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ABSTRACT
Most current algorithms for blind steganalysis of images are
based on a two-stages approach: First, features are extracted
in order to reduce dimensionality and to highlight potential
manipulations; second, a classifier trained on pairs of clean
and stego images finds a decision rule for these features to
detect stego images. Thereby, vector components might vary
significantly in their values, hence normalization of the fea-
ture vectors is crucial. Furthermore, most classifiers contain
free parameters, and an automatic model selection step has
to be carried out for adapting these parameters. However,
the commonly used cross-validation destroys some informa-
tion needed by the classifier because of the arbitrary splitting
of image pairs (stego and clean version) in the training set.
In this paper, we propose simple modifications of normaliza-
tion and for standard cross-validation. In our experiments,
we show that these methods lead to a significant improve-
ment of the standard blind steganalyzer of Lyu and Farid.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Algorithms, Experimentation, Performance, Security

Keywords
Steganalysis, model selection, cross-validation, SVM

1. INTRODUCTION
Most steganalytic methods are not capable of detecting

general steganographic manipulations in images (blind or
universal steganalysis), since they are tuned to specific steg-
anographic algorithms. The few currently available univer-
sal steganalytic algorithms [10, 6, 8, 1] are typically based
on a two-stage approach: First, features are extracted from
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the tested images. Thereby, the dimensionality of the image
representation and the proportion of the carrier signal is re-
duced such that steganographic manipulations are easier to
detect. In the second stage, a previously trained classifier
uses the prepared features as inputs. For instance, Support
Vector Machines (SVMs) are powerful general purpose clas-
sifiers which allow for excellent results at reasonable com-
putational costs. They are used in a number of algorithms
for steganalysis [10, 6, 8, 1]. Nonlinear soft-margin SVMs
(C- or ν-SVMs using a kernel) improve steganalysis perfor-
mance significantly [10] at the expense of requiring careful
normalization and model selection. Normalization is cru-
cial, because the components of the feature vectors might
vary significantly in their values. These SVMs contain a
trade-off parameter (C or ν) for controlling the noise influ-
ence during training and typically also a kernel parameter
such as the width of a Gaussian kernel or the degree of a
polynomial kernel. Both parameters have to be optimized
in a model selection procedure.

Cross-validation is the most common method for auto-
matic model selection which is very successful in many ap-
plications, but standard versions thereof [4] do not consider
the special properties of steganalysis training: In a training
set for steganalysis, there exist pairs of images that are very
similar, namely a clean image and its associated stego image
which was created by embedding a message in the clean im-
age. When a random partition of the training set is created
during standard cross-validation, typically some of these im-
age pairs are separated. Unfortunately, this makes it almost
impossible for the classifier to find a suitable decision bound-
ary between clean and stego images as we will demonstrate
below. We therefore propose a simple modification of stan-
dard cross-validation, termed paired cross-validation which
partitions always in such a way that pairs of clean and stego
images are never separated.

Our experiments are based on a modified version of the
well-known blind steganalyzer of Lyu and Farid [10] which
we describe in the next section. In Sect. 3, we present our
proposals for normalization and automatic model selection
for an improved steganalysis performance. Experimental re-
sults for some important image classes and embedding types
are shown in Sect. 4. Finally, we conclude with a brief sum-
mary in Sect. 5.

2. LYU & FARID’S STEGANALYZER AND
MODIFICATIONS

The input of Lyu and Farid’s algorithm is an image in its
pixel representation. A wavelet pyramid [14, 15] is built for
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Figure 1: The algorithm—schematics

each color channel (as shown in the second block in Fig. 1)
with a quadrature mirror filter of width 9 [14, 15]. We get
3(3s + 1) subbands for an RGB image and a pyramid with
s scales and three orientation subbands, i. e. diagonal, ver-
tical, and horizontal orientation.

For predicting coefficients from their neighbors (fourth
block in Fig. 1), we need to specify a neighborhood struc-
ture. The neighborhood structure is the same as in [10], i. e.,
the four neighboring coefficients of the same subband, par-
ent coefficient from the larger scale and the corresponding
cousins from the subbands of the same scale. In addition, it
contains the corresponding central coefficient from the other
color channels in their neighborhood. Due to only including
the neighboring coefficients from closest orientations on the
same scale (hence including horizontal and vertical coeffi-
cients for predicting the diagonal subband, but only diagonal
coefficients for both the horizontal and vertical subbands),
and correspondingly only one (diagonal) or two neighbors
(horizontal and vertical) from the coarser scales, neighbor-
hoods in the wavelet representation contain 9 coefficients.

