
Targetless Lidar-camera registration using
patch-wise mutual information

Matthias Hermann, Dennis Grießer, Bernhard Gundel,
Daniel Dold, Georg Umlauf, Matthias O. Franz

Institute for Optical Systems
HTWG Konstanz

Abstract—Targetless Lidar-camera registration is a repeating
task in many computer vision and robotics applications and
requires computing the extrinsic pose of a point cloud with
respect to a camera or vice-versa. Existing methods based on
learning or optimization lack either generalization capabilities or
accuracy. Here, we propose a combination of pre-training and
optimization using a neural network-based mutual information
(MI) estimation technique (MINE [1]). This construction allows
back-propagating the gradient to the calibration parameters
and enables stochastic gradient descent. To ensure orthogonality
constraints with respect to the rotation matrix we incorporate
Lie-group techniques. Furthermore, instead of optimizing on
entire images, we operate on local patches that are extracted
from the temporally synchronized projected Lidar points and
camera frames. Our experiments show that this technique not
only improves over existing techniques in terms of accuracy, but
also shows considerable generalization capabilities towards new
Lidar-camera configurations.

Index Terms—Lidar-camera registration, mutual information

ACKNOWLEDGMENT

This research has been financed by BMBF (01IS19083A)
and Baden-Württemberg Stiftung gGmbH.

I. INTRODUCTION

For sensor fusion tasks, such as point cloud coloring,
or acquiring depth information for downstream tasks (e.g.,
reconstruction or object recognition), it is essential to estimate
the registration transformation between camera and Lidar
coordinate systems. Such a transformation is denoted by E
and consists of a rotation matrix R and a translation vector t.
Together, they describe the relative position of one sensor with
respect to another. Compared to a manual process, automatic
registration algorithms try to estimate the parameters E based
on data automatically. In this work, we are addressing the
targetless case [3], [4] which does not require a known pattern
[5] such as a checkerboard. In the literature, often mutual
information (MI) (e.g., [6]) has been applied [7], [8], as well
as learning-based schemes [9]–[11], that learn the calibration,
given a labeled training dataset. In that line of research,
we propose a hybrid algorithm that uses a patch-based MI
maximization scheme.

Our method is hybrid in the sense that it uses registered
training data for pre-training, but involves a optimization
scheme for unregistered test data. The method is based on
projecting the Lidar point cloud onto the common image plane,
and extracting local patches by differentiable sampling [12].

(a) Initial calibration Einit

(b) LMI-optimized calibration Emi

Fig. 1: Registration results on the unseen maritime scenario.
The model has been pre-trained on KITTI [2] indicating good
generalization capabilities.

As a prerequisite for the common image plane, the intrinsic
camera parameters, i.e., the camera matrix P, needs to be
available beforehand — extrinsic parameters can be chosen
freely. The major advantage of such a local scheme is that
general local shape patterns are more transferable to unseen
scenarios. This allows the method to produce both accurate
solutions and improved generalization compared to existing
approaches, which makes the method suitable for situations
where calibration is required (e.g., caused by weather con-
ditions or mechanical changes), but no labeled training data
are available. This is especially important for online or re-
calibration scenarios.

We show the effectiveness of our method on the KITTI

dataset and test its generalization performance within a real
world maritime scenario.1

II. RELATED WORK

There are two major approaches to targetless registration
of camera and Lidar streams. The first approach is based
on optimization and works by optimizing two unregistered
streams with respect to some performance metrics, such as
the alignment of detected and projected 3d edges with the
corresponding 2d image edges [13]. Alternatively, measuring
and optimizing the mutual information between the intensities
of projected Lidar points and the corresponding image pixel
intensities directly has been proposed [14]. Beside, tech-
niques from robotics incorporate a visual-odometry pipeline
for estimating the extrinsic parameters by matching odometry
trajectories obtained from both sensors signals [15]. Recent
methods based on deep learning architectures, e.g., RegNet [9],
learn to regress the 6 parameters of the extrinsic calibration
directly based on a labeled dataset consisting of examples with
known calibration parameters. Here, CMRNet [16] extends
RegNet with an additional refinement procedure that consists
of multiple models trained on different scales in a coarse-
to-fine procedure. LCCNet [11] is similar in architecture,
but adds an additional correlation layer for feature matching
and introduces a cost volume over matched features between
Lidar and camera. The combination of feature matching and
hierarchical aggregation improves overall accuracy. Recently
proposed hybrid methods for the calibration task use available
pixel-wise labels such as object boundaries and object affinity
to register the camera and point cloud data [17]. However,
even though the registration quality is considerable, pixel-wise
annotations are expensive to obtain. Our approach is similar
in that we also combine deep learning with an optimization
procedure. However, our approach differs as we are using
small patches from raw images instead of relying on labeling
or pixel-wise features that are often not available in practical
situations.

