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Abstract—Algorithms for calculating the string edit distance
are used in e.g. information retrieval and document analysis
systems or for evaluation of text recognizers. Text recognition
based on CTC-trained LSTM networks includes a decoding
step to produce a string, possibly using a language model, and
evaluation using the string edit distance. The decoded string can
further be used as a query for database search, e.g. in document
retrieval. We propose to closely integrate dictionary search with
text recognition to train both combined in a continuous fashion.
This work shows that LSTM networks are capable of calculating
the string edit distance while allowing for an exchangeable
dictionary to separate learned algorithm from data. This could be
a step towards integrating text recognition and dictionary search
in one deep network.

I. INTRODUCTION

The string edit distance [1] [2] defines a metric of similarity
of two strings. It is the minimum number of character inser-
tion, deletion or replacement operations to transform one string
into the other. Information retrieval and document analysis
systems use the edit distance for e.g. document retrieval or
dictionary search. It is also used for evaluating text recognizers
by using it as a measure of the character error rate. Use
cases are e.g. the search for address elements in postal and
parcel processing, the localization of genome sub-sequences
or keyword search in web search engines. Optimized index
structures can be used when no two arbitrary strings are
compared but a query string with a dictionary of reference
strings.

Long Short Term Memory (LSTM) networks [3] [4] trained
with Connectionist Temporal Classification (CTC) [5] [6] pro-
duce a sequence of character probabilities while transcribing
text from images. This probabilistic output is further decoded
to one or more strings. Decoded strings are used for evaluation
of the network or in following application steps. A language
model can be used to improve decoding of the network output.

Transcription, decoding and dictionary search are often seen
as separate steps. We propose to integrate these three steps into
one deep LSTM network. This work is a step in this direction
by showing that LSTM network can learn to calculate the
string edit distance of a one-hot coded string and a dictionary
of strings. A one-hot coding of strings is very similar to
the probabilistic output of a CTC-trained LSTM network,

but values are boolean instead of continuous probabilities.
Integration of transcription, decoding and dictionary search
in one network could reduce the overall error rate by allowing
the network to learn domain specific statistics in all three
steps. Also moving decoding and dictionary search into a
LSTM network could allow speed improvements by moving
the execution to a GPU accelerator.

This work uses an English word corpus [7] derived from
the Google Trillion Word Corpus [8] in its experiments.

II. METHODOLOGY

Strings used in this work are in English language and
between 3 and 10 characters in length. The alphabet is 26
characters in size. Each string is represented as a matrix of
size 10 × 26 with individual characters encoded by a one-
hot coding, setting one of the 26 coefficients to one and all
others to zero. For example the character A is encoded as
[1, 0, . . . , 0], B as [0, 1, 0, . . . , 0] and so on. Strings shorter
than 10 characters in length are padded with zero coefficients.
Strings are processed by the RNN as sequences of 10 length
with 26 features per step.

The network takes two separate inputs. One is the encoded
representation of the dictionary strings with the strings con-
catenated along the feature-dimension. This results in an input
of size |batch| × 10 × (26 × |dictionary|) for mini-batch
training. Dictionaries are 100 strings each in this work and
thus the encoded dictionary is |batch| × 10 × 2600 in size.
Second input is the representation of the query strings with
|batch| × 10× 26 in size.

The RNN consists of multiple bidirectional [9] LSTM layers
with the same number of neurons per layer. The networks
task is to process the query string and predict the string edit
distances to the dictionary strings as a regression problem.
The encoded dictionary is provided as input by concatenating
it with the BLSTM input along the feature-dimension. This
topology is shown in Figure 1.

Output layer of the RNN is fully connected with ReLU
[10] non-linearity. This layer consists of one neuron per string
of the dictionary, in our case 100 neurons. These neurons
predict the string edit distances between the query string and
the dictionary strings. String edit distance is zero or positive
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Fig. 1. Network topology for comparing query strings of up to 10 characters
length with an alphabet of 26 characters to a dictionary of 100 such strings.

and as such the ReLU non-linearity is capable of predicting
it without re-scaling. Loss function for training is the Mean
Squared Error (MSE) of the predicted and correct string edit
distances.

III. RESULTS

Data for training and evaluation was derived from the 20k
most frequent English words [7] [8] with a length between
3 and 10 characters, which results in a set of 16968 strings.
1000 of these were used as 10 dictionaries of 100 strings each.
9 dictionaries were for training, the other only for evaluation.
A random one of the 9 dictionaries was chosen for each mini-
batch during training. 80% of the remaining strings were used
as query strings for training and 10% each for validation and
evaluation.

Optimization of the network was done using Adam [11]
with a learning rate of 0.001 and a mini-batch size of 16.
Training was limited to a maximum of 200 epochs. Multiple
optimization strategies were evaluated but Adam and mini-
batch training produced good and reliable results.

TABLE I
RMSE FOR DIFFERENT NETWORK SIZES WITH UNSHUFFLED

DICTIONARIES.

#layers × #neurons 2× 30 2× 60 3× 60 5× 200
Test set, unkn. dict. 1.78 1.78 1.56 2.13
Validation set, unkn. dict. 1.78 1.80 1.57 2.14
Training set, unkn. dict. 1.78 1.79 1.57 2.12
Test set, known dict. 0.37 0.30 0.29 0.36
Validation set, known dict. 0.37 0.29 0.29 0.36
Training set, known dict. 0.37 0.29 0.28 0.34

Table I shows the Root Mean Squared Error (RMSE) for
the described network and experiment. The 10 dictionaries
were not shuffled in this experiment and thus the strings
remained in the same order within each dictionary for the
whole training and evaluation. Much lower RMSE values were
achieved for the 9 known dictionaries in comparison to the
unknown dictionary.

Table II contains RMSE values for the same experimental
set-up, but the dictionaries were randomly shuffled and thus

TABLE II
RMSE FOR DIFFERENT NETWORK SIZES WITH SHUFFLED DICTIONARIES.

#layers × #neurons 2× 30 2× 60 3× 60 5× 200
Test set, unkn. dict. 0.86 0.84 0.84 0.84
Validation set, unkn. dict. 0.86 0.84 0.84 0.84
Training set, unkn. dict. 0.86 0.84 0.84 0.84
Test set, known dict. 0.85 0.82 0.82 0.81
Validation set, known dict. 0.85 0.82 0.82 0.81
Training set, known dict. 0.85 0.82 0.82 0.81

the strings were in random order within their dictionary.
Shuffling was done for each mini-batch to reduce the risk
of repeating the same dictionary order. Results show a much
smaller gap in RMSE between the known and unknown
dictionaries.

IV. DISCUSSION

The conducted experiments are promising and show that
LSTM networks are capable of learning to predict the string
edit distance while separating dictionary data from the actual
algorithm. The achieved RMSE of ≈ 0.8 is not enough to
retrieve the correct distance by rounding. It may still enable
the use of such networks for applications like decoding of
CTC-trained text recognizers. Further studies are necessary
to validate the assumptions made about a close integration of
CTC-based text recognition and string edit distance calculation
in one network.
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