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a b s t r a c t

Among locally supported scattered data schemes, natural neighbor interpolation has some unique
features that makes it interesting for a range of applications. However, its restriction to the convex
hull of the data sites is a limitation that has not yet been satisfyingly overcome. We use this setting to
discuss some aspects of scattered data extrapolation in general, compare existing methods, and propose
a framework for the extrapolation of natural neighbor interpolants on the basis of dynamic ghost points.
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1. Introduction

Scattered data interpolation is understood as the task of finding
a smooth function that takes prescribed values, the data, at
a certain set of points in space, the data sites. Among locally
supported scattered data schemes, natural neighbor interpolation
(NNI) has some unique features that makes it interesting for a
range of applications. However, its restriction to the convex hull
of the data sites is a limitation that has not yet been satisfyingly
overcome. We use this setting to discuss some aspects of scattered
data extrapolation in general, and address them in a framework for
the extrapolation of natural neighbor interpolants.
It is often implicitly assumed that interpolation is restricted

to the ‘‘intuitive interior’’ of the data sites, which is usually their
convex hull. Extrapolation in this context means to find a function
that also extends to the ‘‘intuitive exterior’’ of the data sites,
i.e., to interpolate over a domain that extends past the convex hull.
Extrapolation can be achieved in multiple ways. An interpolant
might be globally defined, like radial basis function (RBF) or inverse
distance weighted (IDW) interpolants, in which case its evaluation
outside the convex hull amounts to extrapolation. Interpolation
schemes with limited domain can be extended by constructing a
function that smoothly joins the interpolant at the boundary of its
domain.
While extrapolation in itself is an ill-posed problem, two

different objectives can be identified when dealing with it:
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The first is to construct pleasant-looking functions (surfaces)
that leave the transition between the intuitive interior and
exterior unnoticed. Applications for this are the visualization of
unstructured data over a rectangular domain, likeweather forecast
data or digital elevationmodels in GIS and architecture. The second
objective is to construct a function that agrees with application
specific expectations that encode knowledge about the application
domain. This is typically given in the context of open boundary
simulations, oil exploration [26,40], or biosciences [27], where
properties of the underlying physical model play a role in the
interpolationmethod. Another possible application emerges in the
modeling of binder surfaces for stamping, whichmust be extended
beyond the surface to be stamped. To facilitate the classification of
extrapolation methods, we propose to adapt a set of criteria that
has previously been introduced by Alfeld in a technical report on
triangular extrapolation methods [3].
Our efforts to extend natural neighbor interpolation past the

convex hull of the data sites resulted in a framework that alleviates
some of the issues present in current extrapolationmethods. Based
on dynamically inserted new data sites, the ghost points, we are
able to extend any natural neighbor interpolant over an arbitrary
data set to all of space, while preserving desirable properties like
smoothness or the continuous dependence on the coordinates of
the data sites.
We start with a brief introduction of relevant scattered data in-

terpolation methods and present previously proposed approaches
for the extrapolation of local scattered data interpolants. We then
present a set of criteria that allows a meaningful classification
of extrapolation approaches and apply it to compare global scat-
tered data interpolants, extension schemes, and the later intro-
duced ghost point method for natural neighbor interpolation.
Finally, we introduce our framework for natural neighbor extrap-
olation with the help of dynamically constructed ghost points.
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2. Related work

Extrapolation is strongly linked to interpolation in that, either,
interpolation methods with restricted definition domains are
extended or, interpolation methods naturally cover a domain that
is larger than the convex hull of the data sites. We therefore
briefly review relevant scattered data interpolation in general
and point-based natural neighbor interpolation in particular
in Section 2.1. Extrapolation methods are then discussed in
Section 2.2, with a classification of some common extrapolation
approaches presented in Section 2.3.
For the rest of this paper, we drop explicit summation bounds

for ease of notation and assume that indices address the feasible,
finite range.

2.1. Scattered data interpolation

The field of scattered data interpolation is extremely vast and
has been around since themid-seventies. Surveys on scattered data
interpolation in general by Franke and Nielson can be found in [16,
17,19], on tessellation-based interpolation by Zeilfelder and Seidel
in [39], and a textbook on RBF approaches by Wendland in [38].
We consider the scattered data interpolation problem for a set of
data sites X = {xi}i, xi ∈ Rn, and data T = {ti}i, where ti(x)
is a Taylor polynomial of given degree k ∈ {0, 1, 2} carrying the
partial derivative information for data site xi, such that ti(x−xi) is a
local approximation of the unknown function. Given this input, an
interpolation method I provides an n-variate, real-valued function
f = I(X, T ) ∈ Cd, d ∈ N ∪ {∞}, that satisfies the interpolation
property for derivatives up to order k,

∂ |j|f
∂xj

∣∣∣∣
x=xi

=
∂ |j|ti
∂xj

∣∣∣∣
x=0
, |j| ≤ k,

where j = (j1, . . . , jn) ∈ Nn0 with |j| = j1 + · · · + jn. If f is defined
over the domain Ω ⊂ Rn, then we call D(I) := Ω the definition
domain of I . We denote the convex hull of X by C (X), and the data
sites on the boundary of C (X) by XC . In the sequel, we focus on
bivariate interpolants.
Most scattered data interpolation schemes require some sort of

preprocessing that is performed once before being able to evaluate
the interpolant I at arbitrary positions in D(I). The complexity of
an interpolation scheme is consequently split into the complexity
of preprocessing and the complexity of evaluating the interpolant.
A common preprocessing step is the generation of derivative

information for k > 0, which is often not part of the input to
scattered data interpolation. Although many schemes explicitly
define their own estimation procedure, it is in general decoupled
from the interpolation. Appropriate methods for derivative
generation can be found in [34,28,2,35,4].
The essential step common to all interpolation methods is

the computation of a value for a query position p, which
is characterized by the number of data sites involved in the
computation. Global schemes are more expensive in that they
process all input data in each evaluation, but generally allow for a
higher smoothness,while local schemes have lower computational
complexity at the expense of only a limited degree of continuity.