III. METHOD

The goal of our method is to compute the extrinsic calibra-
tion parameters

E =

[
R t
0 1

]
(1)

of two non-registered but temporally synchronized Lidar and
camera datasets with N frames. The raw RGB camera images
are stored as Ci ∈ [0, 1]3×H×W . The Lidar point clouds are
matrices Li ∈ R4×Ki with Ki 3d points in homogeneous
coordinates. Throughout the paper, we use i to reference
a single frame (Li, Ci) and use j to reference a single
Lidar point. Our goal is to optimize mutual information I
between patch ensembles extracted from Lidar and camera
frames with respect to the calibration parameters E. Opti-
mizing globally is problematic, as the projected Lidar signal

1Our Python implementation: https://github.com/matherm/
Patch-MI-registration (available upon acceptance).

is very sparse. Moreover, transferable local image and shape
features are underrepresented compared to the empty parts
of the projections (c.f. Fig. 5), i.e., most of the pixels are
empty. Therefore, we use a local approach and first project
the Lidar points with the known projection matrix P onto
the common image plane and then sample local patches
from both sensors. Note, that for a common image plane at
least the intrinsic camera parameters need to be available or
obtained by camera calibration. The full method is a two-
step procedure with an estimation, possibly offline, and an
optimization step. In the estimation step (c.f. Sec. III-F) a
neural network is pre-trained to estimate the mutual infor-
mation between patch ensembles based on registered training
data Xtrain = (Ltrain,Ctrain,Etrue). In the optimization
step (c.f. Sec. III-G) the mutual information between patch
ensembles extracted from miscalibrated sensors is maximized
with respect to the unknown calibration parameters E based
on a unregistered test set Xtest = (Ltest,Ctest,Einit). Fig. 2
illustrates the overall architecture.

A. Mutual information estimation

The mutual information I is a non-linear dependency mea-
sure based on shared information between two variables. In
the given calibration scenario we use the measure to maximize
the registration between projected Lidar points B and camera
images C in the common image plane. However, instead of
optimizing entire images and point clouds, we follow a local
scheme and optimize the mutual information of extracted local
patches b and c instead:

I(b, c) = H[b]−H[b|c]. (2)

Existing MI estimation techniques rely either on binning [6]
or k-nearest neighbors statistics [18]. Both techniques are
unreliable in high dimensions [1]. Also, gradient optimization
using these estimators is difficult, as the derivatives generally
do not exist [14]. However, recently a new class of neural mu-
tual information estimators (MINE) was proposed [1]. These
techniques transform the estimation problem into a binary
classification problem, which can be solved efficiently using
deep neural networks. The network is trained to separate regis-
tered (b, c) from non-registered (b, c∗) tuples of patches, and
hereby implicitly estimates the mutual information between
the two modalities. As neural networks are differentiable by
design, gradient propagation with respect to the calibration E
parameters is straightforward using backpropagation.

