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ABSTRACT
Deep convolutional neural networks show outstanding performance

in image-based phenotype classification given that all existing

phenotypes are presented during the training of the network.

However, in real-world high-content screening (HCS) experiments,

it is often impossible to know all phenotypes in advance. Moreover,

novel phenotype discovery itself can be an HCS outcome of interest.

This aspect of HCS is not yet covered by classical deep learning

approaches. When presenting an image with a novel phenotype to a

trained network, it fails to indicate a novelty discovery but assigns

the image to a wrong phenotype. To tackle this problem and ad-

dress the need for novelty detection, we use a recently developed

Bayesian approach for deep neural networks called Monte Carlo

(MC) dropout to define different uncertainty measures for each

phenotype prediction. With real HCS data, we show that these

uncertainty measures allow us to identify novel or unclear pheno-

types. In addition, we also found that the MC dropout method

results in a significant improvement of classification accuracy. The

proposed procedure used in our HCS case study can be easily

transferred to any existing network architecture and will be ben-

eficial in terms of accuracy and novelty detection.
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INTRODUCTION

E
arly drug research increasingly relies on complex

phenotypic assays as biologically relevant model

systems. The goal of the bioassays is a pharmacolog-

ical assessment of wanted effects from chemical

molecules on living objects, for example, cells or higher level

structural aggregates. Application areas range from cell seg-

mentation1 to the classification of dozens of cellular pheno-

types.2–6 From a screening application viewpoint, image-based

drug discovery often relies on a priori knowledge (e.g., man-

ifested by respective positive and/or negative control com-

pounds with known mode-of-action) to find substances that

induce a certain visible effect (phenotype) and thereafter

quantify the observed response by using multiple doses of a

compound.7,8 This detection and quantification task can be

tackled on different levels: (1) on a single-cell basis2,4,5 or (2)

considering multiple cells/patches6 up to the whole well (field)

images.3 The applied convolutional neural networks (CNNs)

are known for their outstanding performance in computer

vision tasks9 and are seen as the most successful candidate to

support modern high-content screening (HCS) in multiple

flavors.10 A typical workflow consists of curation of the

training data (distinct phenotype classes), training of a cor-

responding CNN and its application on production image

data.10

In many HCS application scenarios, the possible phenotypic

endpoints are unknown. In practice, a trained scientist would

manually detect and define a certain number of phenotypes,

which in a machine learning setup would define training

classes on which a CNN is trained for production application

in drug discovery campaigns. In an ideal world, the defined

training classes resemble all phenotypes present in the pro-

duction setting, which is almost never true in practice. There

are many reasons why phenotypes and their number may be

different in assay development and in production analysis.

Subtle changes in experimental protocols may trigger slightly

altered differentiation of cells, different cell lines might be

used, or just a larger chemical space in use can trigger phe-

notypes that could not be discovered with tool compound sets

alone. The situation gets even more complex when a cell

painting assay is analyzed, not only working with few target-

specific labels but with a large number of compartment-

specific labeled proteins as well. Hence, in this setting, the

number of detectable possible phenotypic endpoints is espe-

cially large and often not known beforehand.
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The problem of not knowing that one misses important

phenotypes can become a real challenge for black box pro-

cedures such as deep learning. In this study, a CNN trained for

classification usually uses a so-called softmax function at the

last layer,9 whose operation provides a probability value pk for

each known class label that adds up to one over all labels. In

contrast to the popular belief, these probabilities usually

cannot be interpreted as a measure of uncertainty. Especially

in cases where a classified image does not correspond to a

known training class, the network cannot predict the correct

class by definition (because it is unknown) and must assign the

probabilities to wrong class labels. Astonishingly, even if

classifying an image of an unknown class, one of the known

classes often obtains a prediction probability close to one.

