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Abstract

Finite element methods are used in various areas ranging from mechanical engineering to computer graph-
ics and bio-medical applications. In engineering, a critical point is the gap between CAD and CAE. This
gap results from different representations used for geometric design and physical simulation.

We present two different approaches for using subdivision solids as the only representation for mod-
eling, simulation and visualization. This has the advantage that no data must be converted between the
CAD and CAE phases. The first approach is based on an adaptive and feature-preserving tetrahedral
subdivision scheme. The second approach is based on Catmull-Clark subdivision solids.
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1 Introduction

In engineering, one of the major problems is still the gap between computer-aided design (CAD)
and computer-aided engineering (CAE). This gap results from different representations used for the
design based on exact geometries, like boundary representations (B-Reps) or non-uniform rational
B-splines (NURBS), and for the simulation based on approximative mesh representations.

As illustrated in Figure 1, design and analysis are typically done sequentially or iteratively in
multiple design-simulation loops. In the initial CAD modeling and CAE pre-processing phases the
boundary surface is modeled, the interior of the model is meshed and the boundary conditions, such as
external forces, are defined. As the CAD and CAE model have different representations, in general a
time consuming data convertion between the CAD and CAE system is required. This step also causes
additional approximation errors. In the subsequent CAE processing phase the resulting system of
equations is solved and in the CAE post-processing phase the solution is analyzed. If the simulation
results are inadequate the geometric model can be adapted or the mesh can be refined to increase
the accuracy of the simulation. This might also require a time consuming and approximating data
conversion. These optional, iterative steps are marked as dashed arrows in Figure 1.

One solution to this time-consuming task is iso-geometric analysis (IGA), see [HCB05]. The idea
of this approach is to extend the finite element method such that it can also handle exact geometries.
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Figure 1 Different phases in the modeling and simulation process.

Thus, there is no need to transform the geometries to mesh representations which guarantees a seamless
integration of CAD and CAE. Originally, IGA was based on NURBS, see [Far01]. Meanwhile,
similar approaches for other geometric descriptions like B-Splines [KFB*99], T-Splines [BCC10], or
subdivision surfaces [COS00, CSA02] were presented. An important aspect of IGA is the fact that
refinement or degree elevation of the exact geometric model can be used to increase the simulation
accuracy without changing the geometry.

In this paper, we present two approaches based on subdivision solids. This extends the idea
of IGA to unstructured, refinable volumetric meshes of arbitrary topology. The first approach is
based on tetrahedral subdivision inspired by

√
3-subdivision for surfaces. This approach supports

adaptive refinement and sharp features. The second approach is based on a hexahedral subdivision
scheme, which generalizes Catmull-Clark subdivision surfaces to solids. This approach uses the same
basis functions for the representation of the geometry and for the integration of elements during the
simulation.

In Sections 2 and 3 we review subdivision surfaces and solids. Standard finite element techniques
for linear elasticity problems are described in Section 4. In Sections 5 and 6 we describe two
approaches for finite element analysis based on subdivision solids.

2 Subdivision surfaces

Subdivision surfaces are a powerful tool to model free-form surfaces of arbitrary topology. A
subdivision surface is defined as the limit of an iterative refinement process starting with a polygonal
base mesh M0 of control points. Iterating the subdivision process generates a sequence of refined
meshes M1, . . . ,Mn, that converges to a smooth limit surface M∞ for n→∞. Usually the subdivision
operator can be factored into a topological refinement operation followed by a geometrical smoothing
operation. While the topological refinement inserts new vertices or flips edges, the geometrical
smoothing changes vertex positions. To enforce and preserve sharp features such as corners and
creases, special subdivision rules can be defiened. Examples for such special rules, where tagged
edges will yield creases on the subdivision surface, are presented in [HDD94, BMZ*02, WW02].

