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Abstract—Most universal steganalysis techniques use an
image model to reconstruct an estimate of the original, un-
manipulated cover from the input. Differences between recon-
structed and input images are an indication of a steganographic
manipulation. In this paper, we analyze the relation between the
modeling error of the image model and detection performance
in the wavelet domain. Based on the modeling error we define
a measure of separability which is highly correlated with
detection performance. We find that in uncompressed images
only fine scales play a role in steganalysis, whereas separability
is spread out over all scales in JPEG images.
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I. INTRODUCTION

With the rise of digital imagery on the internet, digital
images increasingly act as camouflage for steganography.
The simplest scenario for detecting a secret message in
a harmlessly looking image is the so-called cover-stego-
attack. Here, the attacker knows both images, the clean
image (cover) and the stego image (images with embedded
message). The presence of a steganographic manipulation
can be detected by simply noticing a difference between
cover and stego image. In most realistic scenarios, cover-
stego-attacks are not possible because the cover image is not
available to the attacker. Steganalysis has to be performed
on the basis of the input image alone (stego-only-attack). If
additionally the embedding algorithm is unknown, we have
the scenario of blind or universal steganalysis.

Most universal steganalysis algorithm attempt to simulate
the cover-stego scenario by reconstructing the original cover
image from the input image at hand. This is possible to a
certain extent since there exist considerable dependencies
between image elements which can be captured by a suitable
image model. Because the embedded message typically is
independent of the cover image content, it is to be expected
that these dependencies are perturbed by the embedding
process. As a consequence, the prediction error of the image
model should be smaller in a clean, unmanipulated image
than in a stego image. In cases with a large difference
between the prediction errors of a stego image and its clean
version it is quite likely that the steganographic manipulation
can be discovered.

In the present study, we investigate whether such a relation

between the prediction error difference and steganalysis
performance can be found in a realistic universal steganalysis
scenario. We characterize the prediction error in terms of the
explained variance of the image model in the image. Our
hypothesis is that the difference in the explained variances
between a stego image and its clean version (referred to
as separability) correlates with detection rate. As in most
universal steganalysis approaches, we do our analysis in the
wavelet domain. This allows us to investigate the contribu-
tion of single wavelet subbands to overall separability and
steganalysis performance.

II. STEGANALYSIS MODEL

Lyu and Farid’s steganalysis technique [1] can be divided
into three components: (1) the image subband transform, (2)
the modeling of the dependency structure of the transform
coefficients, and (3) the classification.

In the first step, Lyu and Farid’s algorithm transforms
an input image from its pixel representation into its wavelet
representation using QMF (quadrature mirror filter) wavelets
of support size 9 [2]. We used a 3-level wavelet pyramid
decomposition which results in 30 subbands for each image
(3 levels with 3 orientation subbands and one lowband and
3 color channels). Each subband is indexed according to the
scheme depicted in Fig. 3.

The modeling step takes place in the wavelet domain.
In order to model the dependency of a wavelet coefficient
from its neighborhood, we have to define a neighborhood
structure which is shown in Fig. 1. Due to only including
the neighboring coefficients from closest orientations on the
same scale (hence including horizontal and vertical coeffi-
cients for predicting the diagonal subband, but only diagonal
coefficients for both the horizontal and vertical subbands),
and correspondingly only one (diagonal) or two neighbors
(horizontal and vertical) from the coarser scales, neighbor-
hoods in the wavelet representation contain 7 coefficients
from the same color channel as well as the corresponding
central coefficients from the other color channels (not shown
in Fig. 1).

The predictions are computed with linear regression ap-
plied to each subband separately, i. e., the magnitude of the
central coefficient is obtained as a weighted sum of the
magnitudes of its neighboring coefficients greater than a
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Figure 1: Neighborhood structure for image modeling: The
central coefficient to be predicted is C, the neighbors are
highlighted in white (color neighbors not included).

given threshold: It has been shown empirically that only
the magnitudes of coefficients are correlated, and the cor-
relation decreases for smaller magnitudes [3]. The weight
sets over all subbands thus constitute the image model. In
their original approach, Lyu and Farid used standard least-
squares regression for this purpose. In our implementation,
we use Gaussian Process (GP) regression [4] instead after
normalizing all subband coefficients to the interval [0, 1].
This approach leads to slightly more robust, but essentially
comparable results for the purpose of this study. The GP
regression needs an additional model selection step for
estimating the noise content in the image, we use Geisser’s
surrogate predictive probability [4]. It is computed on a
subset of the coefficients: The finest scales are subsampled
by a factor of 5 and the coarser by a factor of 3, each
in both directions. Details on this regression technique can
be found in [4]. Each estimator is trained and used for
prediction on the same subband. Thus, the training and
test set coincide for this application. From the predicted
coefficients Ŝ, small coefficients with amplitude below a
threshold of t = 1/255 are set to zero. For reconstructing
complete images, the algebraic signs are transferred from the
original to the predicted subband coefficients. The residual
r is computed by taking the logarithm of the coefficients of
the input image transform S and the predicted coefficients Ŝ
and subsequently subtracting them, hence r = logS− log Ŝ.