The predictions are computed with linear regression ap-
plied to each subband separately, i. e., the magnitude of the
central coefficient is obtained as a weighted sum of the mag-
nitudes of its neighboring coefficients greater than a given
threshold. It has been shown empirically that only the mag-
nitudes of coefficients are correlated, and the correlation de-
creases for smaller magnitudes [2]. The weight sets over all
subbands thus constitute the image model. In their orig-
inal approach, Lyu and Farid used standard least-squares
regression for this purpose. In our implementation, we use
Gaussian process (GP) regression [11, 12] instead after nor-
malizing all subband coefficients to the interval [0, 1]. This
approach leads to slightly more robust, but essentially com-
parable results for the purpose of the experiments shown in
this paper. GP regression needs an additional model selec-
tion step for estimating the noise content in the image. For
that, we use Geisser’s surrogate predictive probability [5]. It
is computed on a subset of the coefficients: The finest scales
are subsampled by a factor of 5 and the coarser by a fac-
tor of 3, each in both directions. Details on this regression
technique can be found in [12].

Each estimator is trained and used for prediction on the
same subband. Thus, training and test set coincide for this

application. From the predicted coefficients Ŝ, small coeffi-
cients with amplitude below a threshold of t = 1/255 are set
to zero. For reconstructing complete images, the algebraic
signs are transferred from the original to the predicted sub-
band coefficients. The residual r is computed by taking the
logarithm of the coefficients of the input image transform S

and the predicted coefficients Ŝ and subtracting them sub-

sequently, hence r = logS − log Ŝ (fifth block).

Next, the four lowest statistical moments—i. e. mean,
standard deviation, skewness, and kurtosis—of the subband
coefficients (called marginal statistics in [10]) and of the sub-
band residuals (called error statistics) are computed, again
for each color and subband separately (sixth block). Finally,
all these independently normalized statistics serve as feature
inputs for a support vector machine [13]. In this study, we
use s = 3 pyramid levels which results in a 120-dimensional
feature vector. For our results, we normalized the resulting
feature vectors with two different normalization methods de-
scribed in the next section (seventh block). In the original
work of Farid and Lyu [10], for the nonlinear SVM, they
optimized all parameters of the SVM using a grid search
(eighth block).

In our approach, the final classification was done with a
1-norm soft margin non-linear C-SVM using a Gaussian ker-
nel. The dual optimization problem to be solved for train-
ing [13] consists of finding an optimal weight set αi that
maximizes a loss function W (α) under the so called box
constraint

max
α∈Rm

W (α) =
∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj) , (1)

subject to 0 ≤ αi ≤ C
m
∀i = 1, . . . ,m ,

∑m
i=1 αiyi = 0 ,

where yi is a label corresponding to the feature vector xi,
k(·, ·) is a kernel, C a parameter that controls a trade-off
between accuracy on the training set and smoothness of the
solution, and m is the number of training examples (xi, yi).
The resulting decision function of the SVM is then

fα,b(x) = sgn
(∑m

i=1
αiyik(xi,x) + b

)
(2)

where the offset b of the separating hyperplane can be set
such that the SVM has a desired false alarm rate on the
training set. This is a requirement for steganalysis, since
the penalty for classifying a negative (clean) example as a
false positive is generally assumed to be higher than the
other way round: the penalty for classifying a manipulated
image as a clean one. In other words, we want to make sure
that the classifier gives alarm only if being really sure about
it. Therefore the false positive rate is adapted to be below
some given level: In the literature, a common rate is 1 %, or
a true negative rate of 99 %, equivalently. Hence, an asym-
metrical classifier with an integrated tuning of the offset b
is needed. Adapting b in (2) means shifting the separating
hyperplane to the class of clean images where margin er-
rors are more and false positives are less tolerable. In doing
so, the classifier can be readily set to every position on a
receiver operating characteristic (ROC) curve. This asym-
metry of the classifier does not only improve performance
for the training of the final classifier, but for the adapted



model selection stage as well. In each model selection step,
the model was optimized with respect to the desired false
positive rate, not only with respect to the best symmetrical
accuracy. In our experiments, this affected the performance
slightly for small embedding rates, and thus all results shown
in this paper are created using this approach.