2.1.1. Global schemes
The most prominent global interpolation scheme is the radial

basis function (RBF) approach that originates from Hardy’s
multiquadric interpolation [21], and received in-depth theoretical
analysis in [38]. The interpolant in its most general form is given
by

f (x) =
∑
i

ciφ(‖x− xi‖/di) + p(x),
where φ : R → R is a monotone function, p is a polynomial of
given degree, and di ∈ R is a local scaling factor for the width of φ.
The RBF coefficients ci and the coefficients in p are determined by
the solution of the linear system resulting from the interpolation
condition and the least-squares fit of p.
The RBF approach is versatile due to a multitude of available

global, quasi-local, and compactly supported basis functions φ(r).
They determine the overall smoothness of the scheme, the shape
of the interpolant, but also the computational complexity of
preprocessing and evaluation. RBFs produce smooth interpolants
of high quality and have good approximation properties, but
do not scale well with the size of the data set. For data sets
with heterogeneous data site density, it is advised to adapt the
individual scaling factors di to the local data density. In our
implementation, we choose di to be a multiple of the distance of
xi to its furthest direct neighbor in the Voronoi diagram of X. We
will consider the RBF method with following basis functions:

• IrbfT , φ(r) = r2 log r (thin plate splines), global,
• IrbfG , φ(r) = exp(−αr2), α ∈ R+ (Gaussian), quasi-local,
• IrbfW , φ(r) = (1 − r)4

+
(4r − 1), where (x)4

+
is the truncated

fourth degree monomial (Wendland’s compact polynomial),
local.

Another approach to global interpolation is given by inverse
distance weighted (IDW) schemes, whose first definition is due
to Shepard [32] and which have been improved and adapted ever
since. Themost significant improvements were the introduction of
blended Taylor polynomials at the data sites to overcome the flat
spots and the modification of the weight functions to have local
support [18]. Unfortunately, the rational nature of IDW schemes
causes the resulting interpolant to have far more oscillations than
the input data suggests. Despite this, IDW methods are still used
for their easy implementation.Wewill consider the following IDW
methods:

• I idwQ : quadratic Shepard, blending quadratic Taylor polynomi-
als, global,
• I idwMQ : modified quadratic Shepard, as proposed in [18], local.

2.1.2. Local schemes
One prominent approach for local scattered data interpolation

is to use a tessellation of the convex hull of the data sites,⋃
lΩl = C (X), to construct a piecewise defined interpolant,

composed of analytic functions ϕl(x)|Ωl over the tiles Ωl, where
global smoothness is achieved by matching derivatives along the
joints. These methods are often referred to as FEM approaches due
to their close relation to the Finite Element Method. Most widely
adopted due to their simplicity are triangulation schemes, where
Ωl are simplices, and ϕl(x) are polynomials or rational functions
in the barycentric coordinates over the simplex that interpolate
function values and derivatives at the data sites and sometimes at
the simplex facets.
The preprocessing for local schemes generally consists in the

construction of a tessellation and the generation of derivatives
and/or functions ϕl. Sometimes, these result from a global pre-
processing step, such as in the minimum norm network approach
of Nielson [28], or the global energy minimization approach by
Alfeld [4]. A survey of interpolation with triangulations and quad-
rangulations can be found in the chapter by Zeilfelder and Seidel
in [39].
All tessellation-based approaches share one shortcoming: the

interpolants do not depend continuously on the coordinates of the
data sites. For any particular tessellation method, there always
exists an ‘‘ambiguous’’ configuration of points that indicates a
change in the topology of the tessellation, and for which the
constructed interpolant changes discontinuously. An example of
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Fig. 1. (a) A slight perturbation in a triangulation can lead to topological changes. (b) The Voronoi diagram of a point set continuously depends on the coordinates of the
points.
such a configuration for the Delaunay triangulation is given in
Fig. 1(a).
Although it is not an interpolation method per se, we

mention the partition of unity (PoU) approach as a meta method
allowing to localize any scattered data interpolation scheme.
After decomposing a data set into local, sufficiently overlapping
subsets, any interpolation method can be applied on each reduced
size subset. The individual interpolants are then combined using
smooth, compactly supported blending functions that form a
partition of unity. This has been discussed by Wendland in [38],
Section 15.4. PoU methods have been successfully applied in the
processing of very large data sets.

2.1.3. Natural neighbor interpolation
We assume that the reader is familiar with the Voronoi diagram

and its dual tessellation, the Delaunay triangulation, which has
been treated in, e.g., [29,37]. The natural neighbors of a point
x ∈ X = {xi}i are all points in X whose Voronoi tiles share
an edge with that of x. There are several interpolation methods
based on the concept of natural neighbors. The two basic steps
in the evaluation of such an interpolant at a point x are (1) the
computation of natural neighbor coordinates λ(x) = {λi(x)}i with
respect to the natural neighbors {xi}i of x, and (2) the blending of
Taylor polynomials of degrees k at the data sites using functions
ψ(λ(x)) of the local coordinates.
Based on special geometric properties of the Voronoi diagram,

every point x inside C (X) can be expressed as a convex
combination of its natural neighbors,

x =
∑
i

λi(x)xi, λi(xj) = δij,

where {λi}i are called natural neighbor coordinates of x with
respect to {xi}i. These can be used for interpolation by simply
applying the same convex combination to the data at the sites,
f (x) =

