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Abstract. We compare two image bases with respect to their capa-
bilities for image modeling and steganalysis. The first basis consists of
wavelets, the second is a Laplacian pyramid. Both bases are used to
decompose the image into subbands where the local dependency struc-
ture is modeled with a linear Bayesian estimator. Similar to existing
approaches, the image model is used to predict coefficient values from
their neighborhoods, and the final classification step uses statistical de-
scriptors of the residual. Our findings are counter-intuitive on first sight:
Although Laplacian pyramids have better image modeling capabilities
than wavelets, steganalysis based on wavelets is much more successful.
We present a number of experiments that suggest possible explanations
for this result.

1 Introduction

Most steganalytic methods are not capable of detecting general steganographic
manipulations in images (universal steganalysis), since they are tuned to specific
steganographic algorithms. The few currently available universal steganalytic
algorithms [13, 8, 11, 2] are relatively insensitive towards small embeddings. This
is due to the problem of detecting a tiny manipulation (the embedded data) in
a large amplitude signal (the carrier image).

The large amplitude of the carrier signal can be largely reduced by applying
an image model to a suitably transformed image. The image model is capable
of predicting transform coefficients from their local neighborhoods [4] based on
the coefficient statistics of the image. Since an embedded message cannot be
predicted from the neighborhood statistics of the image, it must be part of the
prediction error of the model [13]. Thus, by analyzing the prediction error instead
of the whole image, we effectively remove most of the carrier signal. The residual
is much more affected by the embedding manipulation than the full image which
results in a better detectability.



The initial image transform determines the basis in which the image is mod-
eled and in which the residual is characterized by a suitable set of statistical
descriptors which constitute the input to a final classifier stage. In such a ste-
ganalyzer architecture, a plausible hypothesis can be stated as follows: “The best
image basis (or the best associated subband transform) is that which leads to the
image model with the highest predictability since this most effectively removes
the carrier from a potential stego image”. Here, we show that this is not the
case, and provide some hints on the possible reasons for this counter-intuitive
result.

Our study is based on a modified version of the well-known steganalyzer
of Lyu and Farid [13] which we describe in the next section. The investigated
image bases are QMF wavelets [18] and Laplacian pyramids [1]. In Sect. 3, we
present our results on image modeling and steganalysis performance. Additional
experiments for explaining these results are discussed in Sect. 4. We conclude
with a brief summary in Sect. 5.

2 Lyu and Farid’s Algorithm and Modifications

The input of Lyu and Farid’s algorithm is an image in its pixel representation.
Originally, a wavelet pyramid is built for each color channel (as shown in the
upper path in Fig. 1). Alternatively, the image can be decomposed into a Lapla-
cian pyramid described later (lower path in Fig. 1). Quadrature mirror filters
are used for building the wavelet pyramid [18] with a quadrature mirror filter of
width 9. We get 3(3s + 1) subbands for an RGB image and a pyramid with s
scales and three orientation subbands, i. e. diagonal, vertical, and horizontal ori-
entation. In the case of the alternative Laplacian pyramid representation [1], we
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Fig. 1. The algorithm—schematics

use a standard binomial filter of width 5 to obtain the lowband approximation
of the image. The number of pyramid levels was chosen to be the same as in
the wavelet pyramid, but—since the Laplacian pyramid does not decompose the
image according to orientation—we have only one subband per pyramid level
which results in overall 3s subbands for color images.
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Fig. 2. Neighborhood structure for image modeling (color neighbors not included).
The central coefficient to be predicted is C, the light gray neighbors can be optionally
included but did not lead to significantly different results.

For predicting coefficients from their neighborhood, we need to specify a
neighborhood structure for each image representation which is shown in Fig. 2.
The neighborhood structure for wavelets is the same as in [13] (cf. Fig. 2a), the
Laplacian neighborhood is constructed analogously (cf. Fig. 2b), but without
orientation neighbors. Both representations contain the corresponding central
coefficient from the other color channels in their neighborhoods (not shown in
Fig. 2). Due to only including the neighboring coefficients from closest orien-
tations on the same scale (hence including horizontal and vertical coefficients
for predicting the diagonal subband, but only diagonal coefficients for both the
horizontal and vertical subbands), and correspondingly only one (diagonal) or
two neighbors (horizontal and vertical) from the coarser scales, neighborhoods in
the wavelet representation contain 9 coefficients, in the Laplacian representation
7 coefficients.