Subdivision surfaces either approximate or interpolate the base mesh. For approximating schemes
the control points of Mi usually do not lie on Mi+1, i ≥ 0. The Catmull-Clark algorithm [CC78]
is an examples of such a scheme. Approximating schemes for arbitrary triangle meshes are the
Loop algorithm and

√
3-subdivision [Loo87, Kob00]. The corresponding topological refinement



D. Burkhart and B. Hamann and G. Umlauf 3

operators are illustrated in Figure 2. For interpolating schemes all control points of Mi are also in
Mi+1, i≥ 0. Thus, the limit surface interpolates these points. The earliest interpolating subdivision
scheme for surfaces is the butterfly scheme of [DLG90]. For further details on subdivision surfaces
refer to [PR08].

(a) Catmull-Clark subdivision. (b) Loop subdivision.

(c)
√

3 subdivision.

Figure 2 Topological refinement operators.

3 Subdivision solids

Like subdivision surfaces, subdivision solids are defined as the limit of an iterative refinement
process, factored into topological and geometrical refinement operations. One of the first solid
subdivision schemes is described in [JM96]. This is a generalization of Catmull-Clark subdivision
to three-dimensional solids for smooth deformations based on unstructured hexahedral meshes. As
the topological refinement operation of this algorithm made it hard to analyze the smoothness of
the resulting limit solid a modified operation was proposed in [BSW*02]. The advantage of this
scheme is its simplicity compared to the other subdivision solids, e.g. [CMQ02,CMQ03,Pas02]. From
a hexahedral base mesh, only hexahedral elements are generated, all inserted vertices are regular,
i.e., they have valence six, and the limit solids are at least C1 away from creases or corners. The
subdivision rules for Catmull-Clark solids for hexahedral meshes are defined by five steps:
1. For each hexahedron with nodes V1, . . . ,V8 add a cell point C = (V1 + · · ·+V8)/8.
2. For each face add a face point F = (C0 +2A+C1)/4, where C0 and C1 are the cell points of the

two incident hexahedra and A is the face centroid.
3. For each edge add an edge point E = (Cavg +2Aavg +(n−3)M)/n, where n is the number of

incident faces, M is the edge midpoint, and Cavg and Aavg are the averages of cell and face points
of incident cells and faces, respectively.

4. For each hexahedron connect its cell point to all its face points and connect all face points to all
incident edge points. This splits one hexahedron into eight hexahedra.

5. Move each original vertex Vold to Vnew = (Cavg +3Aavg +3Mavg +Vold)/8, where Cavg, Aavg, and
Mavg are the averages of the cell, face and edge points of all adjacent cells, faces, and edges,
respectively.

For faces, edges and vertices on the boundary of the solid corresponding rules for Catmull-Clark
surfaces are applied.
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(a) Edge bisection. (b) Diagonal in oc-
tahedron.

(c) 1-4 split. (d) 1-3 split. (e) Edge trisec-
tion.

Figure 3 Split operations for tetrahedral subdivision.

A subdivision scheme for tetrahedral meshes based on trivariate box splines was proposed
in [CMQ02, CMQ03]. This scheme is approximating or interpolating depending on the geometrical
smoothing operation. The topological refinement first splits every tetrahedron into four tetrahedra
and one octahedron. This operations is illustrated in Figure 3a. Subsequently, every octahedron is
split along one of its diagonals into four tetrahedra causing a potential directional bias as shown in
Figure 3b.

2-3 flip

3-2 flip

(a) 2-3 and 3-2 flip operation.

multi-face
removal

edge
removal

(b) Multi-face removal and edge removal.

Figure 4 Flip operations for tetrahedral subdivision.

In [BHU10a] another tetrahedral subdivision scheme that generalizes the idea of
√

3 subdivision
[Kob00] for triangular meshes is described. While

√
3 subdivision is based on triangular 1-3 splits

and edge flips, this tetrahedral subdivision scheme is a combination of 1-4 splits (Figure 3c) and 2-3
flips (Figure 4a) in the interior and the

√
3 scheme and edge removals (Figure 4b) on the boundary.

For these boundary steps, tetrahedral 1-3 splits (Figure 3d) are required. For preservation of sharp
features 1-3 edge splits (Figure 3e) are required. Additional optimization steps are used to guarantee
high quality of the tetrahedra. In contrast to earlier solid subdivision schemes, this scheme allows for
adaptive refinement by restricting the 2-3 flips and the boundary edge removals, control of the shape
of the tetrahedra by adjusting the optimization steps, and preservation of sharp features by adjusting
the two smoothing operations. The latter can also be used to replace the original

√
3 smoothing

by an interpolatory smoothing. These properties make this subdivision scheme suitable for FEM
simulations. For details see [BHU10a].