The needed training data (X̃,y) for the binary classification
problem consists of two different M -sized sets of patch tuples

X̃ = {J,M}, y = {0,1}. (3)

In our case the tuples (b, c) ∈ J are registered Lidar-
camera patches, whereas the tuples (b, c∗) ∈ M are random
and therefore non-registered Lidar-camera patches. The class
indicator function

p(x̃ = 0) = fθ(x̃) (4)

(a) Differential patch sampling

(b) Mutual information maximization

Fig. 2: The Lidar point cloud gets transformed by E and projected by the known and fixed camera matrix P. Afterwards image
patches cj are sampled centered around the Lidar projections uj . For estimating mutual information (MI), the patch tuples
(bji , c

j
i) are organized as registered set J with label y = 0, and contrast set M with label y = 1 by randomly picking camera

patches (bji , c
∗
i). The gradient is back-propagated from the cross entropy loss to the extrinsic calibration matrix E.

is parameterized by a neural network fθ with trainable pa-
rameters θ. As optimization criterion, the well-known cross
entropy

arg min
θ

CE(fθ(X̃),y) =
1

2M

2M∑
i

yi log σ(fθ(x̃i)) (5)

is used, where σ(·) is the sigmoid function.
Formally, the relationship between the mutual information

and the surrogate classification problem is given in terms of
the Donsker-Varadhan representation (DV) [19] of the KL-
divergence

I(b, c) = KL(J|M) ≥ sup
f

EJ[f]− log(EM[ef]), (6)

where f is the class of functions for which the expectation
exists. MINE-like estimators [1] restrict the function class
f to the class of neural network functions fθ using the
universal approximation theorem. Experiments showed that the
numerically more stable cross entropy can be used as a loose
lower-bound instead (e.g., [20]):

I(b, c) ≥ Ifθ (b, c) = −CE(fθ(X̃),y) + const. (7)

We describe the generation of the registered and non-
registered sets of patches in Sec. III-C. The architecture of the
neural network fθ for classification is introduced in Sec. III-E.

B. Projection

We follow [2] and transform the point cloud Li by the
extrinsic transformation E ∈ SE(3). Here, E represents an
element from the special euclidean group and is composed of

a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3.
Afterwards, the transformed point cloud is projected by the
camera matrix P ∈ R3×4. The projected coordinates are given
by

Ui ∼ Ûi = PELi, (8)

where Li ∈ R4×Ki is the 3d input point cloud in homogeneous
coordinates, Ûi ∈ R3×Ki is the projected 2d point cloud in
homogeneous coordinates, Ui ∈ R2×Ki are image coordinates
normalized by dividing by the z-coordinate, and Ki is the
total number of points in the point cloud. Next, we compute a
depth image Bi ∈ R1×H×W of the point cloud with the same
spatial size as the RGB camera image Ci ∈ R3×H×W . Bi is
rendered by setting the euclidean distance of the transformed
Lidar point to the camera origin d(ELji ,0) as pixel intensity,
given by

Bi(x, y) =

{
d(ELji)/s (x, y) ∈ Ũi

0 otherwise
, (9)

where Ũi ∈ Z2×Ki is computed by rounding all values of Ui

to the next integer pixel position, and s = std({d(ELji)}
Ki
j)

is the standard deviation of all euclidean distances of the
transformed Lidar points in the i-th point cloud. Here, we
use the euclidean distance instead of Lidar intensity values,
because the needed shape features such as sharp edges are
better retained and the distances are less noisy [21]. The
scaling factor is needed, because we expect close and very
distant Lidar points across different frames.

C. Differentiable patch sampling

One major difficulty in our approach is computing the
gradient w.r.t. E as the patch sampling procedure is usally not
differentiable. Hence, a differentiable patch sampling function
π(·) is required for generating the 2M patch tuples

X̃ = π(L,C; E) (10)

with corresponding labels

y = {0M , 1M} (11)

for the surrogate classification problem. For compatibility with
Eq. (7), we define the patch sample function π(L,C; E) on
the entire dataset. Next, we crop square patches with size
S × S from the two images Bi and Ci (see green dots on
black background in Fig. 5). To back-propagate the gradient
of the neural network fθ to the calibration parameters E, the
cropping procedure needs to be differentiable. To this end, we
use a localized separable interpolation kernel [12]

Φ(x) = exp−(x−S2)2 , (12)

with offset S for centering the patches, and choose the
projected Lidar points Ui = {uji}

Ki
j=1 as patch centers (c.f.

