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ABSTRACT

In inspection systems for textured surfaces, a reference texture is typically known before novel examples are
inspected. Mostly, the reference is only available in a digital format. As a consequence, there is no dataset of
defective examples available that could be used to train a classifier. We propose a texture model approach to
novelty detection. The texture model uses features encoded by a convolutional neural network (CNN) trained
on natural image data. The CNN activations represent the specific characteristics of the digital reference texture
which are learned by a one-class classifier. We evaluate our novelty detector in a digital print inspection scenario.
The inspection unit is based on a camera array and a flashing light illumination which allows for inline capturing
of multichannel images at a high rate. In order to compare our results to manual inspection, we integrated our
inspection unit into an industrial single-pass printing system.

Keywords: Optical surface inspection, one-class neural network, novelty detection, print inspection

1. INTRODUCTION

Depending on the resolution, every visible object or surface is textured. Many industrial textured surfaces,
especially decorative ones such as printed wallpapers or decors, are subject to aesthetic judgments. To ensure
the quality and detect unwanted visual anomalies, the surface texture needs to be monitored. For this purpose,
more and more camera-based inspection systems are being used in the production process. At the same time,
modern production technologies support trends such as individualization, customization, and personalization
of the surface texture. This leads to a large number of different, individually produced textures instead of
mass-produced textures.

A camera-based inspection system often compares the inspected texture to a digital reference using machine
learning techniques. In the context of surface inspection, a reference texture is typically known before novel
examples are inspected. Typically the reference texture is only available digitally, i.e., either as a scanned image
of an initially produced reference or as the digital design of the surface texture. From the machine learning point
of view, there are no training samples of a specific texture available to train a supervised classifier.

In the context of visual surface inspection, we present an approach for novelty detection using CNN-encoded
texture features. Additionally, we introduce a new unsupervised neural network one-class classifier for distin-
guishing normal from abnormal texture regions.

As a real-world test, we integrated our approach in an industrial inspection system installed in a single-pass
printing line for artificial wood decors (cf. Fig. 1). In visual surface inspection for digital printing, targets
are often decorated surfaces such as wallpapers, floors or veneers. The inspection system is based on a high-
resolution camera array and a flashing light illumination. The illumination is designed to support the separation
of the digitalized CMYK prints into the corresponding CMYK image channels. The aim of the inspection is to
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detect visual anomalies (so-called defects) when comparing a sample with the reference. Usually, the reference
is a digital design of the colored texture. The occurrence and visibility of a specific defect both depend on the
printed texture, on the substrate to be printed on as well as on the printing environment itself. Due to the large
variety of parameters that affect the appearance of a defect, a novelty based approach is required.

Using CNN-encoded features, we compare the results of our classifier with the well-known one-class support
vector machine (OC-SVM) approach from B. Schölkopf and A. J. Smola1 as well as with a recently published
one-class neural network approach from R. Chalapathy, A. K. Menon and S. Chawla2 .

We summarize our main contributions as follows:

• We propose a novel one-class neural network model for anomaly detection, which explicitly learns to
distinguish between reference textures and textures with equal resp. similar distributions.

• Throughout experiments in an industrial setting, we convincingly demonstrate that our model is able to
perform novelty detection on complex non-ergodically textured surfaces and to successfully detect sub-
millimeter anomalies.

• Furthermore, our proposed model can be extended to explicitly learn known outliers and maximize the
decision space between reference and outliers.

Figure 1: Industrial test case - a schematic representation of a CMYK single-pass printing line and our in-line
inspection unit that is based on an array of C1..Cn camera systems. Depending on the resolution of the printed
texture, we split the scanned image of one camera channel in m patches P .

The rest of the paper is organized as follows: Chapter 2 introduces related work in the area of novelty
detection and summarizes state-of-the-art texture description techniques. In Chapter 3 we describe the CNN-
encoded feature representation and introduce our novel one-class neural network model. Experimental data and
setting are described in Chapter 4. Chapter 5 summarizes our main results and provides additional information
about features and tested models. In Chapter 6 we conclude and outline our future working.