∑
i λi(x)ti(x). Simple interpolants operating on scalar

values ti ∈ R are those of Laplace ([8,36,5], C0), Sibson ([33], C1),
and Hiyoshi ([23], C≥2). In general natural neighbor coordinates
are C0 at the data sites, so the continuity listed above refers to the
continuity of the interpolant in C (X) \ X.
The above methods have been generalized to globally smooth

natural neighbor interpolants by Sibson ([34], C1), Farin ([14], C1),
and Hiyoshi ([24,22], C2). All these methods incorporate given
derivatives of the function at the data sites to construct local
polynomials that blend between the linear respective quadratic
local approximations.
Further, methods that do not directly fit into the above scheme

are those of Clarkson ([9,15], C0), Brown ([6], C0), and Gonzales
et al. ([20], C0). Clarkson and Gonzales et al. define barycentric
coordinates on a larger neighborhood based on the natural
neighbor relation. Brown proposes a PoU method on Delaunay
circumcircles to blend barycentric coordinates with respect to
Delaunay triangles, which results in non-convex, local coordinates
with respect to the natural neighbors of a point. For a special
choice of rational, non-positive blending function, his method
yields Sibson coordinates.
Due to the duality of Voronoi diagrams and Delaunay triangu-

lations, all natural neighbor interpolants can be computed directly
from theDelaunay triangulation of the data sites, such that the pre-
processing amounts to the construction of the Delaunay triangula-
tion and a possible generation of derivative data. The evaluation of
natural neighbor interpolants is inherently local.
The most intriguing property of natural neighbor interpolation

is the continuous dependence of the interpolant on the coordinates
of the input data, which results from the corresponding property
of the Voronoi diagram, which is illustrated in Fig. 1(b). Further,
major advantages of natural neighbor interpolation are

(+1) The definition of neighborhood is local, completely automatic,
and copes extremely well with inhomogeneous point distri-
butions.

(+2) Most interpolants based on Ck-continuous natural neighbor
coordinates depend Ck-continuously on the coordinates of
the point cloud, which has been shown for Sibson coordinates
in [31].

(+3) The Voronoi diagram needs not be constructed at any time
since all operations can be carried out on the Delaunay
triangulation of the data sites,which is a verywell understood
and supported by an efficient data structure.

(+4) By definition, the interpolants generalize to any dimension.

However, natural neighbor interpolation has disadvantages as
well, namely

(-1) They are defined only inside the convex hull of the data sites,
with undesirable artifacts near the boundary of the convex
hull. A solution to this is presented in Section 3.

(-2) Globally smooth interpolants can be relatively expensive to
evaluate.

(-3) Evaluating natural neighbor interpolants in higher dimen-
sions is computationally expensive.

Wewill consider the following natural neighbor interpolants in
the later discussion of extrapolation.

• InnS : Sibson’s C0 interpolant as proposed in [33],
• InnF : Farin’s C1 interpolant as proposed in [14],
• InnH : Hiyoshi’s C2 interpolant as proposed in [24].
• Ibro : Brown’s C0 interpolant as proposed in [6].

2.2. Scattered data extrapolation

Though the meaning of extrapolation varies from application
to application, it essentially refers to the extension of a given
interpolant from the ‘‘intuitive interior’’, to the ‘‘intuitive exterior’’.
Thus, for a given interpolation method I , defined over the domain
D(I), we denote by E(I) the result of applying an extrapolation
method E to extend the interpolant to the extended domain
DX (E; I). For practical reasons, we ignore subtle differences in
the definition of D(I) for different interpolation schemes I and
assume interpolation in general to refer toC (X), which allows us to
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Fig. 2. (a) Partition of the complement of the convex hull into cones and half-open prisms (wedges and half-open rectangles in 2D), as used in Eaki and Efra . (b) To evaluate
at p using EalfB , the functions from the light gray triangles adjacent to the convex hull are extrapolated and mixed based on the angles α1 and α2 .
include RBF and IDWmethods in a later comparison. Consequently,
globally defined interpolants I are interpreted as the result of
applying a dummy extrapolation method E id (I) = Id(I) that
extends I from C (X) to its original domain D(I).
The common approaches for scattered data extrapolation are

discussed in the following sections.

2.2.1. Ghost Point Methods
Ghost Point Methods generate new data sites XG ⊂ Rn, called

ghost points, such that C (XG) covers an extended domain, over
which available interpolants can be applied.
A method to improve piecewise linear interpolation over

Delaunay triangulations has been proposed by Lasser and Stüttgen
in [25] who essentially place ghost points along a rectangle
enclosing the data set. Similarmethods addressing the extension of
Delaunay triangulations past their convex hull have been discussed
in [29], Section 6.3, where it was concluded that the quality of the
resulting triangulation depends on the placement and number of
‘‘imaginary points’’.
A similar conclusion about the number of ghost points was

drawn by Alfeld in [3]. He proposed to construct an interpolant
over an extended domain by introducing ghost points leading to
a new triangulation of the data sites and ghost points. A smooth
triangular interpolant is then constructed over the extended
domain as the solution of a global energy minimization, e.g., the
minimization of the thin-plate energy, based on the method
from [4]. We will refer to this extrapolation approach as EalfT .
In Section 3, we introduce a novel ghost point framework

for natural neighbor extrapolation. In [30], Owen applied a
technique similar to our proposed approach to provide limited
extrapolation for Sibson’s C0 interpolant. By placing the data
set in an appropriately sized bounding window and clipping all
Voronoi tiles against it, he computes affine weights that allow for
interpolation. This method has also been implemented in [13].

2.2.2. Convex Hull Extension Methods
Convex Hull Extension Methods partition the complement

of the convex hull into unbounded regions consisting of cones
extending from convex hull vertices and half-open prisms
extending from convex hull facets, as shown in Fig. 2(a). In each
region, a function is defined that smoothly joins its neighbors.
One such method was proposed by Akima in [1], which

operates solely on the corresponding interpolant proposed in
the same publication. In each wedge region, the corresponding
Taylor polynomial at the wedge vertex is extrapolated. In the
local coordinate system of each rectangular region, a polynomial
is constructed based on the special structure of Akima’s triangular
interpolation scheme. The result is a C1 function over R2, and we
refer to Akima’s method as Eaki.
Franke’s transfinite extension, introduced in [16], is another
approach operating on the extension of the convex hull. It can
be applied to any interpolant for which Taylor polynomials at the
convex hull vertices and normal derivatives along the convex hull
edges exist. Franke treats wedge regions like Akima. To evaluate
the function at a pointp in a rectangular region,p is projected to the
convex hull edge and the univariate Taylor polynomial determined
by the normal derivatives is extrapolated to compute a function
value at p. We refer to this method as Efra .
We finally mention the C−1-continuous nearest neighbor

interpolant which also covers all of Rn and which is constant over
each Voronoi tile.