The predictions are computed with linear regression applied to each sub-
band separately, i. e., the magnitude of the central coefficient is obtained as a
weighted sum of the magnitudes of its neighboring coefficients greater than a
given threshold: It has been shown empirically that only the magnitudes of co-
efficients are correlated, and the correlation decreases for smaller magnitudes
[4]. The weight sets over all subbands thus constitute the image model. In their
original approach, Lyu & Farid used standard least-squares regression for this
purpose. In our implementation, we use Gaussian process (GP) regression [14,
15] instead after normalizing all subband coefficients to the interval [0, 1]. This
approach leads to slightly more robust, but essentially comparable results for the
purpose of this study. GP regression needs an additional model selection step for
estimating the noise content in the image. For that, we use Geisser’s surrogate



predictive probability [7]. It is computed on a subset of of the coefficients: The
finest scales are subsampled by a factor of 5 and the coarser by a factor of 3,
each in both directions. Details on this regression technique can be found in [15].

Each estimator is trained and used for prediction on the same subband. Thus,
training and test set coincide for this application. From the predicted coefficients
Ŝ, small coefficients with amplitude below a threshold of t = 1/255 are set to
zero. For reconstructing complete images, the algebraic signs are transferred from
the original to the predicted subband coefficients. The residual r is computed by
taking the logarithm of the coefficients of the input image transform S and the
predicted coefficients Ŝ and subtracting them subsequently, hence r = logS −
log Ŝ.

Next, the four lowest statistical moments—i. e. mean, standard deviation,
skewness, and kurtosis—of the subband coefficients (called marginal statistics
in [13]) and of the subband residuals (called error statistics) are computed,
again for each color and subband separately. Finally, all these independently
normalized statistics serve as feature inputs for a support vector machine [17].
In this study, we use s = 3 pyramid levels which results in a 120-dimensional
feature vector for the wavelet representation and in a 48-dimensional vector for
the Laplacian decomposition. The final classification was done with a 1-norm soft
margin non-linear C-SVM using a Gaussian kernel. The choice of the parameter
C of the SVM and the width σ of the Gaussian kernel was based on a new paired
cross-validation procedure described elsewhere ([16], in preparation). The SVM
is tunable in order to adapt the rate of false alarms and the detection rate.

3 Comparison between Wavelet and Laplacian Basis

3.1 Image Modeling Performance

The prediction quality of the image model is measured in terms of the explained
variance in pixel space

Vexpl ≡
Vimg − Verr
Vimg

with the variance Vimg ≡ (1/n)
∑

i,j

(
S(xi, yj) − S̄

)2
of the n image pixels

S(xi, yj) (with mean S̄) and the mean square error Verr ≡ (1/n)
∑

i,j

(
S(xi, yj)−

Ŝ(xi, yj)
)2

where Ŝ(xi, yj) are the predicted pixel values and the (i, j) run over
all pixels in the image3. In addition, we provide explained variances for each
analyzed image scale separately to highlight the relative contribution of each
image scale to the overall error. In this case, variances, errors and predictions
are computed in transform coefficient space instead of pixel space, and the (i, j)
run over all coefficients belonging to a given scale.

3 We prefer explained variance over the frequently used mean square error since it
provides a relative measure of image modeling performance and thus is independent
of the actual scaling of the pixel values.



We compared the explained variances of the two image bases on the familiar
Brodatz texture database [3] which contains 111 640 × 640-sized grayscale im-
ages scanned off black and white prints. In addition, we tested both bases on an
image database containing more than 1600 never compressed RGB color images
provided by the German Federal Office for Information Security. Although tex-
tures are not representative for natural images, they constitute a good testbed
for local Markov random field (MRF) type image models such as ours since they
are statistically uniform at a limited range of scales and orientations and thus
help to reveal potential weaknesses of a model which otherwise could remain in-
visible in natural images with their variable mixture of local textures. Typically,
a higher performance of a local MRF-type model on a texture database leads to
a higher performance on natural images which was also the case in our tests.