2. RELATED WORK

Novelty detection is an extensively studied topic in data science and machine learning. It is related to classification
tasks in the way that there is one class of labeled data, the reference class, and a second class of unlabeled and
unknown data, the novelty class. Typically we want to detect anomalous samples that do not belong to the
reference class. Here anomalies are the same as outliers in the context of cluster analysis.

There are many well-known approaches for finding outliers in data or detecting them when observed. Pimentel
et al. did an excellent summary of the different techniques.3 A standard approach to novelty detection is finding
outliers i.e. data points that do not belong to a known group through clustering approaches e.g. Gaussian-
Mixture-Models or k-means.4 This broad range of methods uses distance, density or threshold-measures to



decide whether a new data point belongs to an existing cluster or is new and unknown.5 However, these
methods rely on a good similarity or distance measure which is often not available, hard to compute or just
not working with high-dimensional feature spaces due to the curse of dimensionality.6 Besides such classical
clustering techniques, well-known support vector machines (SVM) can also be used for modeling a single class.1

Compared to binary classification one-class SVMs (OC-SVM) divide a single class of reference data into two
sets by fitting a hyperplane such that a small subset of normal data is treated as outliers (anomaly data). The
percentage of outliers is typically specified as ν. The SVM algorithm maximizes the distance between normal
data and the subset of outliers. OC-SVM has already been successfully applied to detecting visual anomalies on
textured surfaces and is widely used in industrial contexts.7 Beyond SVM techniques there are subspace or latent
code techniques which find anomalies by projecting data onto a chosen subspace and thresholding reconstruction
errors8 or cluster assignments.9 Common techniques for projecting data on a subspace are related to Principal
Component Analysis (PCA) or Autoencoders.

One main difficulty of subspace or SVM-methods is computational complexity. The need for matrix inversion
or at least pairwise function evaluations, in case of kernel-methods, is often runtime critical.3 Parametric models
like Autoencoders do not suffer from this issue and can be applied to massive datasets, but because of the non-
linearity they are harder to optimize. Finally, hybrid approaches try to combine Robust PCA with Autoencoders
and separate noise from the reference data.10 This method can improve reconstruction-based methods as it
removes noisy training examples from the learned latent representations making it a better fit for the normal
data.

A recently proposed model for parametric novelty detection uses a neural network with a modified hinge loss,
which is also used in the OC-SVM model.2 The optimization problem is given by

min
w,V,r

1

2
‖w‖22 +

1

2
‖V ‖2F +

1

ν

1

N

N
∑

n=1

max(0, r − 〈w, g(V Xn)〉)− r. (1)

Since a three-layer classifier network (input, hidden and output) is used, w is the weight vector from hidden
to output layer and V is the weight matrix from input to hidden layer. ν is the fraction of tolerated outliers,
g is an activation function, 〈w, g(V Xn)〉 is the predicted network output, and r is a scalar value describing the
distance from origin to hyperplane. The parameter r is being determined by calculating the νth quantile of
{ŷt+1

n }Nn=1, where ŷn are prediction values of the network. The authors apply their model to the MNIST and
USPS datasets; using their experimental setup, their OC-NN approach outperforms all compared techniques
(Robust PCA, Robust Deep Autoencoder, Convolutional Autoencoder and OC-SVM). This makes the OC-NN
approach the current state-of-the-art neural network based one-class technique. However, the evaluation was
done on a specifical subset of MNIST which was not specified in detail. Further, MNIST and USPS data is not
suited as a benchmark for novelty detection on complex textures.

It must be stated that all mentioned models are flexible enough to work with arbitrary features. This makes
the comparison of different models very difficult, as good domain-specific features, combined with a weak model,
can easily outperform stronger models with badly suited descriptors. When there are no good domain-specific
features available, in practice, task-specific pre-trained Convolutional Autoencoder features are used.2

Today, the texture model by Portilla and Simoncelli (PS-model) is the de facto standard for efficient texture
modelling. It is based on wavelet transforms in conjunction with multi-scale oriented linear basis.7,11 A more
recent model for extracting features from textures uses pre-trained neural networks. In this model texture
features are computed by correlating different feature maps, showing impressive results at synthesizing realistic
textures.12 The application of such a feature transfer to a different domain13 showed already remarkable results
in inspecting nanofibrous materials.14

3. ONE-CLASS NEURAL NETWORK

Industrial inspection scenarios are mostly integrated into reproduction processes where multiple objects are
reproduced based on a reference. In our specific industrial reproduction scenario, a reference texture is printed
using a single-pass printing system (cf. Fig. 1). Here, surface inspection means comparing scanned prints with



the digital reference texture as well as detecting visual anomalies. As mentioned before, there are no labeled
anomalies available to train a discriminative classifier.

