦ corners cannot be detected with this approach.
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Figure 2 Phase coded discs with red laser line and small arrows visualizing the complex phase
angles.

5.2 Non-maxima Suppression
To find sub-pixel accurate maxima in the convolution images, we adapted the approach of [5]
in two ways. First, the magnitude of Q is used instead of the gradient’s magnitude. Second,
the normal L⊥ to the laser line direction L is used instead of the gradient direction. The
direction of the laser line L(x, y) is determined by half the phase angle of Q(x, y)

L(x, y) = 1
2Arg(Q(x, y)).

Thus, L⊥(x, y) is perpendicular to L at (x, y).

Non-maxima Suppression

3.1 Denote by B the intersection of the line through A in direction L⊥ with the line segment
through the pixels Ai and Ai+1 for a i ∈ {1, . . . , 4}, see Figure 3. Analogously, C is
the intersection in the opposite direction of A. Thus, the values of |Q| at B and C are
linearly interpolated between the values at Ai and Ai+1 respectively Ai+4 and Ai+5.

3.2 If there is no maximum at A compared to B and C, A is ignored in the result.
3.3 If there is a maximum at A, the sub-pixel accurate position is computed as the position

along line L⊥ of the maximum of the quadratic interpolant of the values at A, B, and
C, see Figure 4.

Thus, we store per pixel the decimal places of the sub-pixel coordinates of the maximal value
and the maximal value of |Q|.

5.3 Line Tracing
The extracted line center points in BN have to be assigned to line segments. Thus, the
output of Step 2.5. is a list of line segments (sk)k for each image. Each line segment sk is a
list of line center points (pk,l)nk

j=0.

Line Tracing

4.1 Identify start points pi,0 in BN by matching with the 3× 3 pixel patterns in Figure 5
and generate a new segment sk containing the start point sk = (pk,0)l. Start points,
which are already part of a line segment, are ignored.
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Figure 3 Sub-pixel accurate position of the maximum M on line segment CB [5].

−1 −0.5 0.5 1

M
A

B

C

Figure 4 The quadratic interpolation of the values at A, B, C. At M is the maximum of the
interpolant.

4.2 For a segment sk = (pk,0, . . . , pk,l) check the 8-neighborhood of point pk,l in BN
for pixels with value 1. If direct and diagonal neighbors are found, the former are
preferred. If a new point pk,l+1 is found, it is appended to the corresponding line
segment sk = (pk,0, . . . , pk,l+1). Visited points are tagged to avoid multiple visits in
Steps 4.1 and 4.2.

4.3 Repeat step 4.2 until a point is identified as end-point matching the 3× 3 pixel patterns
in Figure 5.

4.4 An extracted line segment sk is ignored, if it contains less than 50 points.

6 Depth Estimation

Similar to the stereo-matching method in [4], the spatial depth of the point data is recon-
structed from the disparities between images. This requires a calibrated camera system

Figure 5 Start point patterns of 3 × 3 pixels: The white pixels have value 0 in BN , the other
pixels have value 1. Thus, the reddish pixels belong to a laser line. The pink pixel is the query pixel.
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e1

e2 e3

X
d1

d2 d3

Figure 6 Schematic illustration of the four camera images with projections of epipolar lines ei

of a point X (red point) in the central camera’s image on a laser line (red line), see [4].

whose lenses are corrected. For the lens correction we use the method [6, 4] to correct all
camera images to a central projection in a pre-processing step. Then, the calibration as
described in Section 4 is applied.

For our camera system at every instant of time a quadruple of images is generated
containing one image Ii, i = 1, 2, 3, 4 of each camera. Accordingly, the above line extraction
algorithm yields a quadruple of e.g. BiN where the super-script indicates the i-th outer camera
for i = 1, 2, 3 or the central camera for i = 4. From the line extraction step (Section 5)
we have three representations of the laser line per camera image: the line segments sik, the
binary image BiN (x, y), and the sub-pixel accurate laser line center point in N i(x, y). For
each point p4

k,l of the line segment s4
k of the central camera image, a depth is estimated using

the images of the outer cameras:

5.1 Corresponding points in two camera images from two different cameras are identified
along epipolar lines, see Section 6.1.

