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ABSTRACT

We are interested in computing a mini-batch-capable end-to-
end algorithm to identify statistically independent components
(ICA) in large scale and high-dimensional datasets. Current
algorithms typically rely on pre-whitened data and do not in-
tegrate the two procedures of whitening and ICA estimation.
Our online approach estimates a whitening and a rotation ma-
trix with stochastic gradient descent on centered or uncentered
data. We show that this can be done efficiently by combin-
ing Batch Karhunen-Lowe-Transformation [1]] with Lie group
techniques. Our algorithm is recursion-free and can be orga-
nized as feed-forward neural network which makes the use
of GPU acceleration straight-forward. Because of the very
fast convergence of Batch KLT, the gradient descent in the
Lie group of orthogonal matrices stabilizes quickly. The op-
timization is further enhanced by integrating ADAM [2]}, an
improved stochastic gradient descent (SGD) technique from
the field of deep learning. We test the scaling capabilities by
computing the independent components of the well-known Im-
ageNet challenge (144 GB). Due to its robustness with respect
to batch and step size, our approach can be used as a drop-in
replacement for standard ICA algorithms where memory is a
limiting factor.

Index Terms— ICA, Lie group, ADAM

1. INTRODUCTION

Independent component analysis (ICA) is a statistical signal
processing technique for identifying statistically independent
linear components [3]. Compared to principal component
analysis, which only takes second-order statistics into account,
ICA also incorporates higher-order moments such as skewness
and kurtosis. Performing ICA in large-scale scenarios is of par-
ticular interest as more and more large high-resolution datasets
become available such as, e.g., ImageNet or LiDar or RGBD-
Video [4]. In this work we are targeting the case where the
data X does not fit into memory, and stochastic optimization
for an efficient GPU-based neural network implementation is
required. Here, stochastic optimization means that the data X
is processed in mini-batches during gradient descent instead of
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Fig. 1: Examples of the first 484 independent components
estimated from the ImageNet dataset (1.2 - 10° examples)
(left). Every tile represents a single column of the mixing
matrix which is reshaped to 3 x 200 x 200 for illustration
purpose. In Lie-ADAM, we used a learning rate of 0.01 and
a batch size of 484. The model was trained with three runs
through the dataset which took 3% on standard hardware with
a single GPU. A schematic overview of the algorithm is shown
on the right.

computing the gradient over the entire dataset. This use case
is of special interest during data exploration when the number
of extracted components is large and the redundancy in the
data is unknown. Current ICA algorithms based on Lie-Group
techniques use L-BFGS (Broyden—Fletcher—Goldfarb—Shanno
optimization) and rely on a costly full-batch line search, which
makes them very accurate but slow in practice [5]. On the
other hand, algorithms based on Infomax []§|], also referred to
as maximum likelihood estimation of the ICA model, have
good convergence rates [7]], but are known to be hard to opti-
mize in online scenarios [8]]. Both aspects prevent current ICA
algorithms from computing ICA on large high-dimensional
datasets, so there is a need for a better optimization scheme for
the entire ICA pipeline. Our contributions to that pipeline (see
Figure [T) are: (1) showing the importance of orthogonality
constraints in large-scale ICA and the pre-whitening require-
ment for stability, (2) improving the geodesic flow update rule
by using the ADAM optimizer in combination with the Caley
approximation for the matrix exponential, and (3) demonstrat-
ing the resulting scaling capabilities by computing the first
484 independent components of the ImageNet challenge. By
using b-sized mini-batches the space complexity of the entire
pipeline for k components is limited to O(d(k + b)).



2. LARGE-SCALE ICA

In short, Independent component analysis (ICA) computes the
matrix decomposition X = A S, with mixing matrix A and
independent sources arranged as columns of S. The follow-
ing section describes the relevant algorithmic decisions for
conducting ICA in large-scale scenarios on CPU and GPU-
hardware using as few hyperparameters as possible.