4 Finite element analysis of linear elastic solids

Finite element analysis is a numerical method to solve partial differential equations by first discretizing
these equations in their spatial dimensions. This discretization is done locally in small regions of
simple shape (the finite elements) connected at discrete nodes. The solution of the variational
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equations is approximated with local shape functions defined for the finite elements.
For volumetric problems the most common element types are hexahedra and tetrahedra. Typically,

these elements are defined in a local coordinate system. This simplifies the construction of shape
functions also for higher-order elements with curved boundaries and the numerical quadrature arising
during the assembly of the stiffness matrix. If the same shape functions are used to describe the
variation of the unknowns, such as displacement or fluid potential, and the mapping between the
global and local coordinates, the elements are called iso-parametric elements.

paper1026 / Iso-geometric Finite Element AnalysisBased on Catmull-Clark Subdivision Solids 5
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Figure 6: Tri-linear (a) and tri-quadratic (b) Lagrangian
hexahedral elements. Both elements are shown in local (left)
and global coordinates (right). The mappings are due to the
corresponding shape functions N .

global coordinates. The tri-linear element, for instance, has
eight local shape functions N = [N1, ...,N8] defined over
the cube [−1,+1]3. For more details on elements of differ-
ent order and their shape functions we refer to [SG04].

During the assembly of the stiffness matrix the shape
functions and their derivatives with respect to global coor-
dinates are involved. To convert these derivatives between
the coordinate systems the Jacobian matrix given by

J =




∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ




is used. For the integration over the volume of the ele-
ments usually numerical integration such as Gauss-Legendre
quadrature is used [PTVF07]. In one dimension these
quadrature rules are of the form

� +1

−1
f (x)dx ≈

k

∑
i=1

wif(xi),

where k is the number of integration points, wi are the
weights, and xi are the sampling points. For k = 2 Gauss-
Legendre quadrature is exact for cubic polynomials. The val-
ues for k = 1,2,3 are shown in Table 1.

In the theory of linear elasticity, a solid model Ω consists
of a set of nodes x = [x,y,z]T . These nodes are connected
to form the elements for the finite element analysis. When
forces are applied, Ω is deformed into a new shape. Thus,

k xi wi

1 0 2
2 −

�
1/3 +

�
1/3 1 1

3 −
�

3/5 0 +
�

3/5 5/9 8/9 5/9

Table 1: Sampling points xi and weights wi for Gauss-
Legendre quadrature of order k = 1,2,3.

x is displaced to x + u with u(x) = [u,v,w]T . The bound-
ary of the domain Ω consists of the boundary Γ1 with fixed
displacements u(x) = u0(x), the boundary Γ2 where forces
are applied, and the boundary Γ3 without constraints. These
components satisfy Γ =

�
i Γi and

�
i Γi = ∅.

The strain energy of a linear elastic body Ω is defined as

Estrain =
1
2

�

Ω
εT σdx,

with the stress vector σ and the strain vector ε =
[εx εy εz γxy γxz γyz]

T defined as

εx =
∂u
∂x

, εy =
∂u
∂y

, εz =
∂u
∂z

,

γxy =
∂u
∂y

+
∂v
∂x

, γxz =
∂u
∂z

+
∂w
∂x

, γyz =
∂v
∂z

+
∂w
∂y

.

This can be rewritten as ε = Bu, where B is the so-called
strain-displacement matrix.

BT =




∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y


 .

Hooke’s law σ = Cε relates the stress vector σ to ε via the
material matrix C. For homogeneous, isotropic material C is
defined by the Lamé constants λ and µ, and

C =




λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



.

Rewriting the strain energy and adding work applied by in-
ternal and external forces f and g, respectively, yields the
total energy function

E(u) =
1
2

�

Ω
uT BT CBudx−

�

Ω
fT udx−

�

Γ2

gT da. (1)

A detailed discussion is provided in [ZT00, SG04].

