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Abstract

In this paper, we use large neighborhood
Markov random fields to learn rich prior
models of color images. Our approach ex-
tends the monochromatic Fields of Experts
model (Roth & Black, 2005a) to color images.
In the Fields of Experts model, the curse of
dimensionality due to very large clique sizes
is circumvented by parameterizing the poten-
tial functions according to a product of ex-
perts. We introduce simplifications to the
original approach by Roth and Black which
allow us to cope with the increased clique
size (typically 3x3x3 or 5x5x3 pixels) of color
images. Experimental results are presented
for image denoising which evidence improve-
ments over state-of-the-art monochromatic
image priors.

1. Introduction

The problem of characterizing a prior distribution of
natural images is at the foundation of many low-
level vision problems such as image denoising, super-
resolution, inpainting (i.e., filling-in of missing image
regions), as well as stereo disparity estimation. When-
ever a “scene” must be inferred from noisy, degraded
or partial image information, a natural image prior is
required (Freeman et al., 2000). The inferred scene
should be consistent with the relevant information in
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the deteriorated input image data, but at the same
time it should make sense visually. Examples of a
“scene” may be a denoised image (inferred from a noisy
one), a depth map (inferred from local stereo dispari-
ties), or a high-resolution image (inferred from a low-
resolution one). Possibly the simplest example of an
image prior is pairwise smoothness: neighboring pixels
are much more likely to have similar grey values than
very different grey values. This is a typical definition
of how natural scenes “should behave”.

In a recent paper, Roth and Black (Roth & Black,
2005a) introduced a generic Markov random field im-
age prior over extended neighborhoods—the Fields
of Experts model—which is capable of representing a
richer prior structure for images than pairwise smooth-
ness. In order to cope with the large clique sizes in-
volved, they parameterize the potential functions in
terms of filters and associated coefficients. Learning
in the high dimensional space of the clique then be-
comes merely learning the filters and the coefficients.
With the resulting prior image model, they present re-
sults for image denoising and inpainting at the level
of the current state-of-the-art. In a subsequent pa-
per, the same authors obtained cutting-edge results on
optical flow estimation by using the same parametric
high-order Markov random field model (Roth & Black,
2005b).

In this paper we build on their results by generalizing
the Fields of Experts model to a prior model for color
images. This means that tasks like image denoising,
inpainting or super-resolution do not need to be done
independently for each channel, but can be performed
directly over a multiband image in such a way that
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the correlations between the different channels can be
exploited by the model. As far as we know, this is
the first time that a high-order Markov random field
prior for color images has been reported. Although
we use a näıve learning procedure, we present exper-
imental results that show improvements of the color
image prior over the state-of-the-art monochromatic
prior reported in Roth and Black (2005a). We expect
these improvements to become more significant after
optimizing the learning algorithm.

2. Background

Natural scenes consist of surfaces that are often formed
by homogeneous materials. As a result, the spectral
and spatial structures of natural images are highly cor-
related. This fact has been confirmed by a number of
colorimetric studies of natural scenes (Burton & Moor-
head, 1987; Ruderman et al., 1998). These correlations
constitute the basis of the color constancy capabilities
of natural visual systems (Maloney, 1986). A straight-
forward idea is to use them for image processing tasks
such as the denoising or super-resolution of color im-
ages. Here, we intend to develop an approach in the
context of high-order Markov random fields that is ca-
pable of coding the localized spatial and spectral de-
pendencies of color images in a very natural manner.
To this end, we will extend the monochromatic model
in Roth and Black (2005a) to multiband images.

In Roth and Black (2005a), the authors have merged
the ideas of learning in Markov random fields (Zhu
et al., 1998) and sparse image coding (Olshausen &
Field, 1997) in order to develop a high-order Markov
random field model where the cliques are square image
patches of typically 3x3 and 5x5 pixels. The potential
functions over these cliques are then assumed to be
products of experts (Hinton, 1999), i.e. products of
individual functions φf (with a parameter αf ) of the
response of a filter Jf to the image patch xc:

φc(xc;J, α) =
F∏

f=1

φf (xc;Jf , αf ). (1)

These are assumed to be stationary (φc := φ hence-
forth), i.e. every clique in the image will have the same
parameter vector θ = {Jf , αf : 1 ≤ f ≤ F}.