2.1. Optimizing independence

ICA is typically done in two steps: first, the data are whitened,
and second, an orthogonal transformation R is chosen such
as to maximize the independence between the components in
S [3]. In general, the independence between several random
variables sq, ..., s is measured by the mutual information
I(s1,...,8k). A property of orthogonal transformations is
that they do not change the shape and consequently not the
differential entropy of a distribution. Hence, instead of the
multivariate mutual information, we can minimize the differ-
ential entropy of the individual decorrelated components [9]],
[10]. Negentropy approximations J(s) [3] are based on the
maximum entropy principle and measure non-Gaussianity [3]],
[11]]. The mutual information is then approximated by

I(s1:4) < = Z J(si) o ) (E[G(s:)] ~ E[G(2)])* (D)

%

It measures the difference between the expectation of the
whitened component s; and a Gaussian variable z ~ A(0, 1)
under the specified source model G(s;). Here, we chose the
traditional generalized Kurtosis measure [5], [11] for G(-)
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As E[G(z)] is a constant, optimization is achieved by either
maximizing or minimizing E[G(s;)]. The desired direction
depends on the statistics of the components s; and the underly-
ing source model G(s;). If unknown, automatically switching
between maximizing or minimizing E[G(s;)] is needed. Ex-
tended Infomax [12] and Picard-O [7]], for instance, achieve
this by computing the component-wise kurtosis K; based
on a generic stability analysis. For simplicity we use the
component-wise kurtosis K; for estimating the sign [[13].

2.2. Parallelism and GPU-hardware

For using highly parallel GPU-hardware, we need to reduce
non-parallel computing steps in the algorithm. In existing
algorithms, there are two major steps involved that complicate
parallelism. The first is line search which is part of L-BFGS,
for instance, as this includes a single-threaded loop iterating
over the gradient direction. Second, greedy approaches as in
Incremental PCA [[14] and Robust ICA [15]] are inherently
recurrent and therefore suboptimal for parallelism. This is
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Fig. 2: Convergence of the 100 x 100 (left) and 1000 x 1000
(right) covariance matrix Xg pertaining to the largest eigen-
values to the identity matrix as measured by the Frobenius
norm ||.|| on the CIFAR10 dataset (50.000 examples of size
3 % 32 x 32). As baseline, we show Singular Value Decompo-
sition (SVD) which runs offline. Batch size was set to 100 and
1000, respectively.

because, after extracting a single component, the orthogonality
constraint must be enforced in order to prevent the algorithm
from extracting the same components multiple times.

2.3. High input dimensionality

High input dimensionality impacts the ICA algorithm heavily.
Standard algorithms compute a square mixing matrix, which
in the case of ImageNet would require storing 1505282 param-
eters requiring 90 Gb in single precision for 224 x 224 x 3
RGB image input. This is especially a limiting factor in GPU-
computing, where the maximum available memory is compar-
atively small. Such large parameter matrices also considerably
impact the stability of the algorithms. For mitigation, data
dimension is typically reduced beforehand by applying PCA
which is also needed for whitening [[11]]. Dimension reduc-
tion allows for non-square unmixing, in which fewer inde-
pendent components than the number of input dimensions are
unmixed. There are several algorithms for performing PCA
in online scenarios available [16]. Here, we focus on algo-
rithms that also work with mini-batches: (1) Batch Karhunen-
Loewe-Transform (Batch KLT) [17]], (2) Incremental PCA
[14], and (3) the Generalized Hebbian Algorithm (GHA) [18§]].
As whitening is a mandatory step also in our ICA procedure,
we compared the convergence of these algorithms on the well-
known CIFAR10 dataset. Figure [ shows clearly that Batch
KLT is superior for stochastic whitening in this scenario. The
learning rate in the GHA is a critical parameter and we found
that a value of 10~° works well.