The choices of the soft margin parameter C and the width
γ of a Gaussian kernel

k(x,x′) = exp
(
− γ‖x− x′‖2

)
(3)

were based on the new paired cross-validation procedure de-
scribed in the next section.

3. IMPROVEMENTS OF LYU & FARID’S
STEGANALYZER

3.1 Normalization of Feature Vectors
In our experiments, we examined two different normaliza-

tion methods in order to reduce the influence of large com-
ponents and outliers. Both may lead to lower classification
accuracies. For instance, the distance between two feature
vectors x and x′ in feature space which is measured by the
SVM kernel can be easily dominated by a single component
of high magnitude which can easily happen when higher-
order statistics such as kurtosis are used. Hence, other com-
ponents only have small influence.

The first approach is standard normalization, i. e. each
component of the feature vectors xi—where i runs over the
images—is normalized independently on [0, 1]. Hence the
entries of the matrix X = (xij) which contains the feature
vectors xi as its rows are

x′ij =
xij −mini(xij)

maxi(xij)−mini(xij)
. (4)

The vectors x′
i are the normalized vectors which serve as

input to the classifier.
The second variant which we call interquantile normaliza-

tion considers interquantile ranges, in our case values (fea-
ture vector components) in Q.95−Q.05. These interquantile
ranges of each component are standardized to [0, 1], exactly
as in (4), while clipping values above and below to 0 or 1,
respectively.

With normalization, features of high magnitude exert a
less dominant influence on the results. Additionally, the
detrimental effects of outliers can be reduced when using
interquantile normalization.

3.2 Paired Cross-Validation
Let Z = {X, y} be the data used for model selection,

where X is the set of feature vectors and y the set of the
corresponding labels. For standard k-fold cross-validation,
Z is then split into k approximately equal-sized, pairwise
disjoint and randomly chosen subsets {Xi, yi} = Zi, where

Xi ⊂ X and yi ⊂ y. Hence Z =
⋃k
i=1 Zi.

The standard k-fold cross-validation accuracy can then be
computed as the average of k accuracies. For each of the k
runs, a different set Zi is removed from Z and is used for
testing instead:

CVk(Z) =
1

k

k∑
i=1

∑
xi∈Zi

yi − fαi,bi,γ,C(xi)

2|Zi|
, (5)

where fi,γ,C is the decision function (see (2)) for given pa-
rameters C and γ, and the i indicates that wi and bi have
been determined by training on the union of k−1 subsets of
Z, namely on Z\Zi. In a grid search and possibly with some
refinements around the maximum cross-validation accuracy,
C and γ can be selected appropriately to the data.

However, when trying to automatically adapt the param-
eters C and γ of the SVM as described above, a special
problem arises from the application to steganalysis: Low
cross-validation accuracies are found, for small data sets po-
tentially even below 50 %. For a two-class problem, the lat-
ter implies that the classification is not better than a ran-
dom guess. It turns out that the effect is due to ignoring
of natural pairs among the feature vectors. Natural pairs
are composed of one feature vector for the clean, and an-
other for the corresponding stego image. In feature space,
they are located close to each other, since—although the
carrier was mostly removed in the feature extraction stage
of the algorithm—the manipulative embedding caused only
a tiny difference between both feature vectors. For sepa-
rating these very close data points, the decision boundary
is extremely restricted and the model parameters can be
optimally adapted. For standard cross-validation, the en-
tire data set used for model selection is repeatedly divided
randomly into test and training subsets without regarding
natural pairs. This leads to unfavorable decision bound-
aries. From an image belonging to a divided natural pair,
not much information is added to the classifier. For instance,
consider the case where one image of such a natural pair is
in the training set, and another is in the test set for a cross-
validation run. Then, while facing just one image of the
pair, the decision boundary in the region close to the im-
age can be chosen rather arbitrarily because it is not very
constrained. Thus, the test with the corresponding missing
image of the pair is likely to fail, meaning it is likely to be
treated as it would belong to the opposite class due to its
opposite neighbor. Consequently, the cross-validation accu-
racy decreases. These unpaired examples can be regarded as
counter examples for cross-validation, in the way that they
give a false hint on the associated test example.