2.2.3. External Blending Methods
External Blending Methods extend particular functions of a

piecewise interpolant to overlapping regions in the complement
of the convex hull and blend them in a Lagrangian interpolation
manner. The relation between convex hull extension and external
blending methods is analogous to the relation between FEM
interpolantswhich are constructed to smoothly join local functions
along the piecewise domain boundaries, and PoU methods which
combine overlapping, local interpolants using smooth blending
functions.
Alfeld proposed in [3] a method to extrapolate tessellation-

based interpolation schemes past the convex hull. From a point p
outside the convex hull of the data sites, a set of convex hull edges,
and consequently the adjacent elements Ωi of the tessellation,
is visible, see Fig. 2(b). The lines pointing from p to the vertices
of a visible convex hull edge form an angle αi at p. The local
function ϕi over each element Ωi can usually be evaluated at
p, thus extrapolating the local function. After the functions of
all visible elements have been extrapolated, the function values
are mixed using ratios proportional to some power of αi. This
way, Alfeld is able to smoothly extrapolate any tessellation-based
interpolant past the convex hull of the data sites. We will refer to
this interpolant as EalfB .
Brown proposed a local coordinate system defined over

Delaunay triangulations in [6], for which he gave a construction
past the convex hull of the data sites. For a point contained in the
circumcircles of a set of Delaunay triangles {Ωi}i, the barycentric
coordinates with respect to each triangle Ωi are computed, and
blended in a PoU fashion using smooth, positive blending functions
over the corresponding circumcircles. This method naturally
extends the coordinates to the interior of circumcircles that reach
outside the convex hull. For points even further outside, he
proposed to blend the barycentric coordinates with respect to all
boundary-adjacent triangles in a Lagrangian interpolation manner
based on the distance to the corresponding circumcircles. The
resulting generalized barycentric coordinates are then used to
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build a simple C0 scattered data interpolant with linear precision.
This method will be referred to as Ebro .
The summary of local extrapolation methods considered in the

sequel is

• Eaki: Akima’s discrete extension [1], a convex hull extension
method,
• Efra : Franke’s transfinite extension [16], a convex hull exten-
sion method,
• EalfB : Alfeld’s blending of visible edges [3], an external blending
method,
• EalfT : Alfeld’s global triangular thinplate minimization [4],
which can be interpreted as a ghost point method in which the
ghost points globally influence the interpolant.
• Ebro : Extension of Brown’s coordinates in an unstructured point
set [6].

2.2.4. Global methods
Global methods apply some global interpolation that naturally

extends to all Rn. In particular, this entails the RBF and
IDW methods introduced in Section 2.1. Extrapolation of these
interpolants requires no modification, and for sake of consistency
we denote by E id (I) = Id(I) the extrapolation method applied to
one of these schemes. Away from C (X), RBFs with local and quasi-
local support asymptotically approach the supporting polynomial,
while global ones generally diverge dramatically. It must be noted
that for IDW interpolants I with compactly supported weight
functions, DX (E id , I) is finite.

2.3. Taxonomy of scattered data extrapolation

To allow an individual comparison of existing extrapolation
methods, we adopt and extend the classification of extrapolation
approaches introduced by Alfeld in [3], and propose the following
criteria,where the first six correspond to Alfeld’s. The results of this
classification applied to a number of approaches introduced so far
is then given in Table 1.

Smoothness How smooth is E(I)|D(I), and how smooth is
E(I)|DX (E;I)?

Structure Is the E(I) of the same structure everywhere, i.e., piece-
wise polynomial of a certain degree, or are interior and
exterior different? A similar structure simplifies the anal-
ysis of the method.

Reproduction Power Is the class of functions reproduced exactly
by I the same as reproduced by E(I)? All interpolants and
extrapolation approaches we considered here possess
some sort of polynomial precision, and we use Pd in the
table to indicate reproduction of polynomials of degree d.

Finiteness Is the extended domain DX (E; I) finite or does it cover
all Rn?

Blending Extrapolation Is E(I)|D(I) identical to I|D(I)? If an extrap-
olation method simply continues the interpolant where
it ceases to be defined, it is not considered blending. Oth-
erwise, it augments the interpolant in a way to improve
the joint between E(I)|D(I) and E(I)|DX (E;I)\D(I).

Generality How large is the class of interpolants I to which an
extrapolation approach E can be applied? An approach
is considered general if it can be applied to more than a
single, specific interpolation scheme.

Similar Results from Similar Input (sim/sim) Do small perturba-
tions of the input lead to small changes of the out-
put? This property is already important for interpolation
alone, and is an indicator for robustness of a particular
method.
Fig. 3. (a) Data sites (solid) are used to place ghost points (hollow) in a structured
setting. (b) Arbitrary ghost point choice in an unstructured setting.

Size of Support How many data sites need to be processed to
evaluate the interpolant? Local support (L) corresponds
to a small, bounded number of data sites in the vicinity
of the evaluation position. Convex hull support (C) refers
to the data sites on the boundary of the convex hull and
possibly interior data sites nearby. Global support (G)
refers to all data sites.

Alfeld also proposed to take the quality of a scheme into
account, but because of its subjective flavor we omit this criterion.
We note that Brown’s method is no competitor for smooth
scattered data interpolation, for it was introduced as a local
coordinate system in the Delaunay triangulation, and interpolation
was added as an afterthought.
The comparison in Table 1 includes the ghost point methods

introduced in Section 3 for completeness and reference. The reader
might want to proceed there before closer inspection of the table.
The ‘‘similar results from similar input’’ criterion implicitly

assumes that the perturbation of data sites leaves the set of vertices
on the convex hull, XC , unchanged. Otherwise, constructions
based on convex hull vertices show discontinuous changes under
the perturbations. Among the ghost point methods, the DDC
approach is not affected by changes inXC because the construction
of ghost points is independent of the concrete structure of XC .
Furthermore, RBF and IDW schemes are naturally unaffected by
changes in XC .

3. Ghost points for natural neighbor interpolation

In this sectionwe present our ghost point-basedmodification of
natural neighbor interpolants. We first discuss the general idea in
Section 3.1, then introduce the concepts of dismissed and assigned
ghost points in Section 3.2, and present two concrete placement
strategies in Section 3.3.
Our method concentrates on discrete data, i.e., given at points.