5. Catmull-Clark solids for finite element analysis

We use Catmull-Clark solids for the representation of the
geometry and the approximation of the displacement field
defined by Equation (1). To solve this equation the finite el-
ement method is used to define a linear system of equations
of the form Ku = f, where K is the global stiffness matrix,

submitted to Eurographics Symposium on Geometry Processing (2010)

(a) Tri-linear hexahedral element
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Figure 6: Tri-linear (a) and tri-quadratic (b) Lagrangian
hexahedral elements. Both elements are shown in local (left)
and global coordinates (right). The mappings are due to the
corresponding shape functions N .

global coordinates. The tri-linear element, for instance, has
eight local shape functions N = [N1, ...,N8] defined over
the cube [−1,+1]3. For more details on elements of differ-
ent order and their shape functions we refer to [SG04].

During the assembly of the stiffness matrix the shape
functions and their derivatives with respect to global coor-
dinates are involved. To convert these derivatives between
the coordinate systems the Jacobian matrix given by

J =




∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ




is used. For the integration over the volume of the ele-
ments usually numerical integration such as Gauss-Legendre
quadrature is used [PTVF07]. In one dimension these
quadrature rules are of the form

� +1

−1
f (x)dx ≈

k

∑
i=1

wif(xi),

where k is the number of integration points, wi are the
weights, and xi are the sampling points. For k = 2 Gauss-
Legendre quadrature is exact for cubic polynomials. The val-
ues for k = 1,2,3 are shown in Table 1.

In the theory of linear elasticity, a solid model Ω consists
of a set of nodes x = [x,y,z]T . These nodes are connected
to form the elements for the finite element analysis. When
forces are applied, Ω is deformed into a new shape. Thus,

k xi wi

1 0 2
2 −

�
1/3 +

�
1/3 1 1

3 −
�

3/5 0 +
�

3/5 5/9 8/9 5/9

Table 1: Sampling points xi and weights wi for Gauss-
Legendre quadrature of order k = 1,2,3.

x is displaced to x + u with u(x) = [u,v,w]T . The bound-
ary of the domain Ω consists of the boundary Γ1 with fixed
displacements u(x) = u0(x), the boundary Γ2 where forces
are applied, and the boundary Γ3 without constraints. These
components satisfy Γ =

�
i Γi and

�
i Γi = ∅.

The strain energy of a linear elastic body Ω is defined as

Estrain =
1
2

�

Ω
εT σdx,

with the stress vector σ and the strain vector ε =
[εx εy εz γxy γxz γyz]

T defined as

εx =
∂u
∂x

, εy =
∂u
∂y

, εz =
∂u
∂z

,

γxy =
∂u
∂y

+
∂v
∂x

, γxz =
∂u
∂z

+
∂w
∂x

, γyz =
∂v
∂z

+
∂w
∂y

.

This can be rewritten as ε = Bu, where B is the so-called
strain-displacement matrix.

BT =




∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y


 .

Hooke’s law σ = Cε relates the stress vector σ to ε via the
material matrix C. For homogeneous, isotropic material C is
defined by the Lamé constants λ and µ, and

C =




λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



.

Rewriting the strain energy and adding work applied by in-
ternal and external forces f and g, respectively, yields the
total energy function

E(u) =
1
2

�

Ω
uT BT CBudx−

�

Ω
fT udx−

�

Γ2

gT da. (1)

A detailed discussion is provided in [ZT00, SG04].

5. Catmull-Clark solids for finite element analysis

We use Catmull-Clark solids for the representation of the
geometry and the approximation of the displacement field
defined by Equation (1). To solve this equation the finite el-
ement method is used to define a linear system of equations
of the form Ku = f, where K is the global stiffness matrix,

submitted to Eurographics Symposium on Geometry Processing (2010)

(b) Tri-quadratic hexahedral element

Figure 5 Lagrangian hexahedral elements. Both elements are shown in local and global coordinates related
by the corresponding shape functions N .

A tri-linear and a tri-quadratic hexahedral element are illustrated in Figure 5, where (ξ,η,ζ) are
local and (x,y,z) are global coordinates. The tri-linear element, for instance, has eight local shape
functionsN = [N1, ...,N8] defined over the cube [−1,+1]3. For more details on elements of different
order and their shape functions refer to [SG04].