2.4. High output dimensionality

When the input dimensionality is large, the output dimension-
ality of the algorithm can be large, too. This impacts the
stability of the algorithm as the gradient update is done in
a very high-dimensional parameter space. We are targeting
scenarios where the number of ICs k is between 500 and 1000



components as this is a typical layer width in deep learning.
Algorithms based on Infomax perform gradient update in the
entire parameter space of square invertible matrices (the gen-
eral linear group G L(k)) by maximizing the output entropy
[19]. Optimization in higher dimensions causes problems
as this space is not compact and includes diverging series
[20]]. For improving stability, orthogonality constraints are in-
tegrated [[7], [21]], and the search space is limited to the special
orthogonal group SO(k) [22]. This group has three appealing
properties for our scenario: first, the number of parameters is
reduced to k(k — 1)/2; second, the special orthogonal group is
compact, and hence there are no diverging series; third, SO(k)
is a Lie group with a tangent space, called the Lie algebra
that can be used for gradient updates. The so-called gradi-
ent flow [22], [23]] makes use of this and computes ICA with
orthogonality constraints using Lie group technique The
corresponding Lie algebra is called so(k). It consists of all
skew-symmetric matrices and becomes the space for gradient
descent. Every skew-symmetric matrix ® can be uniquely
parameterized by a vector r of dimension k(k — 1)/2 giving
rise to a vector space. The components of that vector are called
Pliicker coordinates. Further, every skew-symmetric matrix &
can by related to an orthogonal matrix R by

R = exp(©), 3)

where exp(-) is the matrix exponential. The gradient of the loss
function Vg, I represents an infinitesimal rotation and hence
an element of so(k). However, in order to compute a valid
gradient step beyond the neighborhood of R, the gradient
direction needs to be expressed by the Lie bracket. We refer to
Plumbley [22] for the full derivation of the relation between
the two gradient expressions using the commutator

VG)riI = (VR,-I)T R, — R? (VRLI) . 4)

From there, we compute the corresponding parameter vector r;
by taking the upper triangular matrix of Ve, I corresponding
to the Pliicker coordinates. The gradient flow update rule is
then given by

R/, = exp(—n©;,)R], (5)

with step size 17 and the skew-symmetric matrix ©,, parame-
trized by r; at the ¢-th iteration step. Unfortunately, rotation
matrices for £ > 2 are not commutative. Hence we cannot
make additive steps of descent in so(k) and need to map be-
tween the Lie algebra and the manifold in every iteration. This
procedure is not for free, as we need to evaluate the matrix
exponential between every iteration. Additionally, in order to
update the solution at the current iterate r;, we need to trans-
late the geodesic gradient direction by matrix multiplication.
The accuracy and speed of the method depends critically on the
computation of the matrix exponential and the overall number

! An improved method integrates L-BFGS for acceleration [5] .
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Fig. 3: Runtime and precision of the matrix exponential
methods comparison between spectral exp(M), cayley(M),
padé(M) for M ~ N(0,0.1) using PyTorch. Inter-
estingly both the Cayley approximation cayley(M) =
I-)"1(I—21) and the Padé algorithm give similar ac-
curacies (10~%) up to 500 dimensions. However, for larger
dimensions the Caley approximation shows large peaks.

of iterations. In principle, the exponential can be computed
by spectral decomposition and computing the exponential of
the eigenvalues. Instead, the Padé-algorithm [24]] can be used,
which gives a significant speedup over spectral decomposition.
Furthermore, we also tested the Cayley approximation, which
is considerably faster and almost as accurate for most practical
problems with £ < 1000, and therefore our choice for being
included in the algorithm (see Fig.[3)

2.5. Large datasets

As the loss function is computed as a sum over all input ex-
amples, performing parameter updates by gradient descent is
very costly. As a consequence, we cannot use offline or full-
batch algorithms and need to switch to online or mini-batch
processing. Majorization-minimization ICA (MM) [25]] is the
most recent algorithm for estimating ICA online that guaran-
tees convergence through an expectation-maximization (EM)
scheme. Mini-batch processing induces a source of stochas-
ticity impacting the gradient estimation and its variance. This
is problematic for methods that rely on computing optimal
step sizes per iteration by line-search as they become strongly
sub-optimal. Momentum-based methods estimate curvature in-
formation by averaging over past mini-batches, which is more
robust and allows a significant speedup [26]. Such methods
arose from deep learning, where both the number of training
examples and the number of parameters are large. Scarpiniti,
Scardapane, Comminiello, et al. [26] already integrated the
well-known ADAM algorithm into Infomax and improved its
speed for low-dimensional problems (d <= 5). This kind of
optimization is especially attractive in non-convex problems
or when only a stochastic estimate of the gradient is available
and hence line-search techniques are unreliable. However, in
our experiments this approach did not convergence for high
dimensional data. As already mentioned, we are optimizing
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Fig. 4: The first plot shows the evolution of kurtosis of the
computed ICs measured over iterations, the second plot over
runtime for the STL10 dataset (10° examples of size 3 x 96 x
96). The learning rates are 0.01 in the offline scenario, and
0.001 for the stochastic scenario. The batch size and & is 484.

