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Abstract

For a stationary, affine invariant, symmetric, linear and local subdivision scheme that is C*
apart from the extraordinary point the curvature is bounded if the square of the subdominant
eigenvalue equals the subsubdominant eigenvalue. This paper gives a technique for quickly
establishing an interval to which the curvature is confined at the extraordinary point. The
approach factors the work into precomputed intervals that depend only on the scheme and a
mesh-specific component. In many cases the intervals are tight enough to be used as a test of
shape-faithfulness of the given subdivision scheme; i.e. if the limit surface in the neighborhood
of the extraordinary point of the subdivision scheme is consistent with the geometry implied
by the input mesh.

1 Introduction

It is well known that the classic subdivision schemes [Catmull & Clark 78, Loop ’87] have either
undefined or zero curvature at their extraordinary points. Since numerical procedures are sensi-
tive to such singularities, [Sabin ’91] and later [Holt *96, Loop ’00] proposed subdivision schemes
that guarantee a bounded though not necessarily convergent curvature. These improved subdi-
vision schemes are obtained by a judicious perturbation of the subdivision masks of the classic
subdivision schemes so that the square of the subdominant eigenvalue equals the subsubdominant
eigenvalue [Doo & Sabin 78, Ball & Storry 88, Reif '93]. Ball and Storry estimated curvature
along symmetrically placed curves on surfaces generated by variants of Catmull/Clark subdivision
[Ball & Storry ’90].

For practical use it is important not just to have some curvature bound but to know that the
bound is commensurable with the input data and how to quickly compute it in an actual setting.
While the value of the bound must depend on the input mesh, we would like a subdivision scheme
to be closely related to a measure of curvature of the input mesh. This paper shows how to compute
good bounds quickly based on a factorization of the work into a precomputed table of intervals
that depend only on the specific scheme, and a mesh-specific component. With the bounds we
can compare schemes for their reproduction of mesh shapes, a tool for qualitatively comparing
subdivision schemes. For example it is good if we can prove that a mesh representing a convex
polyhedron results in a surface with positive Gaussian curvature.

As an example we derive interval tables for Gaussian and mean curvature for a curvature
bounded variant of the Loop algorithm and a curvature bounded variant of the Catmull-Clark
algorithm.
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2 Curvature of subdivision surfaces

We consider stationary, affinely invariant, symmetric, linear and local subdivision schemes such as
[Catmull & Clark 78, Loop 87, Kobbelt 99, Velho ’00] that generate limit surfaces that are C?
everywhere except at a small number of extraordinary points where the normal is only continuous.
In the vicinity of an extraordinary mesh node with n neighbors such schemes can be described by
a square, stochastic subdivision matrix A that maps a coarse control mesh C,,_1 to a finer mesh
Cm = ACpp—1,m > 1. We make following assumptions on the eigenstructure of A:

e The eigenvalues of A are:
1=)\0>/\1=/\2>/\3:)\4=)\5>...20
—_—— Y—
=: )\ Tp

with right eigenvectors r; : Ar; = M\r; and left eigenvectors 1; : 1;A = \;1; that satisfy
1,’1']' = 5”

e In terms of the Fourier decomposition of A the eigenvalues

— Ao, A5 are from frequency block 0,
— A1 is from frequency block 1, As is from frequency block n — 1
— Az is from frequency block 2, A4 is from frequency block n — 2.

The assumptions pick out the generic, geometrically desirable case, where exactly three subsub-
eigenfunctions influence the curvature behavior at the extraordinary point. Many other, less sym-
metric cases are mathematically possible as detailed in [Reif 98, Zorin '98]. (These lead to a less
complex geometry and simpler estimates than the ones below, say if A3 > A4, and hence e4 and ej
do not contribute to the curvature, we get K = P33D33.)

In the m-th iteration a surface ring x,, is generated that can be parameterized in terms of the
basis functions B(u,v) for regular meshes:

< - {1,...,n} xQ — R3,
m (4, u,v) = B(u,v)Cp,-

The domain segments 2 are shown in Figure 1. Therefore each surface ring can be expressed as

Figure 1: The domain segments 2.

Xm = Y Ale!(u,v)p; with eigenfunctions

i {1,...,”}XQ—)R,
I\ Gyu,v) = Blu,v)r
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and coefficients p; = 1;Co of the eigen-expansion of the input mesh. According to [Peters & Um-
lauf ’00] the possibly diverging sequences of Gaussian and mean curvature when approaching the
extraordinary point have the formal limit expression

K= Y 7PyDy, H= Y PwDin
i,j=3,4,5 K R

where
p.. . det(P1, P2, pi) det(py, P2, py) Po = det(p1, P2, Pi)(PxD})

v llp1 % pafl* C lp1 x paf®
D = DLuDIJw - D:,LUD‘ZI/U Dipy 1= Ekl(D;lJ,u(eﬁei)) — D’ZU (eﬁei) + eﬁeZ) + wa(eﬁeiL))

ij = Al ) ikl = A3 ’

12 12

A;j=elel —elel, er = 1/2 for k =1,1 otherwise,
Di, = Ajpel, — A€, + Agiel,, s,t € {u,v},

el := e’ /0s, el, .= 0%'/0s0t, s,t € {u,v}.

We refer to D;; and Dji; as D-factors and their multipliers P;; and P as P-factors. Scaling of
r; does not change K and H but just the ratio between the D- and P-factors. Since the D-factors
depend only on the subdivision scheme they can be precomputed and tabulated for one fixed scale.
Also note that P;; = Pj; so that three pairs of D-factors contributing to K can be combined. The
D-factors determine the limits of the curvature sequences when approaching the extraordinary
point from different directions.