The finite element approximation results in matrix equations relating the input (boundary condi-
tions) at the discrete nodes to the output at these same nodes (the unknown variables). The contribution
of each element is computed in terms of local stiffness matrices Km, which are assembled into a
global stiffness matrix K. This yields for static elasticity problems a linear system of equations
Ku = f, where u is the vector of the unknown variables and f if the vector of external forces.

During the assembly of the stiffness matrix the shape functions and their derivatives with respect
to global coordinates are involved. To convert these derivatives between the coordinate systems the
Jacobian matrix given by

J =




∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ


.

is used. For a linear elastic body Ω, the equations for the computation of Km are typically derived
from the strain energy defined as

Estrain =
1
2

∫

Ω
εT σdx,

with the stress vector σ and the strain vector ε = [εx εy εz γxy γxz γyz]
T defined as

εx = ∂u/∂x, εy = ∂u/∂y, εz = ∂u/∂z,

γxy = ∂u/∂y+∂v/∂x, γxz = ∂u/∂z+∂w/∂x, γyz = ∂v/∂z+∂w/∂y.

This can be rewritten as ε = Bu, where B is the strain-displacement matrix.

BT =




∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y


.
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Hooke’s law σ = Cε relates the stress vector σ to ε via the material matrix C. For homogeneous,
isotropic material C is defined by the Lamé constants λ and µ, and

C =




λ+2µ λ λ 0 0 0
λ λ+2µ λ 0 0 0
λ λ λ+2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



.

Rewriting the strain energy and adding work applied by eternal forces f to the boundary Γ, yields the
total energy function

E(u) =
1
2

∫

Ω
uT BT CBudx−

∫

Γ
fT udx. (1)

This energy function can be approximated with finite elements in terms of

Km =
∫∫∫

BT CBdxdydz. (2)

As the exact evaluation of (2) is in general not possible Gauss quadrature is used
∫ +1

−1

∫ +1

−1

∫ +1

−1
f(x,y,z)dxdydz≈

n

∑
i=1

Wif(xi,yi,zi), (3)

where xi, yi and zi are the sampling points of the univariate quadrature rule and Wi is the product of
the corresponding weights. As the elements are defined in local coordinates, combining (3) with (2)
yields

Km ≈
n

∑
i=1

Wi det(J)BT CB, (4)

where the Jacobian matrix J and B are evaluated at the sampling points. This requires evaluating the
derivatives of the shape functions, see [ZT00, SG04] for details.

5 Adaptive tetrahedral subdivision for finite element analysis

In [BHU10b] we demonstrate the effectiveness of adaptive and feature-preserving tetrahedral sub-
division for finite element simulations for the engineering part shown in Figure 6 (top left model)
consisting of 2,799 tetrahedra. To the top faces (yellow) of the tripod a vertical load is applied and
the bottom of the legs of the tripod are fixed.

Figure 6 (bottom left model) visualizes the normalized approximation error of the deformed
model, where the color hue is linearly interpolated from 0◦ (low error) to 120◦ (high error). The
simulation took 491ms while the average normalized error is 0.08. The histogram shows the error
distribution for the tetrahedra.

For the next step the mesh regions with the largest error are selected and refined. These refined
regions are highlighted in red in Figure 6 (top right model). As some of these regions are isolated,
one round of region growing is used to decrease the number of disconnected, refined regions. The
adaptively refined mesh consists of 4,540 tetrahedra. Figure 6 (bottom right model) shows the
deformation of this new tetrahedral mesh. The simulation took 596ms while the average normalized
error is 0.03. Without adaptive refinement the mesh consists of 23,480 tetrahedra after one subdivision
step. This yields a simulation time of 7,574ms with average normalized error 0.008 for the globally
refined mesh. The decrease of error and the histograms getting narrower demonstrates that our method
is effective. The efficiency of the proposed methods is demonstrated by reducing the computation
times by a factor of twelve for the adaptively refined mesh compared to the globally refined meshes.
For more details see [BHU10b].