The particular form they postulate for the expert is
related to the Student-T distribution, and reads

φf (xc;Jf , αf ) = (1 +
1
2
〈Jf ,xc〉2)−αf . (2)

It is interesting that, for positive α’s, this expression
has high value when the patch xc and the filter Jf are
less coincident, which is the opposite of typical defini-
tions for potential functions. This is in principle not a
problem, though, since the parameters will be learned
accordingly (i.e. smaller α’s will be associated to those
filters which correspond to more likely configurations).

By invoking the Hammersley-Clifford theorem, which
states that the joint probability distribution of a
Markov random field with clique set C can be writ-
ten as

p(x) =
1

Z(Θ)

∏
c∈C

φc(xc), (3)

the model becomes

p(x) =
1

Z(Θ)

∏
c∈C

F∏
f=1

(1 +
1
2
〈Jf ,xc〉2)−αf . (4)

Both the Jf ’s and αf ’s are learned from a training
set of grey images using contrastive divergence (for
details, see Roth and Black (2005a)). Once the model
is learned, inference is performed by gradient ascent on
the log-posterior. Roth and Black reported state-of-
the-art results for both denoising and inpainting with
the obtained image prior.

3. The Color Image Prior

The contribution of this paper consists of extending
the model of Eq. 4 to color images. In the following,
we describe how this can be accomplished despite the
significant increase in the dimensionality of the space
in which learning must be performed.

3.1. Learning the Model

The assumptions made in our model are as follows:
first, we assume the parametric form given in Eq. 4
as defining the class of probability distributions which
we use to model the color image data. This itself de-
fines an exponential family model. Second, we restrict
ourselves to modeling potential functions φ(xc;J, α)
in cliques of sizes 3x3x3 and 5x5x3 pixels (the last
digit refers to the 3 color channels—the model was
trained on the RGB color space). Third, we choose
a fixed basis of filters Jf ’s by performing a singular
value decomposition of the covariance matrix of the
training data. Finally, we select the parameters α by
maximum-likelihood learning.

The strongest of these assumptions is the use of the
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filters J as the eigenvectors of the covariance matrix.
Ideally, the filters themselves should be learned by
maximizing the likelihood. However, given the dimen-
sionality of the cliques that arise in this color model—
respectively 27 and 75 for the two clique sizes—we
found this to be unfeasible in practice (at least in
the 5x5 case). On the other hand, this assumption
seems prudent given the lack of a feasible maximum-
likelihood solution. Principal components describe the
directions (color patches) in which real color patches
in images vary the most. Eigenvalues give the rela-
tive variance across the different directions. Indeed,
our results indicate that even under this assumption
significant improvements are obtained over monochro-
matic image priors.

To determine our filters (Jf ’s), we randomly selected
50,000 3x3x3 and 5x5x3 patches, cropped from images
in the Berkeley Segmentation Database (Martin et al.,
2001), and performed a singular value decomposition
on their covariance matrices. We ignored the com-
ponent with highest variance, which corresponded to
a uniform grey image (Roth & Black, 2005a)—this is
needed to make our model invariant to intensity, and is
found to give better results in practice (Welling et al.,
2002).

Under this scenario, estimation of the α’s in our model
takes the following form: Let D = {X1, X2 . . . XM}
be a set of training images, p(D|Θ) be the likeli-
hood of the training images given the model, and
R = {Y1, Y2 . . . YN} be a set of random images
sampled from p(x). Let Θ = {θ1, θ2 . . . θF } =
{(J1, α1), (J2, α2) . . . (JF , αF )} be our set of filters,
and their corresponding weights. Then the likelihood
of our training images, p(D|Θ) is given by

p(D|Θ) =
M∏
i=1

1
Z(Θ)

∏
c∈Xi

φ(xi
c;J, α), (5)

where an estimate of Z(Θ) is given by

Z(Θ) ∝ 1
N

N∑
i=1

∏
c∈Yi

φ(xi
c;J, α). (6)

From Eq. 5 we obtain the log-likelihood,

log p(D|Θ) =

 M∑
i=1

∑
c∈Xi

F∑
f=1

αfψ
(
Jf ,xi

c

)−M logZ,

(7)

where ψ(a, b) = − log(1+ 1
2 〈a, b〉

2). Taking the deriva-
tive with respect to a particular αk gives

∂

∂αk
log p(D|Θ) =

(
M∑
i=1

∑
c∈Xi

ψ
(
Jk,xi

c

))
−M ∂

∂αk
logZ.