Eq. (12)). Note, that interpolation is mandatory at this stage
as the projected Lidar points fall in-between pixels and hence
the center-pixel and the pixels of the extracted patches are
interpolated subpixels. The patch tuples {(bji , c

j
i)}

Ki
j=1 corre-

sponding to Ui are given by

bji (x, y) =

H∑
h=1

W∑
w=1

Bi(h,w) Φ(uji (y)− h) Φ(uji (x)− w)

(13)
and

cji (x, y) =

H∑
h=1

W∑
w=1

Ci(h,w) Φ(uji (y)− h) Φ(uji (x)− w).

(14)
Because the interpolation kernel is differentiable, the gradient
can be back-propagated through the patch cropping procedure
by applying the chain rule. Note, that the patch ensemble
depends on the projected Lidar points Ui and hence on the
current calibration configuration during optimization. How-
ever, as the ensemble is kept constant during the gradient
update, differentiability of the optimization with respect to E
is retained.

D. Sub-sampling

As the Lidar point clouds can contain thousands of points,
there are also thousands of patch tuples which can be compu-
tationally prohibitive. To mitigate, we sub-sample a M -sized
subset of the available Ki patch tuples. Therefore, we define
a set of equidistant 2d grid points G with distance Mg in the
H×W plane (see Fig. 3) and then select patch tuples that are
nearest neighbors of the grid points. As a helpful side-effect,
the 2d grid equalizes the sampling density of the projected
points, as there are many spots that are hugely oversampled,
such as walls or the floor. Unfortunately, patch pairs may be

Fig. 3: Visualization of the uniform sampling grid G for sub-
sampling the projected Lidar points. The distance Mg between
the grid points is given in pixels.

−4 −2 0 2 4

0.4

0.5

0.6

0.7

z angle

L
os

s

θm=1000

θm=1001

θm=1002

θm=1003
mean

Fig. 4: Visualizing the loss function −Ifθ (π(L,C; Edist))
for small Euler angle distortions of Edist(0, 0, ε,0), with
ε ∈ [−4, 4]. The dotted lines show the loss function at different
iterations θm of gradient descent. Notice the wrong local
minimum (yellow).

the nearest neighbor of multiple grid points, which causes
interfering imbalances. To eliminate such duplicate patch pairs,
we iterate over the Ki patch tuples and test for each tuple
(bji , c

j
i), whether its corresponding projected Lidar point uji

is the nearest neighbor of a grid point Gm. Formally, the set
of registered patches is given by

J ∼ Ĵ = {(bji , c
j
i) | ∃Gm : j = arg min

k
||uki − Gm||L2

}Kij=1.

(15)
The equally sized set of randomized patch pairs

M ∼ M̂ = {(bji , c
∗
i)}

Ki
j=1 (16)

is generated by picking the camera patches c∗ randomly.
Finally, the differentiable patch sampling is given by

π(L,C; E) = {J,M}. (17)

Again, as the sampled set π(·) is kept constant during the
gradient update, differentiability with respect to E is retained.

E. MINE architecture

The used modified MINE estimator requires a parametric
function fθ for classification and the subsequent mutual in-
formation estimation (c.f. Eq. (7)). Therefore, we define a
convolutional neural network (CNN) fθ with two input heads.
One input head is for the Lidar patches bj , and a second
for the camera patches cj . The schematic architecture of the
neural network is shown in Fig. 2b. The CNN blocks consist

(a) Registered tuple (bj
i , c

j
i) ∈ J

(b) Random non-registered tuple (bj
i , c

∗
i) ∈ M

Fig. 5: Example of registered and non-registered patch tuples.
The left and middle columns show a patch from B and
C, respectively. For illustration purposes we also show the
combined patches in the right column.

of a standard batch normalization layer, followed by six CNN
layers with average pooling and ReLU-activation functions.
We use 32 features in every CNN layer and a kernel size of
five. The input layers differ for Lidar and image patches in
the number of channels. The Correlation layer does not have
parameters and simply correlates the inputs by flattening and
computing the dot product between the 32 feature maps of the
two input paths by computing

Correlationz(fz,gz) = 〈fz · gz〉 (18)

per feature map, where fz ∈ Ruv is the zth feature map of the
Lidar path, gz ∈ Ruv is the zth feature map of the camera
path, and uv is the dimension of the flattened feature map
fz . The FC block consists of two fully connected layers with
ReLU-activation and also 32 features. The entire network has
259 205 parameters.