Fig. 3 shows that the Laplacian image basis outperforms the wavelet basis
significantly in terms of explained variance, even if training and test region of
the images were not the same. This happened consistently, both in pixel space
(first bar group, “pixel space reconstruction”) and across the different scales
of the Laplace or wavelet decomposition (bar groups numbered 1–4). For RGB
images, the advantages of the Laplacian basis are less pronounced but still sig-
nificant, since the high correlations between the color channels are exploited by
the models as well and thus lead to smaller differences in their prediction per-
formance, see Fig. 4. The better prediction performance of the Laplace basis can
be attributed to two factors: (1) Laplace coefficients are higher correlated with
their neighbourhood than wavelet coefficient magnitudes and thus are easier to
predict; (2) The Laplace pyramid is overcomplete by a factor of 4/3 which allows
for a more finely grained modeling of the local dependency structure.

3.2 Steganalysis Performance

The wavelet and the Laplacian image models were used for determining both
marginal and residual statistics for the above-mentioned image database of never
compressed color images. This is known to be the most difficult setting for steg-
analysis, as the entropies of the images remain high. For instance, JPEG arti-
facts contained in the images from previous compression simplify steganalysis
[11]. Different embedding algorithms and rates were used for creating sets of
stego images from these clean images.

The comparison of the distributions of the residuals for a clean color image
and its corresponding stego version can be seen in Fig. 5. Here, for the sake
of easily recognizable differences, the complete least significant bit plane was
replaced by white noise, serving as a representative of a very simple steganogram.
In Fig. 6, the corresponding distributions for the same color image are shown
for the Laplacian image model. The differences are very small, compared to the
distributions computed with the wavelet model.

From these distributions, we computed the statistical moments for every
color image that serve as associated feature vectors. The dimensionality of these
vectors was 120 for wavelet decomposition, and 48 for Laplacian decomposition.
After normalizing the components of these vectors independently, we carefully
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Fig. 3. Explained variances Vexpl for Wavelet and Laplacian decompositions averaged
over the Brodatz database, for each subband scale and pixel space reconstruction (left-
most bar group). The black bars indicate the standard error of the mean over the
database. Results based on the wavelet representation are shown in orange, results
based on the Laplacian representation in blue. The title “test/training different” in the
legend belongs to both representations and indicates that training and prediction of
the image model were carried out on different sections of the same image.
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between the methods are considerably smaller than in grayscale images.
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channel of a clean image ( ) showing a church vs its stego version ( ). Uniform
random noise was embedded into the least significant bit plane, with a rate of 100 %.
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selected the parameters of the support vector machine and its Gaussian kernel
(SVM, cf. [5]) C and γ by employing a 5-fold cross-validiation scheme specifically
adapted to the steganalysis scenario ([16], in preparation) on 1000 clean and 1000
stego images. Subsequently, we trained the SVM using the values of C and γ
determined in the last step on 2000 images (the training data, 1000 clean and
1000 stego images), and then tested with a set of 1200 examples (600 clean and
600 stego images). We randomly divided the entire set into training and test
sets and averaged over 100 splittings, which enabled us to estimate the error of
the detection rate on the test set. The results showed a considerable variance
for the standard test scenario of steganalysis with a fixed false positive rate of
1 %, but averaging over the 100 splittings turned out to be sufficient for finding
statistically significant differences between the Laplace and wavelet basis.

We tested with two distinct normalization methods: Either each compo-
nent of the vectors is scaled independently to [0, 1]; or only the quantile range
Q0.95−Q0.05 of a component is standardized to [0, 1], while clipping values above
and below. We call the former standard and the latter interquantile normaliza-
tion. With normalization, features of high magnitude exert a less dominant influ-
ence on the results. Additionally, for interquantile normalization, the detrimental
effects of outliers are reduced.

If adapting the wavelet-based classifier such that the false positive rate falls
below 1 %, then (12.6 ± 0.2) %, (30.8 ± 0.7) %, and (69.5 ± 0.9) % of the stego
images can be detected for standard normalization and embedding rates of
10 %, 25 %, and 50 %, respectively. When normalizing the interquantile range
of the features to [0, 1], the detection rates are (8.5 ± 0.2) %, (14.4 ± 0.7) %,
and (65.7± 1.4) %. This is a higher performance than found by Lyu & Farid in
[13]. The accuracies are averaged over 100 test runs. These runs differ in that
we randomly divided the entire set into training and test sets repeatedly. The
full set of the results is shown graphically in Fig. 7, plus the prediction rate on
ternary embeddings [10, 12] and on ±1 embeddings. ±1 embeddings conserve
parity properties of the images as it is described in [12]. In this case, for embed-
ding rates of 50 % and 25 %, (76.8±1.4) % and (37.1±0.6) % of the stego images
can be revealed for standard normalization, and (81.9±0.7) % and (20.7±1.0) %
for quantile normalization. The error bars denote the standard error of the mean
σ = σ/

√
n over the n = 100 test runs, where σ =

√
Var(x) and x is the true

positive rate found.