(8)

Finally, the derivative of the log partition function is
given by

∂

∂αk
logZ(Θ) =

∂
∂αk

Z(Θ)

Z(Θ)

=

∑N
i=1

[(∑
c∈Yi

ψ(Jk,xc)
) (∏

c∈Yi
φ(xc;J, α)

)
]∑N

i=1

∏
c∈Yi

φ(xc;J, α)
, (9)

and the update-equation for gradient ascent on the α’s
is just

α← α+ µ{ ∂

∂αi
log p(D|Θ)

∣∣i ∈ (1 . . . N)} (10)

where µ is a user-specified learning rate.

As can be seen from the equations, we actually perform
gradient ascent with respect to the α’s only (Eqs. 5
– 10), which significantly simplifies the learning prob-
lem as previously mentioned. Since our α’s had been
initialized to zero, we have that φ(xc;J, α) = 1 and as
a result the posterior distribution is truly flat at this
stage. This allows us to compute the right-hand side
of Eq. 9 by summing over N truly random images
(i.e. the Yi’s are generated according to a uniform dis-
tribution), meaning that we do not need to perform
CPU-intensive sampling. Such a result is only possi-
ble during the first iteration. After the first iteration,
the α’s are no longer zero, and as a result the pos-
terior distribution is no longer flat. From this point
on, estimating the partition function becomes compu-
tationally very intensive because of the need to run a
sampler to obtain each one of the N samples needed
to compute Eq. 9.

Fortunately, we experimentally found that by perform-
ing only one step of gradient ascent, it appeared that
we had arrived at a maximum likelihood solution. This
was found by noticing that, after the first iteration,
only the absolute values of the α’s changed, whereas
their relative values appeared to remain approximately
the same. This implies that the shape of the posterior
distribution remains the same after the first iteration,
and so there is no need to iterate further (since the
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mode of the posterior remains the same). As a result,
in order to train our model, we actually performed
only one iteration of gradient-ascent. That is, we set
the α’s to be the gradient itself (Eq. 8), since their
initial values are zero. Hence the learning rate for our
gradient-ascent algorithm is in fact arbitrary, as it only
serves to scale the resulting α’s by a constant multiple.
We did not rescale our α’s after learning, and in fact
found that the first α was negative. Although it may
be necessary to set such α’s to zero in order to make
the potentials normalizable, we found that enforcing
this condition made no difference to our experimental
results.

Although this solution is clearly sub-optimal, it is the
only way we are able to subvert the problem of di-
mensionality in our model. Notably in the 5x5 case,
in which we have 74 filters, each with 75 dimensions,
the time taken to estimate the derivative of the log-
partition function through sampling would render our
problem intractable. Instead, by avoiding sampling al-
together, the learning problem becomes trivial in the
3x3x3 and 5x5x3 cases, and even remains feasible with
larger clique sizes.

The images from which we learn these clique poten-
tials are slightly larger than the cliques themselves, in
order to capture the local correlations due to the su-
perposition of cliques. The image sizes for 3x3x3 and
5x5x3 cliques are, respectively, 7x7x3 and 13x13x3.
Ultimately, to train the α’s, we randomly cropped
100,000 images of these sizes from the Berkeley Seg-
mentation Database (Martin et al., 2001) and selected
the corresponding cliques. A further 50,000 random
images were used to estimate the derivative of the log-
partition function (Eq. 9). The filters we obtained are
shown in Figure 1—it is worth noting that the filters
with smaller α’s actually correspond to the more com-
mon configurations, as already discussed, because of
the form of the potential function.

3.2. Inference

In order to perform inference (i.e. denoising in our ex-
periments), we adopted a standard gradient-based ap-
proach, as in Roth and Black (2005a). Gradient-ascent
is a valid technique in the case of denoising, since the
noisy image is ‘close to’ the original image, meaning
that a local maximum is likely to be a global maxi-
mum also (the few experiments we performed with a
Gibbs sampler gave no better results than the gradient
ascent we finally used for all the experiments). In the
denoising problem, the purpose is to infer the most
likely correction for the image given the image prior
and the noise model. The noise model assumed in our

experiments, as in those of Roth and Black (2005a), is
i.i.d. Gaussian:

p(y|x) ∝
∏
j

exp
(
− 1

2σ2
(yj − xj)2

)
. (11)

Here, j ranges over all the pixels in the image, yj de-
notes the real color value of the noisy image at pixel
j, and xj denotes the color to be estimated at pixel j.