F. Estimating I(Lidar, Camera)

The pre-training step is required to maximize the lower
bound of the mutual information, such that it can be used
as optimization criterion in the registration phase. The pre-
training is done by using the registered training examples and
optimizing the trainable parameters θ of the CNN fθ as defined
in Eq. 7. Plugging it all together results in the optimization
problem

θ∗ = arg max
θ

Ifθ (π(Ltrain,Ctrain; Etrue),y), (19)

where π(·) is the patch sampling function that transforms an
input pair into tuples of aligned and non-aligned local patches
(c.f. Sec. III-A). The resulting θ∗ is used for initializing the
second step.

G. Optimizing E

The second step is the actual registration of an unregistered
test set Xtest = (Ltest,Ctest,Einit) with N input frames
with respect to the extrinsic calibration parameters EMi. The
initialization is given by E = Einit. Because of the pre-trained
Ifθ estimator, the propagated gradients are stable and can be
directly used for improving the initial estimate of E

Emi = arg max
E

If∗
θ
(π(Ltest,Ctest; E)). (20)

During experiments we noticed, that the optimization some-
times gets stuck in a local minimum near the global optimum.
Therefore, we add the CNN parameters θ to the optimization

Emi, θ
′ = arg max

E,θ
Ifθ (π(Ltest,Ctest; E)) (21)

once it reaches its first plateau. We show the loss function for
a single rotation angle at different iteration steps θm in (c.f.
Fig. 4).

H. Gradient ascent implementation

We do not optimize in full-batch, but use a single frame at a
time, i.e., stochastic gradient descent (SGD) [22]. This means
we compute the back-propagated gradients

∇EI = ∇EIfθ∗
ŵ

(π(Litest,C
i
test; E)), (22)

with
i ∼ U(0, N) (23)

based on a single randomly sampled pair (Li,Ci) instead
of the full data set. Next we split the parametrization of E
into their affine components R and t, and treat the com-
ponents separately. While optimizing t is trivial, optimizing
the rotation matrix R is non-trivial as it is constrained to be
orthonormal. We optimize inside the Lie group SO(3) and use
the gradient flow method as proposed in [23] for computing
the derivatives. Note, that the back-propagated gradient of
the loss function ∇RI is a skew-symmetric matrix Θ, that
represents an infinitesimal rotation and hence an element of
the corresponding Lie algebra so(3). Every skew-symmetric
matrix Θ can be uniquely parameterized by a 3d vector r
giving rise to a vector space. Further, every skew-symmetric
matrix Θ can be related to an orthogonal matrix R by

R = exp(Θ), (24)

where exp(·) is the matrix exponential. In order to compute a
valid gradient step beyond the neighborhood of R, the gradient
direction needs to be expressed by the Lie bracket [23]. The
relation between the two gradient expressions is given by the
commutator

∇ΘI = (∇RI)
T

R−RT (∇RI) . (25)

From there, we compute the corresponding parameter vector
r by taking the upper triangular matrix of ∇ΘI. The gradient
flow update rule is then given by

RT
m+1 = exp(ηΘrm) RT

m, (26)

with step size η and the skew-symmetric matrix Θrm parame-
terized by rm at the m-th iteration step. Unfortunately, rotation
matrices above two dimensions are not commutative. Hence
we cannot make additive steps of ascent in so(3) and need
to map between the Lie algebra and the manifold in every
iteration by computing the matrix exponential in Eq. (24).

IV. EXPERIMENTS

For the experiments, we use the following techniques as
baselines: LCCNet [11], RegNet [9], and CMRNet [16],
which are neural network methods.2 We also compare classic
methods based on normalized mutual information and gradient
information (gNMI [14])3, respectively particle swarm opti-
mization (pNMI [21]). For measuring performance, we follow
[16] and also measure the translation error

t∆(ttrue, test) = ||ttrue − test||L2 (27)

and the rotation error by using the quaternion angle

R∆(Qtrue,Qest) = 2 ∗ atan2(||QIm
∆ ||L2,Q

Re
∆), (28)

with
Q∆ = QRtrue

∗Q−1
Rest

, (29)

during the optimization procedure. The last formula first
computes the difference rotation Q∆, and then measures the
shortest angle to identity. atan2 is the standard 2-argument
arctangent function.