In the following, we describe our novel one-class neural network model for anomaly detection using CNN-
encoded features.

3.1 One-Class Neural Network with Distance-Loss (OC-NN-Distance)

For our one-class classifier, we introduce a novel learning criterion, where the distance between reference and
synthetic noise data with equal statistical distribution is maximized in the output space. Synthetic noise data
is either random normal noise with mean and standard deviation of the reference class or a randomly shuffled
version of it. Our intuition behind this approach is to force the model to learn structure and context in order to
separate the actual reference from data which shares the same statistics.

Further, in novelty detection scenarios it is important that the computation of the gradient only depends
on a few samples. We include this by using averages of sample outputs in a specified interval. In other words,
we compute outputs for all samples and maximize the distance between reference and noise using an average
criterion. An additional weight decay regularization keeps weights small. We use a fully connected three layer
feed-forward architecture (input-, hidden-, output-layer).

Based on the results of previous experiments we achieved the best performance by choosing the number of
hidden neurons to be at least the number of input neurons, i.e. we do not reduce the dimensionality between
the input- and hidden-layer. As activation we use the sigmoid function between the hidden- and output-layer.
The network output is represented by a single scalar value on the real number line (cf. Fig. 2).

We initialized our weights Wij of each layer with the commonly used heuristic Wij ∼ U [− 1
√

n
, 1
√

n
] where n is

the number of incoming neurons from the previous layer and U [−x, x] is the uniform distribution in the interval
(−x, x). We completely omit additional bias terms. The loss function of our classification network is given by

Ldist =
1

2
‖w‖22 +max(0, 1− tanh(R̂ref − R̂noise)), (2)

where R̂ref is the average of reference samples in the interval [min(Ŷref ), Qρ(Ŷref )] and R̂noise is the average

of noise samples in the interval [Q1−ρ(Ŷnoise),max(Ŷnoise)]. w are the network parameters, Qρ(Ŷref ) is the ρth

quantile of all predicted values for reference input Ŷref and Q1−ρ(Ŷnoise) is the (1−ρ)th of all noise inputs Ŷnoise.

We train the network by alternately propagating reference and noise images through the same network.
Parameters of our classifier are optimized offline i.e. without mini-batches through gradient descent based on
backpropagation.

3.2 CNN-encoded features

For our basic features we use a pre-trained CNN model. This is motivated on the successful application of CNN-
encoded features to texture synthesis i.e. the possibility to use those features for generating realistic textures.12

In other words, we use the output of a specific layer of a pre-trained CNN model as basic features. Based on
these CNN-encoded descriptors we compute (1) vectorized feature maps, (2) Gramian matrices or (3) a vector
of normalized features as input for our classifier network.

Since we used a pre-trained version of the well-known VGG-19∗ network15 trained on ImageNet† for our later
experiments, the following description of our feature encoding is based on the activations of the VGG-19 layer
pool4 (cf. Fig. 2). We choose layer pool4 based on the results of previous experiments. There we used simple
thresholding methods for defect detection based on the activations of a pre-trained VGG-19. Except for the
combinations of different layers, we achieved the best results when using the activations of layer pool4.

∗VGG-19 is a neural network with 19 layers typically pre-trained on ImageNet data: https://gist.github.com/

ksimonyan/3785162f95cd2d5fee77#file-readme-md
†ImageNet dataset contains 1.2 million RGB-images with 1000 categories.
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Figure 2: The Architecture of our one-class neural network. For feature encoding, we use a pre-trained VGG-19
network, where we discard the remaining part of the original network beyond layer pool4. For classification, we
append a three-layer feed forward network, which consists of n×512 input and hidden neurons and 1 output
neuron. Here, n depends on the type of features used for classification. We compare three types of features: (1)
vectorized feature maps, (2) Gramian matrices and (3) normalized features.