The prediction accuracies for higher embedding rates are frequently higher
for standard normalization. However, for a reduced feature vector, containing
only error residuals or even a subset thereof, interquantile normalization allows
for higher detection rates.

In Fig. 7, Laplacian predictions are only shown for the highest embedding
rate of 50 %, because their accuracies fall rapidly to values close to that achieved
by random guesses: The true positive accuracies are (4.5 ± 0.1) % and (3.9 ±
0.1) %, for standard and interquantile normalization, respectively. Obviously,
the detection rates of the Laplacian steganalyzer are inferior to those of the
wavelet steganalyzer.
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4 Discussion

The hypothesis we investigate is that a better image model should yield a better
detection rate. According to Figures 3 and 4, the Laplacian representation is
better than the wavelet representation in terms of explained variance. However,
the steganalysis experiments show that the detection performance of the wavelet
model is significantly higher than that of the Laplacian so that our plausible
hypothesis turned out to be wrong. As a consequence the wavelet representation
must have additional properties that allow for a better steganalysis performance
in spite of its inferior modeling capability.

We think that the improved discriminability in the wavelet domain can be
mainly attributed to two reasons:

1. In comparison to the Laplacian, the dimensionality of the feature vectors in
the wavelet representation is tripled since there are more subband statistics.
It is a well-known fact (see, e. g., [9]) that the probability that two classes
are separable increases with the dimensionality of their representation.

2. As described in Sect. 2, the steganalyzer uses a threshold on the coefficients
before estimating the statistical moments of the subband coefficients. This
turns out to be a critical step since this prevents small coefficients from in-
fluencing the feature vectors used for classification. This type of thresholding
estimator is a well-known concept in signal processing where such estimators
are used for denoising. We can think of the prediction step in the stegana-
lyzer as a denoising step since we reconstruct the “true” or denoised image
from the contaminated or “noisy” stego image. Here comes into play a theo-
rem by Donoho & Johnstone [6] which states that a threshold estimator has
a higher denoising performance if the signal representation is sparse. Sparse
in this context means a representation of a signal that needs only a few coef-
ficients to approximate a signal with low error. Although we did not formally
test this on our data, it is a common observation that wavelets are a sparser
representation of natural images when compared to the Laplacian pyramid.
As a consequence, we can expect a more accurate estimation of the resid-
ual in the wavelet representation leading to better estimates of the subband
statistics which finally results in a higher classification performance.

The advantage of a high-dimensional representation can be demonstrated in a
simple experiment: On our test dataset of the 1600 color image pairs in uncom-
pressed format with a 50 % LSB embedding (see Sect. 3.2), we first computed the
model predictions in the Laplacian domain and transformed the predicted images
back into their pixel representation. In the next step, both original image and
stego image were wavelet-transformed and subjected to the same analysis as be-
fore. In this way, the modeling step took place in the Laplacian domain, whereas
the classification step was based on feature vectors with the three-fold dimen-
sionality of the wavelet domain. As a result, detection performance of this hybrid
steganalyzer improved considerably from a true positive rate of (4.5± 0.1) % of
the pure Laplacian steganalyzer to (37.3 ± 1.0)%, although the performance of



the pure wavelet steganalyzer of (69.5±0.9) % could not be achieved. The results
are given at a fixed true negative rate of 99 %.

A second experiment highlights the critical influence of the thresholding step:
Disabling the thresholding process in the wavelet steganalyzer reduces the detec-
tion performance from (69.5± 0.9) % to (27.1± 0.6) %. This demonstrates that
wavelet thresholding plays a role of similar importance to the higher dimension-
ality of the resulting feature vectors.

Finally one might ask why the hybrid steganalyzer from the first experiment
did not reach the performance of the pure wavelet steganalyzer. The reason
for this can be seen in a third experiment where we analyzed the explained
variance in the wavelet domain of both the Laplacian model predictions and
the wavelet model predictions (cf. Table 1). The results show that, although
the Laplacian model is more accurate in its own domain, it does not reach
the accuracy of the wavelet model in the wavelet domain. In our opinion, this
accounts for the observed performance difference between the hybrid and the
pure wavelet steganalyzer.

