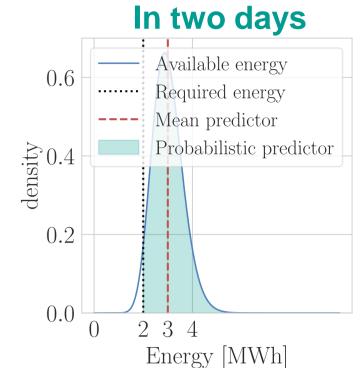

Deep probabilistic modelling for energy forecasting

Why


High uncertainties in renewable energy production (also in demand)

Boss: When do we have the greatest opportunity to produce our product (2MWh) with 100% renewable energy?

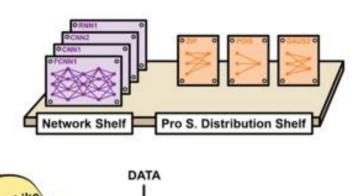
Mr. Meanpredictor: "Tomorrow we expect to have 4MWh compared to 3MWh in two days."

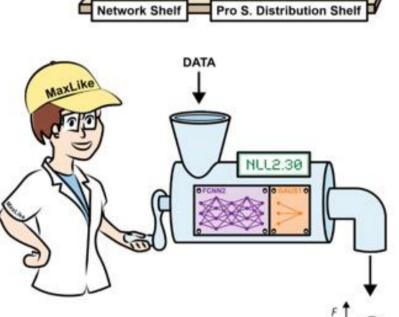
Tomorrow Required energy ---- Mean predictor density 0.4 Probabilistic predictor 0.22 3 4 Energy [MWh]

Mr. Probability:

"Wait, but in two days there is a 96% chance that the energy will be sufficient, compared to the 73% chance we get tomorrow. We should prefer to produce in two days"

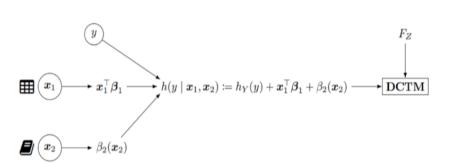
Probability to rescue.

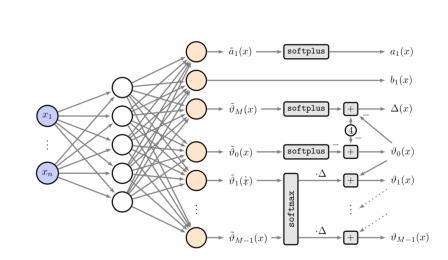



How

Electricity consumed in 30 Minutes [kWh]

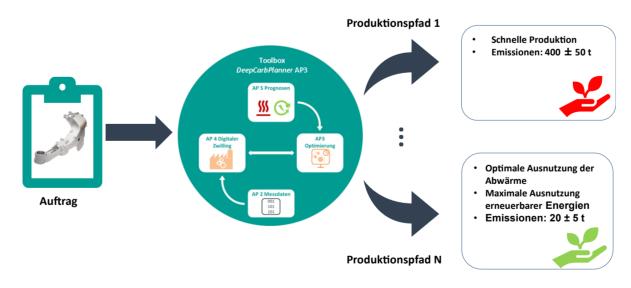
12/24 12/25 12/26 12/27 12/28 12/29 12/30


We combine **Neural Networks** with traditional statistic [1-5]



NN to model interpretable distributions [3]

NN to model complex prob. distributions [2, 5]


Current projects

DeepDoubt

Development of uncertainty measures to increase transparency and traceability in Deep Learning. (BmBF 640k€ Euro 2020 -2023)

DeepCarbPlanner **Workflow**

Decarbonization energy-intensive of industry through smart sector coupling with Al-based probabilistic forecasting and Zeiss operations management. (Carl Stiftung 1M€ 2023-2026)

Al-based planning and operational management of distribution grids microgrids for optimal integration of renewable generators and fluctuating loads in the context of the energy transition.

Our recent work on probabilistic deep learning

- [1] Dürr, Oliver, Beate Sick, and Elivis Murina. Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability. Manning Publications, 2020.

 - [2] Sick, Beate, Torsten Hothorn, and Oliver Dürr. "Deep transformation models: Tackling complex regression problems with neural network based transformation models." 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021.
 - [3] Kook, Lucas, Lisa Herzog, Torsten Hothorn, Oliver Dürr, and Beate Sick "Deep and interpretable regression models for ordinal outcomes." Pattern Recognition 122 (2022): 108263.
 - [4] Dürr, Oliver, Stephan Hörling, Daniel Dold, Ivonne Kovylov, and Beate Sick "Bernstein flows for flexible posteriors in variational bayes." arXiv preprint arXiv:2202.05650 (2022).
 - [5] Arpogaus, Marcel, Marcus Voß, Beate Sick, Mark Nigge-Uricher, and Oliver Dürr "Short-term density forecasting of low-voltage load using Bernstein-polynomial normalizing flows." IEEE Transactions on Smart Grid (2023).