Combining the likelihood (Eq. 11) and the prior (Eq.
4), the gradient of the log-posterior becomes

∇x log p(x|y) =
F∑

f=1

αfJ
−
f ∗

(Jf ∗ x)
1 + 1

2 (Jf ∗ x)2
+
λ

σ2
(y−x),

(12)

where ∗ denotes matrix convolution, and the alge-
braic operations above are performed in an elemen-
twise fashion on the corresponding convolution ma-
trix (using periodic boundary conditions at the image
edges). J−f denotes the mirror-image of Jf in two di-
mensions. λ is a critical parameter that gauges the
relative importance of the prior and the image terms.
Eq. 12 is exactly the same as the gradient given in
Roth and Black (2005a), except that each ‘coordinate’
of the filter becomes 3-dimensional, i.e. a color rather
than a grey-value.

The updated image is then simply computed by

xt+1 = xt + δ
∂

∂x
log p(x|y), (13)

where δ is the step-size of the gradient ascent.

4. Experimental Results

We present denoising results under two different con-
ditions. First, we present results in which the different
channels have been corrupted by different amounts of
noise. These results reveal the clear need for a color
image prior in such situations. Secondly, we present
results in which all channels have become equally cor-
rupted, and show that color image priors improve over
non-color image priors even in this case.

The results we show use the color model trained in
the RGB domain, with denoising done in this domain
as well. We compare our results to those of Roth
and Black (2005a), in which denoising is performed
in the YCbCr domain, on each channel independently.
We found that the λ-values used by Roth and Black
(2005a) were unsuitable for color images, so we have
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Figure 1. Above are the filters trained on 3x3 intensity, 3x3 color, and 5x5 color, respectively (the filter with highest
variance, which corresponds to a flat grey patch in all three cases, is excluded). The left column shows these filters sorted
according to their eigenvalues (largest to smallest), while the right column shows them sorted by their importance after
learning (α’s, smallest to largest). The three graphs on the left plot the α’s with respect to the rank of the patches in
the left column. The three graphs on the right plot the α’s with respect to the rank of the patches in the right column.
The fact that the plots are non-monotonic when sorted by eigenvalue demonstrates the necessity for learning the α’s by
maximum-likelihood. The fact that the two rightmost graphs are approximately concave reveals that, although high-order
color features are less prominent than high-order intensity features, they keep being important.
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selected new λ-values for their model. Training of all
λ’s has been done manually, using images other than
those shown for our denoising experiments. This was
done by denoising a test image with several candidate
λ-values, and selecting whichever one yielded the best
results. In addition, step-sizes have been chosen to
grow linearly with the noise level, which was found to
work well in practice. For the model from Roth and
Black (2005a), we used step-sizes of σ/100 or σ/200
(in the 3x3 and 5x5 case, respectively), whereas we
used step-sizes of σ/4 and σ/2 for our model. The
large difference between these values is in fact entirely
superficial, as it is only dependent on the magnitude
of the α’s1.

All tables give the PSNR (= 20 log10(255/σ)) at the
final iteration. Tables 1 and 2 provide both the peak
and the final PSNR, since any difference between them
can often be attributed to a λ-training issue. The im-
ages in all figures reflect the final iteration.

In Figure 2 we show an image in which the green chan-
nel has been almost completely corrupted (σ = 128),
and an image in which a different amount of noise is ap-
plied to each of the three channels. Non-color models
are unable to satisfactorily denoise such images, as we
show by using a model in which learning has been done
independently in each channel. On the other hand, our
color model achieves almost complete restoration. A
fairly low PSNR for the denoised images can be at-
tributed to the fact that there has been a slight shift
in the overall intensity of the final results. Neverthe-
less, from a visual perspective, the images denoised
with the color model appear very satisfactory. The
color model appears appropriate whenever the noise is
not equal across all channels, with the only difficulty
being selection of the weighting coefficients (λ’s), and
the step-sizes (δ’s). We simply used the same λ’s and
δ’s which worked well in the case of equal noise across
each channel, and found that this worked reasonably
well. A more sophisticated λ-training technique may
improve upon these results.

In Figure 3, we show results obtained for denoising an
image in which all three channels have been equally
corrupted, and compare these to the state-of-the-art.
It can be seen that even our 3x3 color model surpasses
the 5x5 intensity model in terms of PSNR. This is an
important result, since the two models have similar
computational complexity (27-dimensional filters for
the color model, as opposed to 25-dimensional filters

1Actually, the magnitude of the alphas is important
when using inference techniques which rely on sampling
(they would need to be rescaled), but it is unimportant for
the gradient ascent approach presented in this paper.