5.2 For each pair of corresponding points the depth is estimated by an inverse projection,
see Section 6.2.

6.1 Epipolar Lines
After the calibration we assume that all four cameras of the camera system are co-planar
and have parallel view directions. Therefore, a point X̂ at infinite depth in physical space
will have the same image coordinates Xi, i = 1, 2, 3, 4, in all four camera images Ii. A point
Ŷ not at infinity with image coordinates Y4 = X4 has image coordinates Yi 6= Y4, i = 1, 2, 3,
in the outer cameras. As Ŷ moves closer, Yi, i = 1, 2, 3, moves along the negative camera
direction −di. Thus, Ŷ traces out a ray in physical space pointing away from the central
camera. This line is called the epipolar line of X4. The central projection of an epipolar line
in the outer camera images is a straight line, too. Figure 6 shows the projections ei(X) of an
epipolar line of X for the camera system, schematically.

For every point p4
k,l the epipolar line is computed and projected to the outer camera

images. The resulting epipolar line projections ei(p4
k,l), i = 1, 2, 3, are rendered to image Ii

using the Bresenham algorithm [1]. If during this rendering a pixel is set that is also set in
BiN (x, y) an intersection of the epipolar line ei with a line segment in Ii is detected. The
pixel distance between p4

k,l and the sub-pixel accurate laser line position from N i(x, y) at
the intersection is the so-called disparity di(p4

k,l). So, there are up to three disparities di,
i = 1, 2, 3, for each p4

k,l.
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To improve the quality of the reconstruction, we use subsequently the average d(p4
k,l) of

the two disparities that are closest to each other. If there are less than two disparities or the
two closest disparities differ too much, the computations for p4

k,l are aborted.

6.2 Inverse Projection
With the average disparity d, the depth cz in physical space of p4

k,l is estimated by

cz = wt̂

2 tan
(
α
2
)
d
,

where α is the aperture angle of the camera, w the image width in pixels, and t̂ the camera
distance in physical space. The depth cz together with the pixel coordinates p4

k,l allow an
inverse projection of p4

k,l to 3d coordinates [cx, cy, cz]T in physical space as
[
cx
cy

]
= 2

cz · p4
k,l

w
tan

(α
2

)
= p4

k,l

t̂

d
.

7 Results

To demonstrate the effectiveness of our laser scanner system, we scanned a test scene of three
wooden bricks shown in Figure 7(a). The exposure of the cameras was reduced to achieve a
better contrast between the laser line and the surroundings, see Figure 7(b). During a period
of five minutes, we captured ca. 210, 000 points at a rate of two image-quadruples per second.

(a) (b)

Figure 7 Test scene consisting of four wooden bricks (a) and the four images of the test scene
scanned with a red laser line captured by the camera system (b).

Figure 8 shows a front and a top view of the computed point cloud. The overall quality
of the data allows to recognize the shapes of the different wooden bricks, especially the one
in the foreground. The reconstruction has a higher quality and is more robust than the pure
stereo-matching method in [4]. However, an elaborate comparison with other triangulation
methods is doomed by the high costs for other hand-held triangulation devices.
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Figure 8 Point cloud from two different perspectives (left: front view, right: top view) of the
test scene in Figure 7 scanned with a red laser line.

The scan lines in the point clouds show some small periodic noise in view direction of the
cameras. We think this might be caused by three effects:

Aliasing at the line extraction Step 2.2.: The binarization BI(x, y) in Step 2.1. creates
an aliased image of the laser line. In particular, if the aliasing occurs on both sides of the
line simultaneously, this may cause small steps in the detected line centers.
Intersection of ei with the line segments in Ii in Section 6.1: The laser line position from
N i(x, y) is at sub-pixel accuracy while the projected epipolar line ei is not. Although
this approximation does not affect the disparity di very much, a more precise intersection
of the line segment with ei could improve the results.
Calibration in Section 4: The laser point is not detected at sub-pixel accuracy.

Another effect that we observe in the scan data is that some of the scanned laser lines
appear more than once in the data at slightly different depths. This is caused by blurry
camera images, e.g. by motion blur. Additional filtering after the detection of the line centers
(Section 5, Step 2.2.) could be used to avoid these artefacts.

8 Conclusion and Outlook

We demonstrated in this paper how to build a laser scanner device at low costs using an
existing camera system. The presented reconstruction algorithm runs on the GPU and is
fast enough to compute 3D point data during the scan. Despite the remaining problems
(see Section 7) the reconstruction yields better quality and is more robust than the pure
stereo-matching method in [4].

Our laser scanner is limited to scanning from a single camera position. This only allows
to capture one side of an object. For complete scans of objects it is necessary to either move
the camera system or rotate the object e.g. on a turn table. Combining such scans from
different directions usually requires an iterative closest point algorithm.

It is possible to improve the quality of the scanned results in a post-processing step. All
points on a laser line lie in the plane of the laser line fan. Thus, fitting this plane to each
scan line and projecting the points onto this plane along the view direction of the cameras
will probably solve most problems described in Section 7 and will be implemented soon.
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