To overcome this particularly difficult challenge, one has to

introduce a measure of uncertainty to indicate if a classified

image has an unexpected structure and should potentially not

be assigned to any of the available class labels. There are many

examples for such uncertainty measures: the length of a 95%

confidence interval (statistical modeling) or the 95% region of

highest posterior density (in Bayesian statistics). However, in

case of standard neural networks, such as CNNs, we have no

uncertainty information of the predicted probability by de-

fault. We therefore propose to use a recently introduced Monte

Carlo (MC) dropout method11 developed as a practical, useful,

and performant approximation of Bayesian neural networks,

which naturally provide uncertainty information. The basic

idea is to sample from a posterior distribution of the network

weights and thus to construct a distribution of predicted

probabilities. A broad and flat distribution across all classes

indicates a general, unspecific class assignment, which hints

that a classified object is not covered by the known training

classes. In contrast, a sharp distribution can increase the

certainty for the correct class assignment. In this article, we

evaluate the correctness of a probability estimate of our net-

work and introduce novelty detection in the context of image-

based analysis (HCS and medical screening). We introduce the

principle that enables quantifying uncertainty measures of a

Fig. 1. Exemplary images of yeast cells with localized GFP-tagged proteins for the 19 subcellular compartments. The compartment
localization classes ‘‘mitochondria’’ and ‘‘endosome’’ are highlighted. GFP, green fluorescent protein.

Table 1. Experiment Settings

Total no. of images Mitochondria Experiment w/o mitochondria Endosome Experiment w/o mitochondria and endosome

Training 21,882 1,500 20,382 1,500 18,882

Validation 4,491 642 3,849 220 3,629

Test 4,516 643 4,516 222 4,516
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CNN-based prediction and illustrate how to utilize them in a

real-world HCS setting.

MATERIALS AND METHODS

Data Set
Budding yeast is a well-studied model system for protein

expression and localization experiments. Genetically, yeast is

especially simple since it has only 5,797 protein coding genes.

We work with a public image data set of budding yeast known

as open reading frame-green fluorescent protein (GFP) fusion

collection consisting of 4,156 (out of 5,797 possible) GFP-

tagged protein strains.12 In each strain a different gene is

fused to a green fluorescent protein plasmid, and hence, the

corresponding protein is tagged with GFP allowing to detect

its position in the cell via fluorescent imaging. The used im-

ages have two channels—the green channel shows the tagged

proteins, and the red channel shows the cell body. Huh et al.13

classified *75% of the yeast proteome into 22 distinct sub-

cellular localization categories. We used a data set that Kraus

et al.6 have utilized for other deep learning approaches and

provided as a ZIP container.* This data set is only a subset of

derived single-cell images and relabeled by Kraus et al. to

achieve 19 localization classes (ACTIN, BUDNECK, BUDTIP,

CELLPERIPHERY, CYTOPLASM, DEAD, ENDOSOME, ER,

GHOST, GOLGI, MITOCHONDRIA, NUCLEARPERIPHERY,

NUCLEI, NUCLEOLUS, PEROXISOME, SPINDLE, SPINDLE-

POLE, VACUOLARMEMBRANE, VACUOLE). We treat the 19

localization classes as surrogates for different phenotypes.

Figure 1 shows example images of the yeast cells for all 19

protein localization classes. The data set has 21,882, 4,491,

and 4,516 images for the training, validation, and test set,

respectively.

Since we want to demonstrate an approach for phenotype

novelty detection, we conducted two experiments. In the first,

we removed all images with the localization class

label ‘‘MITOCHONDRIA’’ from the original

training and validation set (Table 1). In the sec-

ond experiment, we removed in addition to

‘‘MITOCHONDRIA’’ images, all images of the class

‘‘ENDOSOME’’ from the training and validation

set (Table 1). The test set in both experiments

was left unchanged. Table 1 below summarizes

the data set sizes. We have picked these two

phenotypes since they are represented with a

reasonable high number allowing for a reliable

evaluation of our methods. In a leave-one-out

experiment, we repeated the experiment for each

of the 19 phenotypes, each acting once as an unknown class

(Supplementary Data; Supplementary Data are available online

at www.liebertpub.com/adt).