While it is possible to extend it to transfinite data, we refrain from
discussion of such methods in this paper.

3.1. Ghost point idea

The ghost point concept entails the modification/enrichment
of the data set such that an interpolation method that is initially
defined only in a limited domain can now be applied on a larger
domain. We now describe the main issues of extending natural
neighbor interpolants using ghost points and relate them to the
rationale behind our ghost point framework.
Rigid Invariance. The placement of ghost points should be
invariant under rigid transformations. In a structured setting as
shown in Fig. 3(a), where data is distributed over a grid, ghost
points can trivially be generated by extending the grid. Since such
an extension is not available in scattered data as shown in Fig. 3(b),
we anchor the ghost point construction at the vertices and edges
of the convex hull, which makes the construction invariant under
rigid transformations.
Finiteness. Any concrete choice of ghost points leads to an
extended domain that is again finite. To allow evaluation of the
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Table 1
Classification of extrapolation methods.

Method Smoothness
(in/out)

Structure
(in/out)

Same rep.
(in/out)a

Domainb Blending General Sim. sim.
(in/out)

Size of
support

Ideal technique C∞ Same y Rn / y y Small

Triangular

Akima (Eaki ) [1] C1 Diff n Rn n n n/y L
Franke (Efra ) [16] As I/C0 Diff n Rn n yc n L
Alfeld (EalfB ) [3] As I Diff y Rn n yd n C
Brown (Ebro ) [6] C0 Diff y(P1) Rn n n n C

Ghost points

- stat. assigned As I Same n (Pd/Pd−1) C(XG) y ye y L
- dyn. assigned As I Diff n (Pd/Pd−1) Rn y ye y C
- stat. dismissed C0 at XC Diff n (Pd/P0) C(XG) y yf y L
- dyn. dismissed C0 at XC Diff n (Pd/P0) Rn y yf y C

Global
interpolants

Duchon (IrbfT ) [12] C∞ Same y(Pd) Rn / / y G
Wendland (IrbfW ) [38] Cd Diff y(Pd) Rn / / y L
Shepard (I idwQ ) [32] C∞ Same y(P0) Rn / yg y G
Nielson (I idwMQ ) [18] Cd Same y(P0) Finite / yg y L
Alfeld (IalfT ) [4] As I Same y Finite y yh n As I

Single entries in columns one and three apply to both interior and exterior, different values are separated by a slash. A sole slash indicates that the criterion does not apply.
a We assume that required derivatives are exact.
b We assume Rn if extension to higher dimensions is straightforward.
c Cross-boundary derivatives must be available.
d Local functions overC-elements must be defined over all Rn .
e Applies to any method that can deal with point-based data.
f Applies to any method utilizing affine weights that are entirely determined by the position of the data sites.
g The quadratic approximations at the data sites can be replaced by arbitrary local/global approximations.
h The interpolation scheme must be applicable to incomplete input data.
interpolant at an arbitrary position outside the convex hull, the
ghost point construction must either recursively continue until
the position is covered, or the placement of ghost points must be
dynamic in that it takes the actual evaluation position into account.
In this paper, we only focus on the second approach of dynamic
ghost points.
One major property of natural neighbor interpolation is its

continuous dependence on the coordinates of the data sites. By
making the ghost point coordinates depend smoothly on the
position of the evaluation position, we maintain the continuity of
the interpolant even in its extended domain.
Artifact Removal. Tessellation-based interpolants suffer severe
artifacts in case of slightly concave data site distributions at
the boundary because of long, skinny triangles or polygons, as
shown in Fig. 12(a) and (b). Natural neighbor interpolants have
similar problems due to the linear precision on the convex hull,
shown in Fig. 12(c), where the following observation is useful. The
‘‘perfect’’ data site distribution for natural neighbor interpolation is
completely homogeneous, which roughly means the same density
of neighbors in every direction. The corresponding ‘‘degenerate’’
case occurs on the convex hull, where the outside completely lacks
neighbors. The seamless transition between these two extrema
is a core advantage of natural neighbor interpolation that makes
it cope so well with very inhomogeneous site distributions. The
distance from the convex hull at which ghost points are placed
plays a crucial role in overcoming artifacts. We place ghost points
such that the original natural neighbor interpolant is augmented
near the boundary of the convex hull, where the local data site
density should be considered in the computation of an offset
distance, and try to provide ghost points that mimic the perfect
setting.
The boundary artifacts have in part been overcome by Cueto

et al. in [11,10], who applied density-scaled α-shapes that allow
the restriction of the domain to a concave shape inwhichundesired
triangles are omitted.
Reproduction Power. While ghost point positions determine
the domain over which an extended interpolant is defined, the
interpolant itself also depends on the values at the ghost points.
In how far the reproduction power of the interpolant is preserved
by the ghost point framework depends on the generated values. To
this end, we propose two solutions whichwe coin ‘‘dismissed’’ and
‘‘assigned’’ ghost points.

3.2. Assigned vs. dismissed ghost points

By default, ghost points do not carry any data besides their
coordinates. Two options exists to deal with this issue when
evaluating a natural neighbor interpolant that builds on these data.
The first option, called ‘‘dismissed ghost points’’, proceeds as

follows. If λ = (λ1, . . . , λm) ∈ Rm are natural neighbor coordi-
nates of x in

x =
m∑
i=1

λi(x)xi, x1, . . . xk ∈ X, xk+1, . . . , xm ∈ XG,

and k > 0, then γ = (λ1, . . . , λk)/(λ1 + · · · + λk) ∈ Rk is a
set of affine coefficients that result from ignoring the ghost point
contributions. This situation is shown in Fig. 4. Because they fulfill
the Lagrange property γi(xj) = δij, these affine coefficients can
be used for interpolation in ψ(γ (x)). Due to the loss of the local
coordinate property, which is crucial in the smooth constructions
of Sibson, Farin, and Hiyoshi, the resulting interpolant is only C0
at the vertices being natural neighbors of ghost points. Along a ray
pointing away from the data sites, the interpolant asymptotically
converges towards a constant function. However, there might be
situations where this behavior is sufficient.
Because no values are required at the data points, we have

considerable freedom in their placement, our only restriction
being invariance under rigid transformations. We have not yet
exploited this particular possibility and provide results for the
same placement strategies used in assigned ghost points.
The second option, called ‘‘assigned ghost points’’, lies in

generating feasible data at ghost points by extrapolating the Taylor
polynomials from the data sites that were used in the construction
of the ghost point. This required link between data sites and
ghost points imposes some constraints on the construction. The
concrete implementation of assigned ghost points depends on the
placement strategy; one approach is given by the dynamic convex
hull offset strategy explained below.
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Fig. 4. Illustration of sub-tiles used in the dismissed ghost point method. The areas
of the shaded polygons are used to determine the affine weights by which to mix
the values at the corresponding data sites (drawn solid).