Next, the four lowest statistical moments, i.e. mean,
standard deviation, skewness, and kurtosis, of the subband
coefficients (called marginal statistics in [1]) and of the
subband residuals (called error statistics) are computed,
again for each color and subband separately. Finally, all these
independently normalized statistics serve as feature inputs
for a support vector machine [5]. In this study, we use s = 3
pyramid levels which results in a 120-dimensional feature
vector. The final classification was computed with a 1-norm
soft margin non-linear C-SVM using a Gaussian kernel on

Figure 2: Log prediction error for each scale and orientation
of a wavelet pyramid for the green channel of a clean image
and its stego version by using OutGuess [6]. Differences
are marked with ( ). From left to right: the horizontal,
vertical, and diagonal orientation. From top to bottom: the
fine scales on the wavelet level 1 to the coarse scales on the
wavelet level 3.

2000 images (the training data, 1000 clean and 1000 stego
images), and then tested with a set of 1244 examples
(622 clean and 622 stego images). We randomly divided
the entire set into training and test sets and averaged over
100 splittings, which enabled us to estimate the error of the
detection rate on the test set. The choice of the parameter
C of the SVM and the width σ of the Gaussian kernel was
based on a new paired cross-validation procedure described
elsewhere (in preparation). The SVM is tunable in order to
adapt the rate of false alarms and the detection rate. We
report steganalysis performance at two points of the ROC
curve: (1) detection rate at the point of minimum overall
error; (2) detection rate at a false alarm rate of 0.01. We
prefer to give both values since (1) has a much smaller
variance than (2) which is the standard in the literature. Thus,
comparisons in (1) are more meaningful (Tables I & II).

III. EXPERIMENTS

The starting point of our analysis is the fact that the
prediction error of clean and stego images must show
significant differences in its wavelet coefficient statistics to
be detectable by the subsequent classification stage (Fig. 2).
Intuitively, we expect that steganalysis performance should
correlate with the degree of the differences between their re-
spective prediction errors. In other words, we expect a higher
prediction quality in clean images than in stego images,
and the difference between these prediction qualities should
correlate with steganalysis performance. To determine the
quality of the prediction in a given subband S of the wavelet
decomposition, we use the explained variance VS

expl which
is computed from the original wavelet coefficients XS =
{X(i, j)}i,j∈S in S and their values X̂S = {X̂(i, j)}i,j∈S
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explained variances VS,c
expl for S in the clean image and
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expl in the corresponding stego image, from which we

derive a (relatively crude) measure for the difference in the
prediction qualities between both images as

∆VS
expl = VS,c

expl − V
S,s
expl.

We will refer to this measure as the separability of the
subband S in the wavelet decomposition. A higher sepa-
rability (either in a single subband or over all subbands)
should generally lead to a higher steganalysis performance,
although the reverse is not necessarily true: two pairs of
clean and stego images can have similar separabilities, but a
different steganalysis performance because our separability
measure ∆Vexpl does not capture all possible differences
between the two prediction error distributions.

Both separabilities and steganalysis performance were
determined on a database containing (1622) (640 × 480)
never compressed PNG color images provided by the Ger-
man Federal Office for Information Security. From these
images, steganograms were generated using three standard
algorithms: (1) Straight up ±1 embedding [7]; (2) Straight
up LSB replacement; (3) Straight up ternary embedding [8].
The embedding ratios tested were 75, 50, 40, 30 and 25%.
Furthermore, we converted the 1622 PNG images into JPEG
(with a quality level of 60 to 100) and applied the same three
embedding methods as above in the JPEG domain using F5
[9]. Here, the tested embedding ratios were 90, 70, 50, 30
and 10%. In all cases, only the central 256× 256 region of
each image was selected for analysis.
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Figure 3: Subbands of the wavelet decomposition in the
Fourier domain. Subbands 1-10 are red (R), 11-20 green
(G) and 21-30 blue (B), the finest scales have 1, 2, 3 as last
digit, medium scales 4, 5, 6, and large scales 7, 8, 9. The
lowbands have indices 10, 20 and 30.

In the first experiment, we compared separabilities be-
tween subbands to find out whether only a fixed number

of subbands shows a high separability, consistently over
all images, or whether the most distinctive subband varies
from image to image. For this purpose, we identified the
subband with the highest separability value for each image
and generated a histogram over all PNG and JPEG images
separately (Fig. 4).
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Figure 4: ∆Vexpl over all PNG (straight-up ±1 embedding at
75% embedding ratio ) and JPEG image pairs (F5-ones
with ±1 embedding and 90% embedding ratio ). The
abscissa is the index of the wavelet subband shown in Fig. 3.
The ordinate gives the number of image pairs in which the
corresponding subband has the highest separability.

Fig. 4 shows an interesting difference between both image
classes: the subbands of PNG images with highest sepa-
rability are consistently at the finest scales, with a strong
dominance of the diagonal orientation subbands (3, 13, 23),
whereas the most distinctive subbands of JPEG images do
not show a consistent pattern and are spread over all wavelet
bands.