Feature maps from layer pool4 are 512 maps i.e. grids with size depending on the input. As a rule of thumb
the size is Win

16
× Hin

16
. For a typical input of size 32×32 px this results in 2×2×512 features. Feature maps are

the same as activations and represent intermediate results between different layers in a neural network. However,
in the context of CNNs, activations are called feature maps as they occupy spatial dimensions.

Gramian matrix is a matrix of all inner products of one layers’ activations, resp. feature maps F . The
Gramian matrix of layer l is defined as the dot product

Gl
ij = 〈fi, fj〉, (3)

with f1, ..., fN ∈ F as a set of N vectorized feature maps of layer l. Depending on the number of feature maps
N the Gramian matrix has the size N ×N .

Normalized features of one layers’ activations are composed to a vector g consisting of N elements:

gi = ‖fi‖
2
2. (4)

We use ℓ2-norm squared to normalize the feature maps. Note that normalized features correspond to the diagonal
of Gramian matrix features.

In contrast to the vectorized features, the dimensionality of Gramian matrices and normalized features are
independent of the input dimensionality. This is a very important characteristic for optical surface inspection
with large image patches up to 512×512 px and hence large feature descriptors requiring dimensionality reduction
methods beforehand.

3.3 Surface inspection using a trained model

In surface inspection scenarios, novel texture patches are propagated through a trained reference model in order
to decide whether it belongs to the reference class or not and hence being anomalous.

Both compared models OC-SVM and OC-NN-Hinge (cf. Sect. 2, 5) use the signum function as decision
boundary. This means that reference data is indicated through either a positive or negative sign. Since we
maximize the distance between output distributions of reference and noise data without any shift operation, our
decision function relies on the interval:



fdec(ŷ, Ŷref ) =

{

1, iff ŷ > Qν(Ŷref )

0, otherwise.
(5)

Ŷref are the predicted values for the reference dataset, ŷ is the predicted network output to be classified, Qν(Ŷref )

is the νth quantile of all predicted reference values Ŷref , and ν again is the tolerated fraction of outliers. Given
a new input example, our decision function yields 1 if the prediction is within the reference interval and 0 if not.
Hence, anomalies are labeled 0.

4. EXPERIMENTAL SETUP

For testing our OC-NN-Distance approach using CNN-encoded features, we ran several tests on artificial wood
textures. Our real-world test is based on scans of an in-line inspection system for digitally printed decors. In
the context of digital printing inspection, defects that should be detected are visual anomalies when comparing
a sample with the corresponding reference. As mentioned before, we have to deal with high-resolution scans,
resp. large patches. Common printed decor sizes are between 1500 mm and 2500 mm in width and greater than
1500 mm in length. For in-line digitalization of the printed decors, we use a camera array installed after the
printing heads (cf. Fig. 1).

Below, we describe our experimental setup for novelty detection using CNN-encoded texture features. First,
we present our selected subset of reference textures and the corresponding anomaly data which we used to report
our results. Afterwards, we briefly introduce some prerequisites for running our experiments and describe the
most important aspects of the software and frameworks we used for our implementation. Finally, we describe
the setup for our state-of-the-art and baseline implementation.

4.1 Reference data

For our surface inspection experiments, we used three different artificial wood textures as reference data (see
Fig. 3a, 3b and 3c).

BleachedOakVeneer As an exemplar for a dark brown wood texture, we used the so-called BleachedOakVe-
neer ‡ texture (cf. Fig. 3b). This texture of size 1194×1600 px is subdivided into patches of size 32×32 px with
stride 16 px horizontally and vertically. The number of patches is given by

P = (⌊
(HI −Hp)

stridey
⌋+ 1) · (⌊

(WI −Wp)

stridex
⌋+ 1), (6)

where P is the total amount of patches, WI/HI is the width/height of the input image, Wp/Hp is the width/height
of the patch. This results in a total of 7227 patches.