A. Pre-training

For pre-training we use the KITTI dataset [2], which con-
sists of 20 sequences with varying length. In total there are
7125 frames available. The images are stored as 375 × 1242
RGB. The Lidar scans are 360◦ Velodyne-64 scans. We
take the first 10 sequences as training data and pre-train the
mutual information estimator Iθ(A,B) until convergence by
using left-out 10% validation data and ADAM optimizer with
η = 10−3 for all trainable parameters. We use Mg = 5 for
sampling patches and a mini batch size M = 24 for training
the estimator CNN network. The cropped patch size is fixed to
96×96 pixels, which we found to be a good trade-off between
runtime, generalization and accuracy.

B. Registration performance

For measuring performance, we take the left-out 10 se-
quences and test the registration performance by adding small
random distortions to the available ground truth calibration
parameters Rttrue. This is implemented by uniformly sam-
pling random translations and rotations from the specified
interval U(·, ·). Because of the relatively large translation
miscalibrations in the experiment, we found it helpful to
increase the learning rate for parameter t to ηt = 10−2.
Tab. I and Tab. II summarize the results. Figure 6 show the
registration results for a representative test set example.

2https://github.com/IIPCVLAB/LCCNet
3https://github.com/xmba15/automatic lidar camera calibration

Error R Error t Performance
Euler [deg] xyz [m] R∆ [deg] t∆ [m]
U(−2, 2) U(−0.30, 0.30) 0.11± 0.05 0.02± 0.01
U(−2, 2) U(−0.60, 0.60) 0.13± 0.07 0.03± 0.01
U(−5, 5) U(−0.30, 0.30) 0.13± 0.06 0.03± 0.01
U(−5, 5) U(−0.60, 0.60) 0.14± 0.06 0.03± 0.01
U(−7, 7) U(−0.30, 0.30) 0.12± 0.07 0.02± 0.01
U(−7, 7) U(−0.60, 0.60) 0.89± 1.13 0.41± 0.58
U(−8, 8) U(−0.30, 0.30) 0.13± 0.07 0.02± 0.01
U(−8, 8) U(−0.60, 0.60) 3.41± 4.14 0.31± 0.42
U(−9, 9) U(−0.30, 0.30) 1.12± 2.64 0.07± 0.13

TABLE I: Registration results on the KITTI [2] challenge
averaged over five uniform random sampled distortions in the
specified interval, i.e., rx, ry, rz ∼ U(·, ·) and x, y, z ∼ U(·, ·).

Method Performance
R∆ [deg] t∆ [m]

gNMI [14] 8.17± 5.69 0.08± 0.05
pNMI [21] 1.08± 0.51 0.03± 0.01
CMRNet [16] 1.07± 0.77 0.33± 0.11
RegNet [9] 0.28± 0.20 0.06± 0.10
LCCNet [11] 0.16± 0.47 0.02± 0.02
LMI(N = 533) 0.14± 0.02 0.02± 0.01
LMI(N = 235) 0.23± 0.12 0.01± 0.01
LMI(N = 147) 2.50± 2.01 0.39± 0.39
LMI(N = 58) 3.05± 2.46 0.13± 0.03

TABLE II: Registration results on the KITTI [2] challenge
with a random angle distortion rx, ry, rz ∼ U(−2, 2) and
random translation offset x, y, z ∼ U(−0.6, 0.6). We used the
first sequences of the test dataset corresponding to sequences
10 to 13 in the original KITTI dataset. Results are averaged
over five runs. To evaluate the dependence on the number of
test examples, we also report results for our Local Mutual
Information method (LMI) for different numbers of available
frames N .

While the gNMI method fails on the KITTI dataset, mainly
because of the very unreliable Lidar intensity values, LCCNet
achieved a remarkable rotation error of 0.16◦ and a translation
error of 0.02m. Note, that the large variance in Tab. II is mainly
due to the per-frame calibration estimation. With at least 200
frames available, the LMI method is on par with the baselines.
When more than 500 frames are available, the baselines could
be surpassed.