Fig. 5. The graph of ϕ(r; d).

3.3. Ghost point placement

We differentiate between static and dynamic methods. A
static method places ghost points at fixed positions and allows
a limited expansion of the domain. If the required amount of
extrapolation is small, this method delivers satisfying results and
is computationally less expensive than a dynamic approach. There
are fewer restrictions on the placement of ghost points in the static
case, and the dynamic ghost pointmethods discussed next become
static if the distance of the evaluation position to the convex hull
is always assumed zero.
A dynamic ghost point method constructs an adequately

expanded convex hull for every evaluation point p ∈ Rn, with
the ghost points’ coordinates continuously depending on that of
p. Let d := d(p, C (X)) = minx∈C (X) ‖x − p‖ be the distance of
p to the convex hull of the data sites. We propose to place the
ghost points at a distance twice as far from the convex hull as p
such that it is always in the middle of some enclosing points. It is
important that ghost points are distinct, since otherwise the family
of interpolants parameterized by d is no longer continuous with
respect to the evaluation position. We model the link between d
and the coordinates of the ghost points using a monotone, smooth
function ϕ(d) such that ϕ(d) ≥ 2d. In our examples, we choose
the piecewise quartic C2 function ϕ that blends between an initial,
constant distance r and2d over the interval [0, r] as shown in Fig. 5.
The function is given by

ϕ(r; d) =
{
r + 2d3/r2 − d4/r3 if d < r
2d else.

An extension of ϕ to higher smoothness is straightforward, and
anymonotone, smooth function whose slope converges to roughly
two is appropriate. The parameter r depends on the individual
setting and will be discussed along with the proposed ghost point
approaches.
Dynamic Convex Hull Offset (CHO). We generate ghost points
xGi by displacing the convex hull vertices x

C
i such that the new

convex hull edges are parallel to the old convex hull edges at a
distance of ϕ(r; d), as shown in Fig. 6(a), and call this the convex
hull offset (CHO) strategy. To make the ghost point distribution
more homogeneous, we insert additional ghost points xGmi on the
new convex hull such that they project onto the mid-points (xC

i +

xC
i+1)/2 of the old convex hull edges, where index arithmetic is
modulo the number of convex hull vertices. To ensure that the
evaluation position p is contained within the convex hull of the
ghost points, ϕ(r; d) ≥ d must hold. Since ϕ(r; d) ≥ 2d, it is
furthermore guaranteed that p lies well away from the boundary
of the convex hull. The advantage of this particular construction is
the association between ghost points and data sites, which allows
a meaningful assignment of values and derivatives to the ghost
points. In particular, if ti is the Taylor polynomial associated with
xC
i , and a = xGi − xC

i is the relative position of x
G
i with respect to

xC
i , then we assign the Taylor expansion ti(a+ x) to xGi . Similarly,
for a1 = xGmi − xC

i and a2 = xGmi − xC
i+1, the Taylor polynomial at

xGmi is taken to be the average of the Taylor expansions ti(a1 + x)
and ti+1(a2+x). For example, if ti(x) = zi+∇ix+xTHix/2, with zi,
∇i, and Hi denoting value, gradient, and Hessian, then the Taylor
polynomial at the ghost point xGi is given by

tGi (x) = ti(a+ x) = ti(a)︸︷︷︸
=:zGi

+ (∇i +Hia)︸ ︷︷ ︸
=:∇

G
i

·x+ xT · Hi︸︷︷︸
=:H G

i

· x/2.

The effect of this assignment is shown in Fig. 7 for the extrapolation
of linear Taylor polynomials. When applying this approach to
higher dimensions, we suggest to use a ghost point for every
1, 2, . . . , n− 1-simplex on the convex hull, i.e., for vertices, edges,
and triangles in 3D.
The two major smooth natural neighbor interpolants available,

Farin’s C1 and Hiyoshi’s C2 interpolant, have their reproduction
power degraded by one as soon as their evaluation involves ghost
points, as we explain in the following. Both interpolants internally
use Bézier simplices to model the interpolation constraints given
by the derivative data. Thanks to the concept of degree elevation
by which they determine underconstrained control points, Farin’s
interpolant has second order precision for first degree Taylor
Fig. 6. Ghost points (hollow) in the dynamic convex hull offset approach. (a) The initial setting for d = 0. (b) The corresponding circumcircles, providing the blending
regions. (c) Convex hull displayed as solid lines with interior below. Only circumcircles involving ghost points are displayed. The shaded blending regions indicate where
the original natural neighbor interpolant is augmented to alleviate the convex hull artifacts, the region being much less pronounced at the short edge in the middle.
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Fig. 7. (a) The virtual tile evolution for evaluation positions (drawn as thick rings) moving away from the data sites, with ghost points (small rings) moving away as well.
(b) Perspective 2.5D view of the setting from (a), the gradients shown as tilted rectangles placed at the data sites.
Fig. 8. (a) Development of the Voronoi diagram of X (solid dots) and XG (thin, hollow dots) for a sequence of query positions (thick, hollow dots) ranging from inside to
outside the convex hull of X. (b) Same visualization for the dense circle approach.
polynomials at the data points, and Hiyoshi’s interpolant has third
order precision for second degree Taylor polynomials. As described
in the paragraph on ‘‘Reproduction Power’’ in Section 3.1, the data
at ghost points are extrapolated from the Taylor polynomials at the
convex hull data points used in their construction. Consequently,
the data at the ghost points does in general not agree with the
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Fig. 9. (a) Two almost identical data sets, with different tessellations. (b) Linear interpolation in the underlying triangulation, the discontinuous change of the interpolant
due to the edge flip is clearly visible. (c) Farin’s C1 interpolant does not have this problem.
(a) EalfB (Ipl ).