Wood-0035 The so-called Wood-0035 is an exemplar for light brown texture (cf. Fig. 3c). As a part of our
preprocessing, the texture of size 512×512 px was subdivided into patches of size 32×32 px with stride 16 px
horizontally and vertically. This results in a total of 961 reference patches (cf. Eq. 6).

Cut-T4 (industrial case) For our in-line inspection exemplar, we used the so-called Cut-T4 texture (cf.
Fig. 3a). This artificial used look wood decor was printed with 600 dpi using a CMYK single-pass printing system.
As stated before, we used a camera array based inspection system for digitalization. The system is designed with
an optical resolution of 43 µm. Using our flashing illumination, we were able to record multispectral images,
which we split into the corresponding CMYK channels. Since this texture is non-ergodic, we need to split our
scanned texture of size 1825×2335 px in smaller patches of size 512×512 px and use them as reference class.
Using a stride of 64 px horizontally and vertically, this results in 609 reference patches (cf. Eq. 6).

‡BleachedOakVeneer texture is available at textures.com: https://www.textures.com/download/woodfine0089/

129959



(a) (b) (c)

Figure 3: Reference data - (a) shows a randomly chosen 512×512 px patch from our industrial texture Cut T4
(1825×2335 px). (b) shows a randomly chosen 512×512 px patch from the BleachedOakVeneer (1194×1600 px)
texture. (c) shows the 512×512 px Wood-0035 texture.

Novelty data Throughout our experiments we used synthesized anomaly data. One type of anomaly is a
perfect black square of size 2×2 px for 32×32 px patches (Wood-0035 and BleachedOakVeneer experiments)
and 16×16 px for 512×512 px patches (Cut-T4 experiments, cf. Fig. 4). When using our industrial inspection
system for digitalization, the anomaly size corresponds to a physical dimension of about 0.1×0.1 mm, resp. about
0.7×0.7 mm.

(a) (b) (c)

Figure 4: Example of square anomalies. (a), (b) and (c) show three 512× 512 px patches.

The other type of anomaly (so-called turtle) used is randomly shaped (cf. Fig. 5) and parameterizable. Basically,
this anomaly consists of n randomly aligned contiguous lines of length l and color c. With n, l, and c being
parameters, cf. Tab. 4 for the different parameter settings used in our experiments.

In contrast to typically used anomaly datasets, our test datasets are equally balanced. Therefore, the novelty
data is based on all reference patches with anomalies added to random positions.

(a) (b) (c)

Figure 5: Example of randomized turtle anomalies. (a) and (b) show two 512× 512 px patches where anomalies
are labeled in red. Some anomaly cutouts are shown in (c).



4.2 Implementation

We implemented our OC-NN-Distance approach in Python (3.6.5) using PyTorch (0.4.0), torchvision (0.2.1) and
NumPy (1.14.3). As a part of our preprocessing, there are three possible options how to process input images:
(1) color-mode - multi channel images are used, (2) gray-mode - using gray-scale images, and (3) gray3channel -
stacking single channel gray-scale images to a three channel image. For all of our texture experiments, we first
converted the RGB images into gray-scale images (cf. weighted sum Eq. 7). Since the pre-trained VGG-19 was
trained on BGR images, we processed all experiments in the gray3channel mode.

I = 0.2989R+ 0.587G+ 0.114B (7)

To compare the OC-NN results, we used the same classifier architecture for both OC-NN approaches. Tab. 1
shows the various experimental configurations.

Table 1: Overview of our classifier architecture. We used the same architecture for OC-NN-Hinge and OC-NN-
Distance experiments.

Feature Input Hidden Output

Wood-0035
Feature maps 4×512 4×512 1
Gramian matrix 512×512 1000 1
Normalized features 512 512 1

BleachedOakVeneerM
Feature maps 4×512 4×512 1
Gramian matrix 512×512 1000 1
Normalized features 512 512 1

Cut-T4
Gramian matrix 512×512 1000 1
Normalized features 512 512 1

4.2.1 Noise data

As previously mentioned our approach is trained on both reference data and noise data following the same
distribution. We generated our noise data by shuffling the given reference texture column-wise, column and row-
wise, or across all dimensions including color channels (cf. Fig. 6a, 6b, and 6c). Throughout our experiments,
we discovered, that the three different types of shuffling the reference textures do not impact classification
performance at all.