C. Generalization performance

For testing the generalization performance, we use an un-
seen scenario of a docking maneuver of a motor boat consist-
ing of 472 1919× 1199 sized RGB images and Velodyne-128
Lidar scans. The mutual information estimator is again pre-
trained on KITTI. The initial rotation estimate is R = I and
the known true solution is roughly 2◦ off (see Tab. III). We
distorted the true translation by a small ε, as translation offset
can be measured quite accurately in practice. In the given
real world scenario, the translation miscalibration is relatively
small compared to the angular offset. Therefore, we found
it helpful to decrease the learning rate for parameter t to
ηt = 10−4. In Fig. 1 we show an example demonstrating the
generalization capabilities. Surprisingly most methods perform

Fig. 6: Visual registration results on the KITTI dataset. Note the accuracy at the bollard on the left-hand side of the image.

Method Error t Performance
xyz [m] R∆ [deg] t∆ [m]

LCCNet U(−0.01, 0.01) 1.80± 0.52 (1.84) 0.96± 0.27 (0.99)

U(−0.02, 0.02) 1.79± 0.52 (1.84) 4.80± 1.38 (4.91)

gNMI U(−0.01, 0.01) 1.17± 0.73 (0.67) 0.07± 0.03 (0.08)

U(−0.02, 0.02) 1.16± 0.39 (1.32) 0.06± 0.01 (0.05)

pNMI U(−0.01, 0.01) 0.96± 0.60 (0.74) 0.02± 0.01 (0.02)

U(−0.02, 0.02) 0.77± 0.48 (0.73) 0.02± 0.01 (0.02)

LMI U(−0.01, 0.01) 0.62± 0.60 (0.28) 0.01± 0.00 (0.01)

U(−0.02, 0.02) 0.72± 0.56 (0.67) 0.01± 0.01 (0.02)

TABLE III: Measuring generalization performance (mean±std
(median)) for the maritime scenario with Rinit = I. Results
are averaged over five runs with random measurement dis-
tortions. The manually found true solution is rx, ry, rz =
(0.49, 1.09,−0.10), and x, y, z = (0.77, 0.07,−0.11).

better than the learning approach LCCNet in the generalization
scenario, indicating that the LCCNet learnt KITTI specific
features that do not generalize well to the docking scene.

The LMI optimization of the unregistered test set took 3min
on standard hardware using an Intel i7-7600 and a NVIDIA
1080Ti.

V. CONCLUSION

We presented a hybrid algorithm for targetless registration
of a Lidar-camera system using mutual information maximiza-
tion on local patches. The algorithm is suitable for situations
where calibration is required (e.g., caused by weather condi-
tions or mechanical changes), but no labelled data is available.
Technically, our method optimizes the alignment of local
shape patterns between camera and projected Lidar points over
multiple frames. By using local patterns, the algorithm is able
to generalize to completely new Lidar-camera configurations.

The main limitation of the algorithm comes from the
chosen receptive field, i.e., the patch size, which constrains
the maximum angular miscalibration to about ±7◦ and the
translation miscalibration to approximately 0.5m in our ex-
periments. As soon as the projected Lidar points lie outside
of the corresponding RGB image patches, no valid error
signal can be propagated. Hence, the real world region of
convergence heavily depends on the distance of surrounding
objects and the patch size needs to be increased for large
distance problems. However, too large patch sizes would
lead to decreased generalization performance, because large
patches contain dataset-specific patterns that do not generalize
to new configurations. A second limitation is the number of
available frames and more important, prominent objects in

the given sequence. When there are too few shape patterns
(e.g., edges or occlusions) available for alignment, the method
becomes unstable, similar to the existing methods.

By using a hybrid optimization scheme for calibrating
temporal synchronized sensors, several extensions are possible
for future work. One direction is optimizing other parameters
like the lens distortion, another is integrating other sensor
modalities like radar or infrared.