Table 1. Mean over orientations for wavelet decompositions in % explained variance
of the hybrid and the pure wavelet steganalyzer.

Clean images Clean images Stego images Stego images
(wavelet) (hybrid) (wavelet) (hybrid)

Pyramid level 1 89.6 % 88.7 % 88.5 % 87.9 %
Pyramid level 2 91.8 % 82.5 % 91.2 % 81.3 %
Pyramid level 3 91.9 % 94.3 % 91.4 % 94.2 %

5 Conclusion

In this study we analyzed the relationship between image modeling and de-
tection performance in a universal Lyu & Farid type steganalyzer. Our results
show that a high performance in image modeling does not directly transfer to a
higher steganalysis performance. Although the Laplacian representation leads to
a better image model, it shows an inferior detection performance. From the steg-
analysis point of view, the characteristics of the wavelet representation (sparse
representation and higher dimensionality of the feature vector) turned out to be
more important as it evidently allows the final classification stage to discrim-
inate between the resulting feature vectors more easily. Furthermore, it seems
important to stay in the same transformation space in all steganalysis steps from
image modeling, thresholding, computation of feature vectors to classification.
This study shows a connection between sparsity of the image basis, denoising
and steganalysis performance. In future work, we plan to make this link more
explicit.
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was also partially supported by the German National Academic Foundation. We
would like to thank M. Messmer, O. Schönemann, Medav GmbH (Ilmenau) and
J. Keppler for their help in the project, and H. Schwigon of the German Federal
Office for Information Security for providing us useful data and discussions.

References

1. Adelson, E.H., Burt, P.J.: Image data compression with the Laplacian pyramid.
In: Proceedings of the 1981 Conference on Pattern Recognition and Information
Processing. pp. 218–223. IEEE Computer Society Press (1981)

2. Avcibas, I., Memon, N.D., Sankur, B.: Steganalysis using image quality metrics.
IEEE Transactions on Image Processing 12(2), 221–229 (February 2003)

3. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover
Publications, New York, NY, USA (June 1966)

4. Buccigrossi, R.W., Simoncelli, E.P.: Image compression via joint statistical char-
acterization in the wavelet domain. IEEE Transactions on Image Processing 8(12),
1688–1701 (December 1999)

5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines (2001),
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/

6. Donoho, D., Johnstone, I., Johnstone, I.M.: Ideal spatial adaptation by wavelet
shrinkage. Biometrika 81, 425–455 (1993)

7. Geisser, S., Eddy, W.F.: A predictive approach to model selection. Journal of the
American Statistical Association 74(365), 153–160 (March 1979)

8. Goljan, M., Fridrich, J.J., Holotyak, T.: New blind steganalysis and its implications.
Security, Steganography, and Watermarking of Multimedia Contents VIII 6072(1),
1–13 (February 2006)

9. Haykin, S.: Neural Networks (2nd Edition). Prentice-Hall, Upper Saddle River,
NJ, USA (1999)

10. Holotyak, T., Fridrich, J.J., Soukal, D.: Stochastic approach to secret message
length estimation in ±k embedding steganography. In: Delp, E.J., Wong, P.W.
(eds.) Security, Steganography, and Watermarking of Multimedia Contents. Pro-
ceedings of SPIE, vol. 5681, pp. 673–684. International Society for Optical Engi-
neering, SPIE, San Jose, CA, USA (2005)

11. Holotyak, T., Fridrich, J.J., Voloshynovskiy, S.: Blind statistical steganalysis of
additive steganography using wavelet higher order statistics. In: Dittmann, J.,
Katzenbeisser, S., Uhl, A. (eds.) Communications and Multimedia Security. Lec-
ture Notes in Computer Science, vol. 3677, pp. 273–274. Springer-Verlag, Berlin,
Germany (September 2005)

12. Ker, A.D.: Improved detection of LSB steganography in grayscale images. In:
Fridrich, J. (ed.) Information Hiding. Lecture Notes in Computer Science, vol.
3200, pp. 97–115. Springer-Verlag, Berlin, Germany (December 2004)

13. Lyu, S., Farid, H.: Steganalysis using higher-order image statistics. IEEE Transac-
tions on Information Forensics and Security 1(1), 111–119 (March 2006)



14. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von
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