Table 1. Comparison of the two 3x3 models, using image
102061 (castle). PSNR results, shown at peak/final.

model / σ 5 10 15 25
Noisy image 34.25 29.29 24.78 20.46
Roth & Black. 39.56/ 35.28/ 32.91/ 29.97/

39.54 35.24 32.91 29.91
Our model 39.90/ 35.50/ 33.13/ 30.00/

39.90 35.50 33.13 29.98

Table 2. Comparison of the two 5x5 models, using image
102061 (castle). The model from Roth and Black (2005a)
was run with K = 1000, whereas ours was run with K =
250. PSNR results, shown at peak/final.

model / σ 5 10 15 25
Noisy image 34.25 29.29 24.78 20.46
Roth & Black. 39.73/ 35.33/ 32.96/ 29.95/

39.64 35.24 32.95 29.82
Our model 40.26/ 35.91/ 33.49/ 30.41/

40.26 35.91 33.49 30.41

for the intensity model). The results for the 5x5 color
model are statistically (if not visually) superior to all
others—however, we have only run the 5x5 model for a
small number of iterations (250 rather than 1000) due
to its increased complexity, meaning that these results
are not entirely indicative of its true potential.

Tables 1 and 2 compare the intensity model from Roth
and Black (2005a) with our color model in the 3x3 and
5x5 case, respectively. Further results are shown (in
the 3x3 case) in Table 3.

5. Discussion

Results indicate that, whenever noise is unevenly dis-
tributed across the different channels, the proposed
color model delivers significantly better results than
the purely monochromatic model (Figure 2). Natu-
rally, what happens in this case is that the color model
is able to capture the correlations across the channels
and the information available in the less affected chan-
nels is spread over the more affected ones. When the

Table 3. Our PSNR results, using the 3x3 model, shown at
final.
image / σ 5 10 15 25
kangaroo, 69020 38.30 33.14 30.40 27.48
castle, 102061 39.90 35.50 33.13 29.98
horses, 197017 39.25 34.45 31.90 28.84
mushroom, 208001 38.81 34.16 31.76 28.73
train, 351093 38.90 33.63 30.50 26.72
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Figure 2. Top – from left right: The original image, the degraded image with σ = 128 in the green channel only (PSNR
= 13.87), the image restored using our single-channel model (PSNR = 24.15), the image restored using our color model
(PSNR = 28.81). Bottom: The original image, the degraded image with σ = 128 (red), 15 (green), 5 (blue) (PSNR =
13.72), the image restored using our single channel model on each channel separately (PSNR = 23.09), the image restored
using our color model (PSNR = 27.91).

Figure 3. Top – from left to right: Original image, corrupt image with σ = 25 in all channels (PSNR = 20.46), denoised
image using 3x3 model from Roth and Black (2005a) (PSNR = 29.91), using 5x5 model from Roth and Black (2005a)
(PSNR = 29.82), using our 3x3 model (PSNR = 29.98), using our 5x5 model (PSNR = 30.41). Bottom – close-ups of all
images.
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noise has the same magnitude in all channels, the color
prior still outperforms the intensity prior, although the
difference is less significant in this case (Figure 3).

The learned filters (Figure 1) reveal some important
aspects of natural color images. For example, constant
blue and green patches have highest score among all
filters, indicating that the DC components of natural
images for these colors are very prominent. Immedi-
ately after these filters, one notices a predominance of
several non-colored filters which encode higher order
features, such as edges and primitive textures. The
fact that colored edges and textures appear only af-
ter their non-colored counterparts evidences that color
information plays a less dominant role in encoding
high-order features. However, they are nonetheless im-
portant, as can be seen from the approximately con-
cave behavior of the two rightmost graphs in Figure
1. Note that the two large clusters of colored high-
order filters, namely orange-blue and green-red, were
also observed in another study using PCA (Ruderman
et al., 1998). However, the actual sequence of the fil-
ters of this study differs from our SVD results at sev-
eral points. This might be due to the different (and
uncalibrated) datasets used in our study.

A natural next step consists of attempting to learn
the filters from different criteria, possibly maximum-
likelihood as well. Although this is computationally
very intensive for color images, we believe the use of
more sophisticated learning algorithms instead of the
näıve approach presented here may render the problem
feasible.

6. Conclusion

In this paper, we have studied the statistics of color
images under high-order Markov random field mod-
els. By collecting a large set of sample color image
patches from a standard color image database, we have
learned a prior model for color images using a very sim-
ple learning algorithm. The resulting prior model can
be applied in general scene inference problems, includ-
ing image denoising, inpainting and super-resolution.
Results comparing this color image prior to a state-of-
the-art monochromatic prior for denoising problems
evidence performance improvements.
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