REFERENCES

[1] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio,
A. Courville, and R. D. Hjelm, “Mutual information neural estimation,”
in 35th International Conference on Machine Learning, ICML 2018,
vol. 2, 2018, pp. 864–873.

[2] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[3] K. Yuan, Z. Guo, and Z. J. Wang, “Regnet: Tolerance aware lidar-camera
online calibration with geometric deep learning and generative model,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6956–6963,
2020.

[4] H. J. Chien, R. Klette, N. Schneider, and U. Franke, “Visual odom-
etry driven online calibration for monocular lidar-camera systems,” in
Proceedings - International Conference on Pattern Recognition. jan:
vol. 0. Institute of Electrical and Electronics Engineers Inc, 2016, pp.
2848–2853.

[5] S. Mishra, G. Pandey, and S. Saripalli, “Extrinsic calibration of a 3d-
lidar and a camera,” in 2020 IEEE Intelligent Vehicles Symposium (IV),
2020, pp. 1765–1770.

[6] T. M. Cover, Elements of information theory. John Wiley & Sons,
1999.

[7] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice, “Automatic
extrinsic calibration of vision and lidar by maximizing mutual informa-
tion,” Journal of Field Robotics, vol. 32, no. 5, pp. 696–722, 2015.

[8] P. Jiang, P. Osteen, and S. Saripalli, “Calibrating lidar and camera using
semantic mutual information,” arXiv preprint arXiv:2104.12023, 2021.

[9] N. Schneider, F. Piewak, C. Stiller, and U. Franke, “Regnet: Multimodal
sensor registration using deep neural networks,” in IEEE Intelligent
Vehicles Symposium, Proceedings, vol. 7995, pp. 1803–1810, 2017.

[10] G. Zhao, J. Hu, S. You, and C. C. J. Kuo, CalibDNN: Multimodal
Sensor Calibration for Perception Using Deep Neural Networks, 2021.
[Online]. Available: http://arxiv.org/abs/2103.14793

[11] X. Lv, B. Wang, Z. Dou, D. Ye, and S. Wang, “Lccnet: Lidar and
camera self-calibration using cost volume network,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 2894–2901.

[12] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spa-
tial transformer networks,” Advances in Neural Information Processing
Systems, vol. 2015, pp. 2017–2025, January 2015.

[13] J. Castorena, U. S. Kamilov, and P. T. Boufounos, “Autocalibration of li-
dar and optical cameras via edge alignment,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016,
pp. 2862–2866.

[14] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice, “Automatic
extrinsic calibration of vision and lidar by maximizing mutual informa-
tion,” Journal of Field Robotics, vol. 32, no. 5, pp. 696–722, 2015.

[15] B. Nagy, L. Kovacs, and C. Benedek, “Sfm and semantic information
based online targetless camera-lidar self-calibration,” in Proceedings -
International Conference on Image Processing. vol. 2019-Septe. IEEE
Computer Society, sep: ICIP, 2019, pp. 1317–1321.

[16] D. Cattaneo, M. Vaghi, A. L. Ballardini, S. Fontana, D. G. Sorrenti, and
W. Burgard, “Cmrnet: Camera to lidar-map registration,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). IEEE, 2019, pp.
1283–1289.

[17] W. Wang, S. Nobuhara, R. Nakamura, and K. Sakurada, Soic: Semantic
online initialization and calibration for lidar and camera, 2020.
[Online]. Available: http://arxiv.org/abs/2003.04260

[18] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.

[19] M. D. Donsker and S. S. Varadhan, “Asymptotic evaluation of certain
markov process expectations for large time. iv,” Communications on
Pure and Applied Mathematics, vol. 36, no. 2, pp. 183–212, 1983.

[20] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization,” in International Conference
on Learning Representations, 2018.

[21] Z. Taylor and J. Nieto, “Automatic calibration of lidar and camera im-
ages using normalized mutual information,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. Citeseer, 2013.

[22] L. Bottou, “Online algorithms and stochastic approxima-p tions,” Online
learning and neural networks, 1998.

[23] M. D. Plumbley, “Geometrical methods for non-negative ica: Manifolds,
lie groups and toral subalgebras,” Neurocomputing, vol. 67, pp. 161–197,
2005.