In the second experiment, we investigated whether high
separability values lead indeed to a higher steganalysis
performance. In addition, we tested whether this correlation
is more pronounced with the separability value of the most
distinctive subband, or with the average separability over all
subbands. The results for the 6 embedding algorithms tested
and various embedding ratios are given in Tables I and II. To
enhance readability, the highest table entry per image class
(PNG or JPEG) and embedding ratio is highlighted with a
dark gray background, and the second best with a light gray
background.

Table I demonstrates that in the case of PNG images,
the separability of the most distinctive subband is a bet-
ter predictor of steganalysis performance than the average
separability over all subbands. This is consistent with our
findings in the first experiment where we found that mainly
the diagonal fine detail bands contribute most to the overall
separability. In the case of JPEG images (Table II), this
difference is less clear-cut, as was to be expected from
the spread-out separabilities in our first experiment: both
separability of the most distinctive subband and average



Table I: Separability of subbands (∆Vexpl) over all PNG images in comparison to different embedding methods and
embedding ratio: PD (in %) indicates the detection performance, PFA (in %) the false alarm at the point of minimum
overall error, P 0.01

D (in %) the detection performance at false alarm rate of 1 %, and ER the embedding rate. Each image
pair (clean and stego images) determines max, pos, and mean. mean (in %) is the mean value of ∆Vexpl over all 30 bands.
max (in %) indicates the highest ∆Vexpl value over all bands and pos labels the position of max. All three values are
obtained by averaging over all image pairs (1622 clean & 1622 stego images).

Straight-up: plus-minus-1
ER max pos mean PD PF A P0.01

D

75% 3.2460 23 0.6907 99.44 0.4823 99.66

50% 1.7880 23 0.3598 97.20 0.9646 90.82

40% 1.1050 23 0.2385 93.88 0.9646 63.75

30% 0.3950 23 0.0815 82.44 0.9646 7.74

25% 0.1450 10 0.0266 60.92 0.8039 2.22

Straight-up: replacement
max pos mean PD PF A P0.01

D

2.7000 23 0.7172 98.81 0.9646 98.58

1.4600 23 0.3997 95.21 0.9646 75.59

0.9140 23 0.2673 91.00 0.9646 37.19

0.8700 10 0.1286 68.72 0.9646 7.30

0.3400 10 0.0409 55.53 0.9646 1.96

Straight-up: ternary
max pos mean PD PF A P0.01

D

3.0190 23 0.8337 99.25 0.9646 99.46

1.6550 23 0.4673 96.82 0.9646 87.26

1.0490 23 0.3130 92.77 0.9646 52.66

0.3790 23 0.1345 77.25 0.9646 8.27

0.3310 10 0.0421 58.29 0.9646 2.74

Table II: Just as Table I, but for JPEG images: effective change ratios are slightly different.
F5-ones: plus-minus-1

ER max pos mean PD PF A P0.01
D

90% 3.1880 10 0.3978 95.58 0.9646 88.23

70% 2.1960 10 0.3240 95.14 0.9646 82.73

50% 1.2690 10 0.2055 95.70 0.9646 86.95

30% 0.8350 30 0.2009 95.00 0.9646 85.06

10% 0.5330 13 0.1238 94.76 0.9646 82.30

F5-ones: replacement
max pos mean PD PF A P0.01

D

5.2710 30 0.9272 96.32 0.9646 89.61

3.0310 23 0.6303 95.62 0.9646 86.05

2.3070 23 0.5064 95.67 0.9646 86.56

3.9680 20 0.5820 95.50 0.9646 86.45

1.5730 30 0.1705 95.27 0.9646 83.72

F5-ones: ternary
max pos mean PD PF A P0.01

D

4.0240 13 0.8687 96.05 0.9646 87.65

3.0840 3 0.7025 95.41 0.9646 84.38

3.5920 30 0.6032 95.24 0.9646 84.68

2.9410 30 0.4573 95.19 0.9646 83.91

0.9400 30 0.2112 94.87 0.9646 82.76

separability are strongly correlated among each other, and
similarly correlated to steganalysis performance.

IV. CONCLUSION

Our investigation on the relation between separability
and detection performance showed that both quantities are
indeed highly correlated. In uncompressed image formats
such as PNG or BMP, we found for the tested embedding
methods that the relevant wavelet bands for steganalysis
performance are located at fine scales. In contrast, images
with compression schemes based on the discrete cosine
transform (DCT) such as JPEG images did not show a
concentration of separability in the fine subbands. Here,
separability was spread out across different scales. This can
be attributed to the DCT which spreads the bits manipulated
by the embedded message over the whole image in the
spatial domain.

When building specialized steganalyzers for uncom-
pressed images, our results imply that it is sufficient to
investigate the fine scales of the wavelet transform. In
a more general setting, our separability metric could be
used to construct an adaptive image basis for a given type
of embedding during training. In wavelet packet or local
cosine bases, for instance, the decision on whether a certain
subband should be further decomposed can be based on the
separability of the subband.
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