A paired form of cross-validation, which makes sure not to
separate natural pairs, can suppress this influence. However,
standard tools for cross-validation like the one delivered with
libsvm [3] choose training and test points at random. For
(5), Zi is built without preserving natural pairs. Contrarily,
pairwise means that all sets Zi, i = 1, . . . , k, contain only
complete natural pairs, and correspondingly does Z \ Zi.
This application-specific adapted version of cross-validation
was used in the experiments we show in the next section.

4. EXPERIMENTAL RESULTS
We tested for different compression schemes, embedding

procedures, and embedding rates on an image database con-
taining more than 1600 never compressed RGB images pro-
vided by the German Federal Office for Information Secu-
rity. The Bayesian image model described in Sect. 2 was
employed for determining both marginal and residual statis-
tics for an image database containing more than 1600 nat-
ural images. They were taken by a digital camera and were
never lossy compressed. This is known to be the most diffi-
cult setting for steganalysis, as the entropies of the images
remain high. For instance, JPEG artifacts contained in the
images from previous compression simplify steganalysis [8].
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Figure 2: Paired cross-validation accuracies for dif-
ferent values of C and γ using a logarithmic grid for
the modified steganalyzer described in Sect. 3. 50 %
of the LSBs were replaced (random-spreaded).

From the resulting statistical distributions, we computed
the statistical moments for every color image that serve as
associated feature vectors. The dimensionality of these vec-
tors was 3 · 40 = 120. After normalizing the components
of these vectors independently, we carefully selected the pa-
rameters of the support vector machine and its Gaussian
kernel [3] C and γ. This was done by employing the paired
5-fold cross-validation scheme described in Sect. 3 on 1000
clean and 1000 stego images. More specifically, the model
parameters γ and C are optimized for best cross-validation
accuracy using a grid search with a two-step grid refinement
around the maximum. The refinements led to a slight im-
provement of the results. By repeating the cross-validation
n1 = 4 times, we could average over the determined values of
C and γ, which leads to a more reliable result. Furthermore,
we could compute the mean CV and standard deviation
σCV for the determined cross-validation accuracies. They
are stated in Tab. 1 and Tab. 2. Plots of this approach are
shown in Fig. 2 and Fig. 3. We would like to point out that
the region of highest cross-validation is smaller for the lower
embedding rate, hence it is more difficult to adapt C and γ
in this case. Subsequently, we trained the SVM on 2000 im-
ages (the training data, 1000 clean and 1000 stego images)
using the values of C and γ determined in the last step, and
then tested with another set of 1200 examples (600 clean
and 600 stego images). For both model selection and test,
we adapted the bias in order to achieve a true negative rate
of at least 99 %. We randomly divided the entire set into
training and test sets and averaged over n2 = 100 splittings,
which enabled us to estimate the standard deviation of the
detection rate (true positive, “True+”) on the test set. Due
to adapting the SVM to a fixed false positive rate of 1 %,
the results showed a considerable variability. The variances
drop for lower embeddings rates, but the (relative) variation
coefficients σCV/CV and σ+/True+ are similar in size over
all embedding rates in our experiments.

If adapting the wavelet-based classifier such that the false
positive rate falls below 1 %, then 11.8 %, 12.6 %, 30.8 % and
69.5 % of the stego images can be detected for standard nor-
malization, paired cross-validation and embedding rates of
5 % (ternary [7, 9], scanner-adaptive embedding, which aims
to exploit artifacts introduced by flatbed scanners), 10 %,
25 % and 50 %, respectively. These embedding rates are the
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Figure 3: Paired cross-validation accuracies as in
Fig. 2, but for 25 % replacement of the LSBs. One
can see that the region of highest accuracies is
smaller and the gradients are higher than for an em-
bedding with a rate of 50 % of total cover capacity.

fraction of the size of the current payload and the total cover
capacity, which is the size of the largest payload that can
be hidden by the corresponding embedding algorithm in an
image. For interquantile normalization, the corresponding
detection rates are 8.6 %, 8.5 %, 14.4 %, and 65.7 %. The
results, for both paired and standard cross-validation, and
as well for LSB replacements and ternary embeddings are
shown graphically in Fig. 4. The error bars show the associ-
ated standard deviation of the mean σn. The performance
of a classifier using a pair of (C, γ) determined with standard
cross-validation is lower for all image classes, especially for
low embedding rates where it is more difficult to grasp ap-
propriate model parameters as described above. For higher
embeddings rates, a proper choice of C and γ seems to be not
as crucial. There exists one exception (interquantile normal-
ization, 25 % embedding rate, LSB) where standard cross-
validation leads to a higher true positive rate than paired
cross-validation, however, it is by far not significant: The
difference is only 0.1 percentage points. For high embedding
rates and when using the complete feature vector, standard
cross-validation can compete, but still is somewhat lower at
least. For full details, see in Tab. 1 and Tab. 2. From these
results, we could not identify an obvious mutual interaction
between normalization and cross-validation methods.

