
Results: 1-D Example

Bayesian Linear Model with 4 Parameters (MCMC in Blue)

Combination CNN of and simple Bayesian models with interpretable parameters

Flexible Posterior for Variational Inference 

Bayesian neural networks are a natural way to incorporate epistemic uncertainty into deep learning. However, the gold standard MCMC is hardly applicable. 

Variational inference (VI) is a technique to approximate difficult to compute posteriors � �|�  by a variational approximation �� � paramerized by �. This 

project uses a transformation model using Bernstein polynomials ���(z) to construct a complex posterior from a simple distribution. This method fits in the DL 

framework, optimizing a parameter �, and allows so to combine DL with Bayesian Modelling.

Simple Distribution � ∼ �(0,1)

Complex Posterior 

Approximation

�� �

Main Idea of the transformation model for � = �� ∘ �� ∘ � ∘ ��

Literature / Related Work
● First used in statistics: Hothorn, T., Moest, L., and Buehlmann, P. (2018). Most likely transformations. Scandinavian Journal of Statistics, 45(1):110–134 / arxiv.org/abs/1508.06749

● Normalizing Flow are similar concepts in DL. Using Bernstein and NN  for conditional outcome distribution: Sick, B., Hothorn, T., and Dürr, O. (2021). Deep transformation models ICPR 2020

● 1-D version and mean-field approximation: Sefan Hörtling, Daniel Dold, Oliver Dürr, Beate Sick https://arxiv.org/abs/2106.00528

● Generalization to more than 1-D manuscript in preparation

Approximative Posterior given by

�� � = � � ⋅ det ∇��
��

Optimization of � via Black Box VI of the ELBO: 

��∼ ��
���(�(�|�))  −  ��(�� � ||� �|� ))

Multivariate Generalization can 

be done by letting the 

transformation model for ��

depend on ��� and �� using a 

NN (Jacobian ∇�� is diagonal). 

Effective implementation with 

Masked Autoregressive Flows. 

SIIM-ISIC Melanoma Class. Challenge):

Features: images of skin + age information.

Outcome: benign / malignant 

Models:

M2 Bayesian Logistic Regression on age ��

M3 M2 + Images modeled

Model (Stan)

Model (Stan)

DeepDoubt
Weiterentwicklung von Unsicherheitsmaßen zur Erhöhung der Erklärbarkeit und Transparenz des Maschinellen Lernens und der Künstlichen Intelligenz

Overview

Timespan: 
01.04.2020 until 31.03.2023

Project partners:
IOS Konstanz, Hochschule Konstanz, KNIME 

The project DeepDoubt aims for the development and practical application of uncertainty measures in deep learning. Up to now the 
project is about midway the focus has been in the development of a fast query function for active learning based on predictive 
uncertainty. The development of flexible variational distribution for variational inference based on special normalizing flows. 
Modeling uncertainty also plays a key role in optical inspection tasks where only error free data is available for training and hence 
one-class classification techniques need to be applied. Here, we demonstrate how uncertainty measures can be used to improve 
detection capabilities. In the future, we will also try to incorporate uncertainty for multisensor tasks like the fusion of LiDAR and 
camera data based on the uncertainties of the respective modalities.

Improving one-class optical inspection techniques by incorporating uncertainty

A major problem in optical inspection is the lack of defective examples for training a supervised classificator. One-class classification techniques 

train a classificator with access only to non-defective examples. The output is a probability estimate of beeing defective � �� = ������ | �, � .

Model

Our current model uses a pooled  CNN feature space based on VGG19: � �; � = ���19(�).

The scoring rule is a standard multivariate gaussian �� ⋅ = ��� �,  Σ, �).

Quantifying uncertainty

Estimating the uncertainty of predictions based on posterior of model parameters p Θ  Data ), with Θ = �, � .

Posterior is approximated by bootstrapping, which is Bayesian inference approximation. 

Using the estimated credibility interval can improve model calibration and detection performance.

Incorporation of flexible posteriors based on variational inference is planned,

Example

Literature / Related Work
Li, Chun-Liang et. Al (2021). CutPaste: Self-Supervised Learning for Anomaly Detection and Localization. https://arxiv.org/pdf/2104.04015v1.pdf

Bergmann, P (2019). MVTec AD – A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 9592–9600

Rippel, O., Mertens, P., & Merhof, D. (2021, January). Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In 2020 25th International Conference on Pattern Recognition 

(ICPR) (pp. 6726-6733). IEEE.

Non-defective training 
data Feature space

New data example

Learn features 

� �; �

Scoring rule

��(� �; � )
Thresholding

Defective? How certain?

Compute the probability and uncertainty!

Optical inspection examples based on the MVTec dataset showing defect detection and localization.AUC values on the MNIST dataset using one-vs-all protocol.

Schematic illustration showcasing the problem with standard neural network that are often 
overconfident and miscalibrated.

Methodological development

Uncertainty quantification
• Bayesian Modeling complex posteriors for Variational Inference
• Deep ensembles and boostrapping methods
• Last Layer Multivariate Gaussian

Focus applications

Active Learning
• Uncertainty as a proposal function speed up using 

Optical Inspection
• Modeling non-defective reference data p(x)
• Detecting outliers p(x)
• Failure detection with outlier score and uncertainty (Figure)

Object recognition
• Detect objects with given uncertainty
• Application fusion from lidar and camera

Improving active learning by using uncertainty as proposal function

In active learning only partial labelled data is available and the model fit is done incrementally by querying an oracle, potentially human.
Several types of querying strategies exist. Most popular are: 

Entropy  �� = argmax�∈�  ∑ � � = �  �) log � � = �  �)�������
���   

or
Minimum probability �� = argmin� ∈ � argmax� ∈ � � � = �  �).

Quantifying uncertainty
Currently we analyze different standard uncertainty estimation techniques, such as MC Dropout, Deep Ensembles, Swag and VI, and their interaction with 
different query strategies. For accelerating the MC Dropout method in real-time applications, we applied moment propagation technique without loss of 
accuracy.

Visualizing the accuracy on MNIST dataset for different query 
strategies and uncertainty estimation techniques. Across all query  
strategies we see the following order Ensemble better than MC-
dropout uncertainty better than Swag. 

No loss in accuracy when approximating MC-Dropout with Moment 
Propagation.  

Runtime comparison between moment propagation and MC Dropout (25 
forward passes). Moment propagation gives a significant speed up.

Literature / Related Work
Using uncertainty as a query function: Houlsby, N., Huszár, F., Ghahramani, Z., & Lengyel, M. (2011). Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745

Using MC-Dropout as uncertainty estimation: Yarin Gal, Riashat Islam, Zoubin Ghahramani https://arxiv.org/abs/1703.02910

MC-Dropout approximation with Moment Propagation: Kai Brach, Beate Sick, Oliver Dürr https://arxiv.org/abs/2007.03293

Manuscript in preparation
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MC-Dropout Approximation (Accuracy) MC-Dropout Approximation (Speedup)Query strategies and uncertainty estimation techniques