CNN Model
We use a rather shallow network with *3 million weights

(Fig. 2). The network is constructed from convolutional blocks

consisting of two convolutional layers followed by a max

pooling layer. We stack two such building blocks, the first

with 32 3 · 3 filters and the second with 64 3 · 3 filters. After

these convolutional blocks, we add a first dense layer with 200

neurons and a second dense layer with 18 or 17 neurons de-

pending on the number of classes in the experiment.

Rectified linear units (ReLu)14 are used as activation

functions. Dropout with a rate of 0.3 is applied within the

convolutional and fully connected part of the network

(Fig. 2). The network is built using Keras and available as

IPython notebook.{ To reduce overfitting, we augmented

the data set by randomly applying rotations, shifts, and flips

to the training images during training. Besides normalizing

the pixel values to be between zero and one, no pre-

processing has been performed. The final network is trained

for 500 epochs. In both experiments, after around 500 ep-

ochs, a slight increase in the validation loss heralds the

onset of overfitting.

We use the same trained network and operate it in two

different prediction modes to do predictions on new images. In

the first prediction mode, we do classical predictions by

freezing the weights (no dropout during test time) and use the

maximal predicted softmax probability as the probability of

the predicted class. In the second prediction mode, we do MC

dropout during test time, meaning that we use different

dropout versions of the trained model on the same image and

aggregate the received predictions (for details see below).

Fig. 2. CNN architecture. CNN, convolutional neural network.

*http://spidey.ccbr.utoronto.ca/*okraus/DeepLoc_full_datasets.zip {https://github.com/tensorchiefs/hcs_uncertainty
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Point Estimates and Uncertainty Measures
In general, probabilistic classifiers are able to predict a

probability for an input belonging to a certain class rather

than just providing a binary decision. For a standard neural

network architecture with a softmax activation in the final

layer, the output pk is interpreted as the probability that the

input belongs to class k. If pk is an unbiased estimator of the

proportion with which we observe the predicted class, we call

the model calibrated. The quality of the calibration can be

investigated using calibration plots (Supplementary Data). To

derive a classification decision, the input image is usually

classified into the class with the highest pk. However, our main

focus here is to examine the ability of the network to signal if

an image class has not been seen in the training set and should

therefore not be classified to any of the available classes.

In addition to standard use case of dropout only during

training of the network, we additionally use dropout during

the test phase (MC dropout) where we pass the same image

through different dropout-sparsified versions of the trained

CNN, where in each version another random set of nodes is

deleted or dropped. This procedure is theoretically rooted in

the Bayesian neural network framework and was shown to

approximately correspond to sampling from the posterior

distribution of the network weights.11 Using the MC dropout

during test time, we obtain i = 1,. . ., Ndropout samples of

probability values p�ik for the k = 1,. . ., Ktraining classes

used in the training. Note that the p�ik are compositional data

in the sense that their sum +
k

p�ik = 1 for each prediction

run i. From the obtained sample of predictions we derive

different measures. Specifically, we distinguish between es-

timates for the probabilities predicted for each class and for

quantifying the uncertainty of the predicted probabilities.

Probability estimates. For a prediction in the standard (no MC

dropout) use case, we freeze the learned weights and pass the

image through the network only once. The resulting softmax

output pk is used as a probability estimate for the class k.

For prediction with MC dropout, we need to aggregate the

received sample of MC predictions. In this study, we investigate

two different aggregation methods. The first probability esti-

mate is the mean over all predicted MC probabilities for class k.

p�k =
1

Ndropout
+
i

p�ik (1)

The second probability estimate is count based. We consider

MC dropout evaluations as an ensemble of CNN classifiers and

Nk counts in how many dropout variants the class k had the

highest probability.

f �k =
Nk

Ndropout
(2)

In addition, we experimented with the multivariate maxi-

mum a posteriori (MAP) estimate calculated using kernel

density estimators. However, first experiments showed infe-

rior results and thus the MAP was not used in this study.