A comparison of the two normalization approaches shows
that the prediction accuracies for standard normalization
are higher for most embedding rates. However, for feature
vectors of reduced sizes—containing only error residuals or
even a subset thereof—interquantile normalization outper-
forms standard normalization.

We also tested our algorithm for ±1 embeddings, which
conserve parity properties of the images [9]. The results are
even better. In this case, for embedding rates of 50 % and
25 %, 76.8 % and 37.1 % of the manipulated images can be
revealed for standard normalization, and 81.9 % and 20.7 %
for interquantile normalization.

5. CONCLUSIONS
In this paper, we presented improvements to automated

model selection and feature preparation for blind stegana-
lyzers: an adapted version of cross-validation that preserves



Table 1: Results computed with the presented asymmetrical classifier for cross-validation accuracies (“CV”)
and true positive rates (“True+”) at a fixed rate of 99 % of true negatives. Paired cross-validation and standard
cross-validation as well as standard and interquantile normalization are compared for two embedding methods
(LSB replacement, ±1 embedding) and different embedding rates (10 %–50 %). “err” (no marginal statistics)
and “err32” (no marginal statistics and only 3 · 32 = 96 error moments of the finest scales) indicate that only
a subset of the components of the feature vectors was employed by the SVM. σ = σ/

√
n is the standard

deviation of the mean over n computations, σ the standard deviation of a single realization. It is n1 = 4 for
the cross-validation accuracies and n2 = 100 for the true positive rates.

LSB replacement embeddings ±1 embeddings

50 % 50 % err 50 % err32 25 % 25 % err 10 % 50 % 25 %

(%) pair std pair std pair std pair std pair std pair std pair std pair std

CV 72.4 65.2 64.4 58.1 68.9 61.8 34.1 25.9 35.2 23.8 14.2 7.1 83.3 83.0 39.7 35.5
σCV 3.0 3.2 3.3 1.6 3.3 1.8 1.8 0.8 0.8 1.9 1.0 1.2 1.3 1.5 1.8 1.8

True+ 69.5 56.5 61.0 55.1 61.7 58.0 30.8 30.4 34.5 11.6 12.6 3.5 76.8 74.6 37.1 27.1
σ+ 0.9 1.9 0.9 1.3 0.9 1.32 0.7 0.7 0.5 0.6 0.2 0.1 1.4 1.5 0.6 1.2

Table 2: Same as above, but for interquantile normalization

LSB replacement embeddings ±1 embeddings

50 % 50 % err 50 % err32 25 % 25 % err 10 % 50 % 25 %

(%) pair std pair std pair std pair std pair std pair std pair std pair std

CV 74.2 63.7 70.7 59.7 70.5 66.0 25.3 20.0 35.7 27.2 9.8 5.1 87.1 80.8 30.2 29.3
σCV 2.2 3.4 2.6 3.6 2.3 2.3 0.9 1.5 0.5 0.5 0.4 0.7 1.3 3.5 1.3 2.6

True+ 65.7 63.2 69.8 58.8 71.8 65.2 14.4 14.5 34.0 26.9 8.5 2.8 81.9 77.3 20.7 20.9
σ+ 1.4 1.3 0.7 1.3 0.9 1.2 0.7 0.7 0.7 0.9 0.2 0.1 0.4 0.8 1.0 0.9

natural image pairs and two normalization approaches. In
our experiments with the steganalyzer of Lyu and Farid, it
turned out that the paired cross-validation leads to higher
values of cross-validation accuracy as expected from theoret-
ical perspective. The values of C and γ picked at this maxi-
mum of accuracy allow for a higher steganalysis performance
compared to that found with standard cross-validation, es-
pecially for lower embedding rates. Furthermore, our analy-
sis shows that normalization methods have a large influence
on cross-validation accuracy and steganalysis performance.
Mostly, standard normalization seems to be an appropri-
ate choice for feature preparation. However, for a smaller
dimensionality of the feature vectors, interquantile normal-
ization is a promising alternative.
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