(b) Ebro (Ibro ).

(c) E id (IrbfW ).

Fig. 10. (a), (b) The discontinuous change of the interpolant in D is propagated to DE . (c) Wendland’s RBF interpolant is independent of any triangulation.
function reproduced by the interpolant in the interior and the
reproduction power of the extrapolated interpolant is degraded by
one wherever a ghost point is involved in the evaluation.
A drawback of the CHO strategy results from offsetting all edges
by the same amount. Dense data requires a small, sparse data a
large offset, as shown in Fig. 6(c). Themore the density of data sites
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(a) E id (I idwMQ ).

(b) Echo (InnF ).

(c) Echo (InnH ).

Fig. 11. (a) Like the RBF interpolant in Fig. 10(c), Nielson’s modified quadratic Shepard interpolant is independent of any triangulation. The weight functions extend far
enough to cover the displayed domain. (b), (c) Natural neighbor interpolants extrapolated using the CHO ghost point strategy have no issues either.
Fig. 12. Benchmark data set for convex hull artifacts. (a) 2D data set with values indicated by vertical lines. The data distribution is slightly concave near the boundary of
the convex hull. (b) Linear interpolation in the underlying triangulation. The observable artifacts are apparent in a similar fashion in any tessellation-based interpolant. (c)
Farin’s C1 interpolant. Although natural neighbor based interpolation is generally independent of a particular triangulation, it suffers similar artifacts on the boundary of the
convex hull, where the interpolant is solely determined by the data at adjacent convex hull sites.
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(a) EalfB (Ipl ). (b) Ebro (Ibro ). (c) Echo (InnF ), assigned ghost points.

(d) Echo (InnS ), dismissed ghost points. (e) E id (I idwMQ ). (f) E id (IrbfW ).

Fig. 13. (a), (b) The local extrapolation schemes smoothly continue the interpolants where their original domain ends. (c), (d) Ghost point methods remove the artifacts.
(e), (f) Global methods, being independent of the tessellation, show no artifacts either.
Fig. 14. The data set including second degree Taylor polynomials of cos ‖x‖ have
been sampled at the indicated positions.

varies along the convex hull, the bigger a compromise the choice
of the global offset becomes.
Because ghost points change their position based on the

evaluation position, the Delaunay triangulation to facilitate access
to the Voronoi diagram suffers frequent updates as well. An
evaluation of the interpolant over a grid would benefit from a
dynamic update strategy that minimizes the amount of updates,
which will be subject of further research. For random access
to the interpolant we suggest to construct for every evaluation
a small, local Delaunay triangulation from which the classical
natural neighbor interpolant can be evaluated. First, all vertices
of old simplices in conflict with the evaluation position must be
determined. Then, all ghost points depending on any of these
vertices must be inserted into the local Delaunay triangulation,
which usually accesses convex hull vertices additional to the ones
already involved.
Dynamic Dense Circle Placement (DDC). In this strategy, we opt
to determine the smallest enclosing circle of the data set, double
its radius and place evenly distributed ghost points on it, as shown
in Fig. 8(b) The resulting static ghost point method is similar to the
‘‘windowing’’ approach of Owen in [30], where the ghost points
play the role of the window boundary. In the dynamic ghost point
setting, we choose r as the radius of the smallest enclosing circle
such that the ghost points are smoothly offset starting with a circle
of radius 2r .
Because there is no useful association between ghost points and

data sites, we can either use the dismissed ghost point approach
or assign the mean value of the data at the data sites. Neither of
these choices is optimal. The first extrapolates a constant values
representing a weighted average of the data at visible convex hull
data sites along rays away from the convex hull, but is only C0. The
second provides a globally smooth interpolant, but provides only a
uniform, constant asymptotic behavior outside.

4. Examples/Comparison

In this section we display some selected, representative height
field visualizations of several approaches discussed so far. The
selection of data sets is such that the main issues are shown for
representative examples.

4.1. Flip data set

The flip data set, shown in Fig. 9(a), illustrates the ‘‘similar re-
sults from similar input’’ aspect, which is apparently problematic
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(a) InnF . (b) InnH .

(c) Echo (InnF ). (d) Echo (InnH ).

Fig. 15. (a), (b) Farin’s andHiyoshi’s interpolants applied to the data set. The artifacts in the front and on the right side are clearly visible. (c), (d) Both interpolants augmented
by the CHO ghost point strategy. An interesting result is the apparently worse performance of the C2 interpolant in terms of wriggles.
for tessellation-based approaches. Fig. 9(b) and (c) show inter-
polants with restriction to the convex hull of the data. The nearly
identical data sets were deliberately chosen such that a Delaunay
edge flip occurs among them. In Figs. 10 and 11 we show repre-
sentative extrapolation methods applied to the different data sets
next to each other in each line. The choice of the Delaunay trian-
gulation is no real restriction since for every tessellation, there are
situations at which topological changes occur. We show the ex-
trapolation of tessellation-based interpolants in Fig. 10(a) and (b),
where the difference between left and right images are clearly vis-
ible. The global interpolants shown in Figs. 10(c) and 11(a) as well
as the natural neighbor interpolantswith assigned ghost points us-
ing the CHO strategy shown in Fig. 11(b) and (c) are not affected by
the change in the triangulation.
4.2. Sliver data set

The sliver data, shown in Fig. 12, provides a setting in
which the convex hull artifacts of tessellation-based and natural
neighbor interpolants become apparent. The images show how
the tessellation based extrapolation methods simply continue the
degenerate local shape,while ghost pointmethods aswell as global
interpolants succeed in overcoming the artifacts.
Fig. 13 shows a range of extrapolation methods applied to the

sliver data set. The important difference to notice between convex
hull extension schemes in Fig. 13(a) and (b) and the remaining ones
in (c) through (f) is the influence that data near the convex hull has
on the shape of the interpolant outside the convex hull. Figs. 13(a)
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(a) Eddc (InnF ), dismissed ghost points. (b) E id (IrbfW ).