Uncertainty estimates. When we are interested in the overall

confidence of a classification decision, we can use the

probability of the predicted class as measure for the classi-

fication certainty:

pmax = max pkð Þ, p�max = max p�k
� �

, and f �max = max f �k
� �

(3)

In addition, we can use estimates operating on all pik like

the total standard deviation of the observed probabilities over

all MC runs:

r� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
k

1

Ndropout - 1
+
i

p�ik - p�k
� �2s

(4)

Another commonly used uncertainty measure is the (in-

formation) entropy of the distribution of probabilities p�k

PE� = - +
k

p�klog2 p�k + �
� �

(5)

where a small number � = 10 - 14 has been added for numerical

stability.

RESULTS AND DISCUSSION
We started our work by proving that the networks are ca-

librated and in both prediction modes—the classical and the

MC dropout—we see quite calibrated predictions, provided

Fig. 3. Density estimation of classical pmax predictions for phe-
notypes present in the training set (novel_class = FALSE) and
phenotypes not included in the training set (novel_class = TRUE).
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that the input image belongs to a known class (Supplementary

Data for details).

We now investigate how the models react when an un-

known class not included in the training set is presented. We

focus on the experiment in which the class ‘‘mitochondria’’ is

not contained in the training set.

We first consider the case when no dropout has been applied

during the test time. This is the current standard setting for

classification in deep learning. As described above, usually an

image under consideration is assigned to the class with the

highest probability pmax. First, consider the images in the test

set whose phenotype has been also present in the training set.

In this case the accuracy is 0.9367 (0.9286, 0.9442).{ In

Figure 3, the density of pmax for the phenotypes present during

training is shown by a solid line. We see that the network

assigns images to a certain class with a high probability. Now

looking at the phenotype not present in the training (dotted

curve) in Figure 3, we observe a much flatter distribution and

quite a fraction also has high pmax . Note that there is a sig-

nificant overlap of the two distributions. If we want to use a

small pmax as an indicator for an unseen phenotype and set the

threshold, for example, to pmax = 0:8, we would falsely call

43% of the novel class (area under the dotted curve for pmax

between 0.8 and 1) as coming from a known phenotype. We

quantify this intuition later using receiver operating char-

acteristic (ROC) analysis and lift charts.

For MC dropout predictions, we now also apply dropout

during the test time (MC dropout)—not only during training.

Before we investigate the resulting prediction distribution, we

have a closer look at the individual results of single dropout

runs. Figure 4 shows the estimates pik for i =1 . . .100 MC

runs—left for an image of a cell phenotype that was seen in the

training set and right for an image of a previously unseen

phenotype.

If the class of the image is present in the training set, in all,

but one, MC runs the highest probability is correctly assigned

(left side Fig. 4). If the class was not present in the training

(right side of Fig. 4), there is a significant spread in the pre-

dictions between the different MC runs and also the mean

value of pmax is significantly smaller than 1.

We now systematically investigate the use of MC dropout

on the accuracy and to quantify the uncertainty. MC dropout

during the test phase allows for the definition of additional

point estimates. Equations (3–5) allow to obtain uncertainty

estimates for the predicted probabilities Equations (1) and (2).

First, we note that using p�k given by the mean value of the MC

runs significantly enhances the accuracy for images included

Fig. 4. The heatmaps visualize the probabilities for each of the class labels (columns) received from 100 MC runs (rows) of two test
images in the experiment with ‘‘mitochondria’’ class left out. Left: the test image corresponds to the class that was represented in the train
set, right: test images correspond to a novel class. MC, Monte Carlo.