(a) (b) (c)

Figure 6: Reference noise data of a randomly chosen 512×512 px patch from our shuffled industrial textures: (a)
Cut-T4 (b) BleachedOakVeneer (c) Wood-0035.

4.3 State-of-the-art and baseline implementation

OC-SVM For our experiments, we used the One-class SVM implementation from scikit-learn (0.19.1) with
the following hyper-parameters: ν = 1 · 10−3 and linear and RBF kernels. For the remaining parameters we
took the scikit-learn default parameters.



OC-NN-Hinge Our OC-NN-Hinge implementation is based on the Keras code of Chalapathy et al.2 which is
available online.§ For our experiment runs we reimplemented the model in our Python (3.6.5) environment where
we used the frameworks PyTorch (0.4.0) and torchvision (0.2.1). We validated the results of our reimplementation
with the results reported by the authors.

5. EXPERIMENTAL RESULTS

In this section, we summarize the experiments conducted with respect to our new OC-NN-Distance approach
and compare our results to the state-of-the-art SVM approach and the OC-NN-Hinge method.

Throughout all experiments, we train for 1000 epochs and use gradient descent (GD) optimization with
learning rate η = 1 · 10−3. The value for ν and ρ was set to 1 · 10−3 which corresponds to 1 ‰ of given data.
If a given dataset consists of less than one thousand samples, the value is interpolated. The values are chosen
relative small in order to reduce the false positive rate.

As our evaluation criterion, we chose the Area under the ROC Curve (AUC) and Average Precision Recall
(APR) metrics from scikit-learn (0.19.1). All experiments run on an Intel i7-8700 and a Nvidia GeForce 1080 Ti
graphics card. Running all experiments took about five hours.

5.1 Feature comparison

In the following, we evaluate the performances across different models and features. Therefore, we use two
different textures, Wood-0035 and BleachedOakVeneerM (cf. Fig. 3b and 3b). To train the model we extract
reference patches of size 32×32 px and use all 961 patches for the Wood-0035 experiment and 1000 randomly
selected patches for the BleachedOakVeneerM experiment (cf. Sect. 4.1). We compare OC-SVM-Linear, OC-
SVM-RBF, OC-NN-Hinge, and OC-NN-Distance with the following three features:

• Feature maps (VGG-19-pool4) with 4×512 features

• Gramian matrix (VGG-19-pool4) with 512×512 features

• Normalized features (VGG-19-pool4) with 512 features

Anomalies are modelled by black squares of 2×2 px (cf. Sect. 5.2.1). Tab. 2 summarizes the results and shows
the different performances as Average Precision Recall (APR) and Area under the ROC Curve (AUC). Here, we
report scores with and without application of the decision function (DF) as the AUC score might be misleading
in a novelty scenario where the distribution of novel data is typically unknown beforehand. Additionally, Fig. 7
shows the network output as histogram of both OC-NN approaches using normalized features.
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Figure 7: Histogram of the OC-NN classifier outputs when using square anomalies and normalized features. (a)
and (b) show the results for the Wood-0035 texture, (c) and (d) for the BleachedOakVeneerM texture. Evaluation
after 1000 epochs of training (cf. Tab. 2).

§OC-NN-Hinge: https://github.com/raghavchalapathy/oc-nn



Table 2: Feature comparison on APR and AUC with and without decision function (DF). All features are taken
from layer pool4 of the pre-trained VGG-19 network. The neural network models were trained for 1000 epochs.