(c) E id (I idwMQ ). (d) E id (I idwQ ).

Fig. 16. (a) The DDC ghost point approach exhibits a rather abrupt change between inside and outside. (b) RBFs perform better than ghost point-augmented natural neighbor
interpolants in (a) and Fig. 15 both in terms of transition between inside and outside, and approximation quality. (c) Nielson’s modified quadratic Shepard’s interpolant is
neither suited for interpolation nor extrapolation. (d) Away from the convex hull, Shepard’s interpolant provides a smooth function, yet the approximation quality in the
interior is not satisfactory.
and (b) show an inadequate dependency, while Figs. 13(c) through
(f) show intuitively feasible behavior.

4.3. Artifacts and asymptotic behavior

The following illustrations are based on second degree Taylor
polynomials sampled from cos ‖x‖ over a small region as shown
in Fig. 14. The images display the extrapolated height field above
the error field, the latter showing the difference between the
interpolant and the cosine function, where a plane region indicates
low error. Because of the interpolation property, the absence of
wriggles proves high absolute accuracy of the interpolant.
The first aspect addressed by this example is the artifact

removal performed by the ghost point extension near the convex
hull, which is shown in Figs. 15 and 16. Given the non-polynomial
nature of the cosine function, all considered interpolants must
diverge from the function in the exterior, and we are interested
in how gracefully they start to deviate. We note that Fig. 15(a) and
(b) display artifacts near the convex hull, while interpolating nicely
inside. Fig. 15(c) and (d) display the dynamic CHO strategy applied
to do C1 respective C2 extrapolation. The important detail here
is how the interpolant starts to deviate from the function at the
boundary of the flat region. Another interesting detail not directly
related to extrapolation is how much better the interpolation
with InnF looks compared to InnH . We further show results of
the DDC strategy in Fig. 16(a), as well as the result of applying
Wendland’s RBF interpolant in Fig. 16(b). RBF generally possess
good approximation quality for smooth functions, so it comes at
no surprise that these give the visually most pleasing results. The
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(a) Eddc (InnS ), assigned mean values. (b) Echo (InnF ), linear Taylor extrapolation.

(c) Echo (InnF ), quadratic Taylor extrapolation.

Fig. 17. Ghost points are assigned (a) the mean value of all boundary data sites, (b) extrapolated linear Taylor polynomials, (c) extrapolated quadratic Taylor polynomials.
results of inverse distance weighted methods in Fig. 16(c) and (d)
show that extrapolation in case of I idwQ delivers a smooth function
outside, yet the interpolated function in the interior is of very low
quality.
The second considered aspect, shown in Figs. 17 and 18,

sets ghost point-augmented natural neighbor interpolants apart
from RBFs in that they follow the last observed trend at the
convex hull rather than the global characteristic of the data
set. This particular property gains importance as one usually
observes heterogeneous characteristics over large data sets, and
extrapolation should honor the local characteristic where it is
performed. In particular, compactly supported and quasi-local
radial basis functions converge to the globally fitted polynomial.
Unbounded RBFs show even worse behavior in that they diverge
in an uncontrolled way. Natural neighbor interpolation based on
dynamic, assigned ghost points, on the other hand, converges
towards a mixture of Taylor polynomials at convex hull vertices
that are visible from the evaluation position, and can vary for
different parts of the convex hull.
Except for Fig. 15(d), we omit results for Hiyoshi’s C2

interpolant due to infeasible computation times. In each evaluation
with n natural neighbors, Hiyoshi’s interpolant requires the
construction of an n-variate, quintic Bézier simplex from the
second degree Taylor polynomials at the natural neighbors, which
has complexity O(n5) with a large constant factor. Outside C (X),
the natural neighborhood of the evaluation point easily becomes
as large as 30 or more points, and the sampling of the height-field
for visualization becomes infeasible.

5. Conclusion and future work

The main objective of this paper was the presentation of
natural neighbor extrapolation based on dynamic ghost points.
To provide an adequate context, we first reviewed available
extrapolation approaches, which we subjected to a comparative
assessment based on a characterization that applies to scattered
data extrapolation in general.
Natural neighbor interpolation is by default limited to the

convex hull of the data sites, and exhibits undesirable artifacts near
the boundary of the convex hull.We presented a framework for the
extrapolation of natural neighbor interpolants that extends their
domain to all of space, while maintaining all desirable properties
of the interpolant. By augmenting the original data set with
dynamically constructed ghost points, we overcome the boundary
artifacts inherent to natural neighbor interpolation. Furthermore,
we are able to extrapolate local trends defined by the derivative
data at the data sites in a local fashion, which is considered an
advantage over RBF interpolants.
It is apparent that extrapolationwithout any further constraints

is an ill-posed problem. For a set of feasible assumptions, RBFs
and the proposed ghost point construction can clearly be identified
as the approaches providing results of highest quality. RBF inter-
polants are global in nature, but possess the better approximation
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(a) E id (IrbfG ), constant precision. (b) E id (IrbfG ), linear precision.

(c) E id (IrbfG ), quadratic precision.

Fig. 18. The asymptotic behavior of quasi-local radial basis functions based on underlying polynomials of (a) degree zero, (b) degree one, and (c) degree two.
quality in general, while natural neighbor interpolants based on
ghost points provide local scattered data interpolation that better
adapts to local characteristics of the data set.
One essential requirement for scattered data interpolation

that this paper pointed out was the continuous dependency
of an interpolant with respect to the input data, which adds
to the reliability of the interpolation scheme. Natural neighbor
interpolants fulfill this requirement as long as the data sites are
disjoint and the set of convex hull vertices does not change. This
latter constraint poses a limitation that should be overcome, and
which will be investigated in future work.
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