{The 95% confidence interval is calculated by using the Clopper and Pearson

procedure.15
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in the training from 0.9367 (0.9286, 0.9442) to 0.9543

(0.9472, 0.9607). This is consistent with other findings.16 In

Figure 5, we compare how well pmax , r from Equations (3) and

(4), respectively, are able to detect novel classes.

Compared with the nondropout case (Fig. 3), the p�max shows

a higher sensitivity if the class is unknown. This can be seen

from the smaller overlap of the distributions.

To quantify which of the uncertainty measures are most

sensitive to novel phenotypes, we provide an ROC and lift

chart analysis of the various uncertainty measures in Figure 6.

With the ROC analysis, we are investigating the ability of the

different uncertainty measures to discriminate novel pheno-

types from known ones. With the lift chart, we study the

ability of the uncertainty measure to rank the images so that

easy-to-classify images come first.

For the lift chart, we order the classified cell images ac-

cording to the certainty of their call. For pmax , p�max , f �max high

values come first, while for r�

and PE� low values indicate

certainty, and hence, we order

them in a descending manner.

The class assignment for the

pmax , p�max , and f �max is done

into the class with the maxi-

mal value. For the entropy and

variance-based uncertainties,

we use the maximal value of p�k
to assign the class. In the be-

ginning, we only call the phe-

notype with the largest certainty

and achieve an accuracy of

100%, regardless which uncer-

tainty measure is used. However,

after the first 500 to 1,000 most

certain images are classified,

the measure pmax , which corre-

sponds to the classical probability

predictions without MC dropout,

clearly yields inferior accuracy

compared with the uncertainty

measures derived from the pre-

dicted distribution in the MC

dropout evaluation procedure.

The differences between dif-

ferent MC dropout-based ap-

proaches are negligible. Also

for the ROC analysis, all MC-

based approaches (except the

count-based method) are clearly

Fig. 5. Density estimation of p�max (left) and r� (right) for phe-
notypes present in the training set (solid) and phenotypes not
included in the training set (dashed) using MC dropout.

Fig. 6. ROC curves with corresponding AUC (upper panel) and lift charts (lower panel) for various
uncertainty measures. AUC, area under curve; ROC, receiver operating characteristic.
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superior to the non-MC-based approaches. In both experiments

under consideration, the entropy has the largest AUC value.

CONCLUSION
Besides reliable phenotype predictions, an improved de-

tection of undiscovered phenotypes is of crucial importance in

HCS and other imaging applications. While standard deep

learning approaches show state-of-the-art prediction perfor-

mance for known phenotypes, they fail to indicate if novel

phenotypes are present. So far, this problem is widely ignored

or tackled by a two-step approach where the classification

model is preceded by a separate novelty detection model.17

To solve this problem in a one-step procedure, we used MC

dropout during test time, allowing to determine several un-

certainty estimators that can be used to discover a novel class

not present during training. In our case study we investigated

four uncertainty estimators derived from MC dropout pre-

dictions and showed that three of them were suitable to detect

unseen classes. Using the classically predicted class, proba-

bility as an uncertainty estimate was consistently inferior to

the other three estimators. MC dropout predictions were also

shown to increase the overall accuracy of the model. These

findings seem to generalize: first, we tested the method by

means of leave-one-out experiments on all 19 classes of the

analyzed yeast data set (shown in Supplementary Data) and

second, we applied our approach on three other data sets (two

widely used image data benchmark sets, i.e., CIFAR1018 and

MNIST,19 and third a nucleolar translocation high-content

assay data set, data not shown). We achieved in all experi-

ments a good discrimination between known and unknown

classes during test time as long as the novel class is not ex-

tremely similar to a known class. After filtering out uncertain

and potentially unknown cases, we achieved consistently a

higher accuracy for the classified images. We therefore ad-

vocate utilizing MC dropout during test time for phenotype

classification based on the MC dropout predictions as well as

for novelty detection based on the uncertainty measures.
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