Our goal is to bound the D-factors. The multiplications and differentiations may be expensive.
However, because of rotational symmetry of the eigenfunctions it suffices to compute the D-factors
only for the first domain segment {1} x Q. Since the expressions in the denominators of the D-
factors are identical for all domain segment {i} x Q,i = 1,...,n, it is convenient to separately
bound the denominators A$,, A}, and the numerators of Dij + Dji, i # j, Dy and Dy,

Gij == D% DI —2D! DI + Di DI fori,j € {3,4,5}, > i,
Gy = D}, D, — (Dy,)? for i = 3,4,5,
Giri := Di (eFel) — Di (efel + efel) + Di (ekel) fori=3,4,5,k,01=1,2,k > L.

These expressions for the domain segments {i} x §,i = 2,...,n can be obtained as linear combi-
nations of the respective expressions for {1} x §2. For example G33|{;}xq is given by,

Gssliipxa = @°Gaslyxa — @BGsa|(1yxa + BGasl(11xa; (1)

where a = cos(2im/n), = sin(2ir/n). We denote the minimal interval that includes G;; on
{1,...,n} x Q by [G4;]. Since the intervals of the denominators for all domain segments are equal,
the interval of the D-factors are obtained by the quotient rule of interval arithmetic.

The p; and hence the P-factors are computed using the precomputed left eigenvectors 1;. This
yields the intervals for K and H

K e Z 'Pz'j . |[Dij]], H e Z Piri - |[Dzkl]]
i,j=3,4,5 ki k1

Rather than computing the bounds exactly, it is often sufficient to compute an approximation.
For example, if the underlying basis is polynomial then the extremal Bézier coefficients can serve
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as bounds. Tighter bounds can be obtained by refining the representation of G;;,Gir or by the
general construction of [Lutterkort '99] for refinable functions. Also, while expressing the surface
rings X,, in terms of scaled eigenfunctions o;e’ does not change the product of the D- and P-values,
but only their relative contribution, and therefore does not alter the exact bounds on K and H,
approximate bounds can be affected by scaling before rotation. In particular, we found that we
can improve, say the min-max bounds of the Bézier representation, by scaling the complex right
eigenvectors ry +roy/—1 and r3 +rsy/—1 with a complex number and choosing the intersection of
the intervals. The computational costs of this improvement are small because the expressions of the
new numerators are linear combinations of the old expressions Gij|{1}xa respectively Gixl{1}xa
analogous to (1).

3 Two curvature bounded subdivision schemes

We tested the technique on a curvature bounded variant of the Loop algorithm and a curvature
bounded variant of the Catmull-Clark algorithm.

The Loop variant as proposed in [Prautzsch & Umlauf "98b, Umlauf '99] is defined by the masks
in Figure 2 with the weights

a = i_%+31%+§, ¢; == cos(2im/n),
9 k
a; = fi+526jci(j+1),i:O,...,Ln/ZJ,
j=1
o= N—p, &< NN, i>2
3/8  i=0
fi = { 1/8 if i=1.
0 12>2

[eell ]

Clinrz

wlw
wlw

=

Figure 2: The masks of the curvature bounded variant of the Loop algorithm.

We normalize the right eigenvectors such that their first non-zero entry is 1. In case of a vertex
of valence 7 we get the bounds for the D-factors in Table 1. This yields the following intervals
for the Gaussian and mean curvature for a initial mesh with a vertex of valence 7 that lies on the
parabolic cylinder [u, v, u?]:

K € [-53.628,14.747]
H € [-0.491,0.541].

The bounds for K can be reduced by the general fact H?> > K.
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D-Factor || lower bound | upper bound

D-Factor || lower bound | upper bound 33,1,1 —83(1)2 _(;) (?3?(?
D33 -8.329 -2.417 3,1,2 -0. }
’ D322 0.072 0.219
D34 -7.571 -2.516 2,
’ Dy -0.022 0.056
D35 -59.341 22.130 L,
) Dy -0.081 -0.018
D4 4 _0-475 1-594 [
’ Dy 0.050 0.027
Dugs -92.882 23.033 2,
Ds. 370.057 101.762 Ds,1,1 -2.371 0.917
> — : D510 -1.214 1.044
Ds 02 -1.422 1.303

Table 1: Bounds for the D-factors of the curvature bounded variant of the Loop algorithm for
n =7 for K (left) and H (right).

Analogously we can also modify the Catmull-Clark scheme ([Catmull & Clark ’78]) such that
the subsubdominant eigenvalue equals the square of the subdominant eigenvalue, see [Prautzsch
& Umlauf 98a] or [Umlauf ’99, page 53 ff].

Again we normalize the right eigenvectors such that their first non-zero entry is 1. In case of a

D-Factor || lower bound | upper bound

D-Factor || lower bound | upper bound 33,1,1 —5302(?(? _10 7256;5
D33 -35.648 ~1.060 3,1,2 : i
7 D32, 0.442 7.587
D34 -19.018 1.270 2,
’ Dy -2.787 3.021
D35 -16.054 19.481 1,
, Dyi2 -5.514 -0.846
D s 20.107 94.204 L
’ Dyp,2 -2.960 2.960
D45 -6.580 11.690 125
Ds, 5.257 60.018 Ds.1,1 -11.855 1711
= ‘ ‘ D512 -12.116 10.833
D520 -0.119 1.145

Table 2: Bounds for the D-factors of the curvature bounded variant of the Catmull-Clark algorithm
for n =5 for K (left) and H (right).

vertex of valence 5 we get the bounds for the D-factors in Table 2. Intersected with the intervals
corresponding to the complex right eigenvectors with second non-zero entry set to 1 we obtain
the following intervals for the Gaussian and mean curvature for an initial mesh with a vertex of
valance 5 that lies on the parabolic cylinder [u, v, u?]:

K € [5.329,18.400]
H € [-5.997,2.998].
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