in the Lie algebra of skew-symmetric matrices, which are
parametrized by the Pliicker coordinate vector r. The main
advantage of its vector space structure is the fact that we can
optimize the components of r independently of each other.
We leverage this property and use ADAM [2] to control the
learning rate per vector component. Hence, the update rule
becomes

R}, =exp(— ©;,) R/, 6)
where 1; = H,g,mr; is the new coordinate vector scaled by
the diagonal matrix H,g,y, estimated by ADAM. The diagonal
terms represent estimated curvature information.

The final optimization objective problem is

N ok
argming I(S) = Z Z sign(K;)G(si;), (7
i

where S = (XWR)?, 8)

where X is the centered data matrix and W is the whitening
matrix estimated by Batch KLT. In scenarios without access
to the whole dataset column-wise centered input data is some-
times impossible. To account for this, we compute the column-
wise mean p incrementally for every example z; during the
first epoch by using the well-known formula

XT; — i —
m=m4+if#i )

and keep it fixed afterwards. In the following, we refer to our
approach as Lie-Adam.

3. EXPERIMENTS

We compared Lie—Adarrﬂ with the following ICA algorithms:
For FastICA [11]], we used the parallel implementation of

’Lie-Adam is provided as Python Github:

https://github.com/matherm/Lie-Adam.git

package on
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scikit-learn, for L-BFGS with Lie-Group techniques [5]] we
used Lie-Adam and replaced ADAM by L-BFGS, for Picard-O
[7] and Majorization-minimization ICA (MM) [25]], we used
the Python packages provided by the authors, for Infomax
we used the Picard-O implementation [26] and Lie-Adam
with the Infomax update rule. We ran all experiments with
single-precision on standard hardware consisting of an Intel i7
7800k, 32 GB RAM and a 16 GB GeForce 1080Ti. Figure
shows the kurtosis on validation data for comparison. When
looking at the plots, we see the superiority of Lie-Adam, both
in offline and stochastic mode, and Picard-O. Figure E] shows
the computed ICs for the ImageNet dataset. Note that this is
not trivial as this requires to store and process 1.2 million data
samples, which requires 144 GB of RAM. In Lie-Adam, we
used a learning rate [r = 0.01 and batch size bs = 484 and
trained the model for three runs through the dataset, which
took 3h on our hardware.

4. CONCLUSION

We investigated the task of computing independent compo-
nents in large scale scenarios using accelerated Lie group
techniques in combination with Batch KLT. The combination
of fast whitening, a stable gradient descent and good con-
vergence rates is a huge improvement for scaling up current
Lie-group-based ICA techniques. The proposed Lie-Adam
approach offers two modes: in offline mode, it works very
similar to L-BFGS-based algorithms like Picard-O [7[]. How-
ever, in stochastic mode, it offers fast convergence rates while
maintaining highly accurate solutions. We showed that the
computation can be done efficiently without computing the
matrix-exponential explicitly. The derivatives for gradient de-
scent are computed in the corresponding Lie-algebra of the
special orthogonal group, which turned out to be well-suited
for the use of ADAM [2] in combination with mini-batches.
Our approach allows us to formulate the ICA update equations
as a standard neural network and leveraging recent approaches
in deep learning. For proving the capabilities of our algorithm,
we extracted independent components of ImageNet which is a
144 GB Dataset on standard hardware. To our knowledge, we
are the first who present ICs of this popular large-scale dataset.
The ability to efficiently compute ICA enables further research
directions: First, ICA for large-scale datasets like video and
neural network data. Second, as our model is a fully-featured
neural network, it makes the integration of recent autoencoder
techniques for source modeling straightforward.
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