Features AUC APR AUC APR
(DF) (DF)
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OC-SVM-
Linear

Feature maps 0.4997 0.4995 0.4997 0.4995
Gramian matrix 0.4992 0.4984 0.4992 0.4984
Normalized features 0.4995 0.4947 0.4995 0.4947

OC-SVM-
RBF

Feature maps 0.9386 0.9386 0.9386 0.9386
Gramian matrix 0.5328 0.5328 0.5328 0.5328
Normalized features 0.5328 0.5328 0.5328 0.5328

OC-NN-
Hinge

Feature maps 0.9792 0.9849 0.9433 0.8985
Gramian matrix 0.5612 0.6991 0.8466 0.7653
Normalized features 1.0000 0.9999 0.9994 0.9994

OC-NN-
Distance

Feature maps 0.9883 0.9872 0.8507 0.9121
Gramian matrix 0.9990 0.9990 0.9839 0.9692
Normalized features 1.0000 1.0000 0.9995 0.9995
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OC-SVM-
Linear

Feature maps 0.4998 0.4925 0.4998 0.4925
Gramian matrix 0.4998 0.4920 0.4998 0.4920
Normalized features 0.4995 0.4980 0.4995 0.4980

OC-SVM-
RBF

Feature maps 0.9805 0.9805 0.9805 0.9805
Gramian matrix 0.6575 0.6575 0.6575 0.6575
Normalized features 0.5310 0.5310 0.4997 0.4995

OC-NN-
Hinge

Feature maps 0.5496 0.6478 0.6361 0.5788
Gramian matrix 0.5500 0.4165 0.5772 0.5418
Normalized features 0.9971 0.9957 0.9669 0.9380

OC-NN-
Distance

Feature maps 0.7000 0.6210 0.5610 0.5325
Gramian matrix 0.7170 0.6780 0.5385 0.5200
Normalized features 1.0000 1.0000 0.9915 0.9838

On both textures the OC-NN models detect anomalies reliably and reach almost perfect APR and AUC rates,
see also Fig. 7. Our results also show that normalized features perform much better than Gramian matrices and
vectorized feature maps. This might be due to the number of features and hence the fact that there are much
more parameters in the model. Important for this work is to successfully challenge our proposed normalized
features against traditional CNN-encoded features with regard to the desirable property of a fixed parameter
count. When it comes to the SVM these features do not to work anymore and only feature maps combined
with a RBF-kernel produce acceptable results. One reason is the scalar products i.e. squares squeeze the feature
space and hence increase eigenvalues of the covariance matrix. We believe that this simplifies separation in a
parametric model like a neural network. However, for a SVM that operates in similarity or kernel space, this
causes numerical instabilities. Additional experiments showed that by using ℓp-norm to the pth with p > 2,
instead of using ℓ2-norm squared, illustrates this effect.

5.2 Industrial surface inspection

In our industrial surface inspection experiments, we use patch sizes up to 512×512 px. These patches cannot be
handled without feature extraction. We want to show that in such cases normalized features are still competitive
and OC-NNs can outperform conventional OC-SVMs. We choose the Cut-T4 texture and extract 609 patches of
size 512×512 px and use 16×16 px randomly placed black square anomalies (cf. Sect. 4). Note that the texture
is the same for reference and test set. The only difference is the pixel anomaly. Tab. 3 shows the results across
different features and models. With large patches feature maps become too large for efficient computation and
hence are neglected. Within the industrial setting, results are almost the same. Normalized features work better
using neural networks while Gramian matrices are superior using SVMs. Again the OC-NN-Distance model



outperforms OC-NN-Hinge in terms of APR and AUC. Clearly, a linear SVM is not able to model the reference
data to satisfaction.
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Figure 8: Histogram of the OC-NN classifier outputs for the Cut-T4 experiments. (a) and (b) show the results
of the Cut-T4 square anomaly experiment, (c) and (d) of the Cut-T4 random ’turtle’ experiment. Evaluation
after 1000 epochs of training (cf. Tab. 3 resp. Tab. 4).

Table 3: Comparison of different models in a high-resolution setting. For all experiments, features from layer
pool4 of the pre-trained VGG-19 network were used. As described in Sect. 4 we used 16 × 16 randomly placed
black squares as anomalies.
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OC-SVM-
Linear

Gramian matrix 0.4975 0.4995 0.4975 0.4995
Normalized features 0.4992 0.4951 0.4992 0.4951

OC-SVM-
RBF

Gramian matrix 0.9721 0.9589 0.9721 0.9589
Normalized features 0.6658 0.5854 0.6658 0.5854

OC-NN-
Hinge

Gramian matrix 0.4071 0.3485 0.5772 0.5418
Normalized features 0.8921 0.8772 0.8921 0.8272

OC-NN-
Distance

Gramian matrix 0.3656 0.4167 0.5000 0.5000
Normalized features 0.9926 0.9881 0.9204 0.8630

5.2.1 Detecting randomized anomalies

In addition to our first industrial surface inspection experiment, we also conducted experiments using the afore-
mentioned turtle anomaly (cf. Sect. 5.2.1). In Fig. 5 we show some examples of our randomized anomalies.
Therefore we rerun the experiments with different parameter configurations for anomalies. As it can be clearly
seen in Fig. 8c compared to Fig. 8d, our OC-NN-Distance approach is able to separate the distributions better
than OC-NN-Hinge. This is clarified by Tab. 4, i.e., when using an anomaly using 64 randomly aligned contin-
uous lines with length of 8 px (cf. Sect. 4.1), our OC-NN-Distance approach results in an AUC score of 0.9409
compared to an AUC score of 0.8690 when using the OC-NN-Hinge approach. Neither a linear SVM nor a RBF
SVM are able to model the reference data.

As a last side note, we also tried to train the model in a classification setting where we replaced the distance loss
with binary cross entropy. However, classifying noise and reference patches resulted in a very poor performance
with zero anomalies detection rate.

6. CONCLUSION

In this paper, we proposed a new model for novelty detection with neural networks in the field of surface
inspection. The fundamental idea of our model is to separate the reference class from synthetic data with same
statistical moments such as mean and standard deviation. We also found that in novelty detection scenarios it is
important to limit the gradient computation to a few data samples and keep the derivative constant zero for the



Table 4: Comparison of different models when using the random turle anomalies, where na is the number of
randomly aligned continuous lines and la is the length of a single line. For all experiments, the Cut-T4 texture
and features from layer pool4 of the pre-trained VGG-19 network were used.

Anomaly OC-SVM-Linear OC-SVM-RBF OC-NN-Hinge OC-NN-Distance
na la APR AUC APR AUC APR AUC APR AUC

32 8 0.4992 0.4984 0.6658 0.6658 0.5367 0.5684 0.5623 0.6108
32 16 0.4992 0.4984 0.6658 0.6658 0.7001 0.7858 0.7653 0.8465
32 24 0.4992 0.4984 0.6658 0.6658 0.7559 0.8534 0.8386 0.8998
64 8 0.4992 0.4984 0.6658 0.6658 0.5498 0.5906 0.5861 0.6470
64 16 0.4992 0.4984 0.6658 0.6658 0.7304 0.8155 0.8200 0.8900
64 24 0.4992 0.4984 0.6658 0.6658 0.7924 0.8690 0.8948 0.9409
128 8 0.4992 0.4984 0.6658 0.6658 0.5548 0.5989 0.6048 0.6732
128 16 0.4992 0.4984 0.6658 0.6658 0.7842 0.8624 0.9095 0.9499
128 24 0.4992 0.4984 0.6658 0.6658 0.8797 0.9316 0.9705 0.9844

rest. Further, we successfully transfered CNN-features from the texture domain (Gramian matrix features) to
novelty detection and proved their validity in a real-world example. One significant point we noticed throughout
all experiments was that it is mandatory to have at least the same number of hidden neurons as the input. We
believe that this works as an additional regularization term that prevents the model to overfit the training data.
Further experiments are needed to investigate this connection. Additionally, we introduced very useful features
for novelty detection. The normalized features satisfy three very important criteria. First, they retain enough
information to distinguish between the reference and novelty set. Second, they heavily reduce the number of
parameters and are therefore processable without preprocessing. Third, their property of squeezing feature space
simplifies training with neural networks.

At this point in time our experiments lack including production variance. This is an important point for
future work as we want to generalize our model to comparing digital references to scanned printed samples. An
essential point here is a good model of the production transformation and noise variance.

By adding another regularization term that controls the dissimilarity between the training set and a dummy
set with the same probabilistic distribution, we showed an improvement in novelty detection on a non-artificial
industrial scenario. Involving a known distribution into the loss function further enables embedding more a-priori
knowledge into the model. For example, we can retrain our classifier using an additional set of reference data
from a known error class. However, this also needs to be investigated in future work.
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