D. Burkhart and B. Hamann and G. Umlauf 7

4 author 1 & author 2 & author 3 / Adaptive tetrahedral subdivision for finite element analysis

deformations, and use the subdivision refineable functions
for the FE simulation.
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Figure 6 Adaptive subdivision and FE simulation. First column: tetrahedral base mesh (2,799 tetrahedra)
and simulation with visualization of the approximation error (green=low – red=high) and the histogram of the
error distribution; second column: adaptively refined mesh (4,540 tetrahedra) showing the refined regions in red,
and simulation results for the once adaptively refined mesh.

6 Hexahedral finite element analysis based on Catmull-Clark solids

For the method presented in Section 5, tetrahedral subdivision was used to represent the geometry and
to adaptively refine the mesh, but for the analysis, standard linear Lagrangian tetrahedral elements are
used. In [BHU10c] we described a method that uses Catmull-Clark solids for the representation of
the geometry and the approximation of the displacement field defined by Equation (1).

(a) Regular Catmull-Clark element (b) Irregular Catmull-Clark element

Figure 7 To evaluate the highlighted hexahedron, all adjacent hexahedra are required.

The major problem with this method is that the displacement field within an element does not
only depend on the displacements of the nodes attached to the element but also on the displacements
of the nodes of adjacent elements, because the support of the basis functions of Catmull-Clark solids
overlaps a one-ring neighborhood of elements. This is illustrated in Figure 7, where the gray element
is evaluated, but adjacent elements are also required to evaluate the derivatives in Equation (4).

For standard tri-linear and tri-quadratic elements these derivatives can be computed directly. For
Catmull-Clark elements it is not obvious how to compute derivatives due to topologically arbitrary
elements as shown in Figure 7b. However, evaluating the topological arbitrary elements can be
reduced to evaluations of regular elements shown in Figure 7a. These regular elements can be
evaluated directly with B-spline basis functions, since Catmull-Clark solids are generalizations of
tri-variate cubic B-splines. For details on how to evaluate irregular elements see [BHU10c].

To demonstrate the effectiveness of our approach, we compare it to standard finite elements shown
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in Figure 5. As a test case we use the model shown in Figure 8a. This model is fixed at the left
and right side, and a vertical load is applied to the top. We measure the maximum displacement
in the direction of the load. Compared to standard tri-linear and tri-quadratic hexahedral elements
Catmull-Clark elements converge faster to a reference solution. Furthermore, Catmull-Clark elements
are numerically more stable than tri-quadratic finite elements. It seems that Catmull-Clark elements
produce a more homogeneous stiffness matrix, which results in faster solution of the linear system of
equations and in better conditioned stiffness matrices.

(a) (b) (c) (d)

Figure 8 (a) Base mesh of model to be simulated. Red faces are fixed, to green faces a load is applied. (b)
Simulation of base mesh, (c) simulation of once refined mesh, (d) simulation of twice refined mesh. For the
visualization of the stress the same scale is used as in Figure 6.

Figure 9 Simulated rotation of a model with interior vertices of valence six and ten. For the visualization of
the stress the same scale is used as in Figure 6.

Our approach is also applicable to unstructured meshes with irregular vertices and large, real-
world examples. Figure 9 shows a simulation where a mesh with interior irregular vertices of valence
six and ten is rotated. For the simulation, the red faces are fixed and for the vertices at the opposite
side a fixed displacement is computed. Fore more examples and details concerning the convergence
analysis see [BHU10c].

7 Conclusion and future work

In this paper we have presented two approaches for combining solid subdivision and FE analysis.
The major advantage of these approaches is that only one representation is used for modeling,
visualization and simulation of solid models, by means of an adaptive tetrahedral subdivision tailored



D. Burkhart and B. Hamann and G. Umlauf 9

for FE applications and an iso-geometric approach for finite element analysis based on Catmull-Clark
solids.

For the future we plan to combine these subdivision schemes with more complex FE models,
e.g. non-linear deformations and problems from fluid dynamics. For the second method only hexa-
hedral meshes are supported but we are working on generalizations to arbitrary polyhedral meshes.
Here, the evaluation technique of [BHU10c] can be generalized to the adaptive tetrahedral subdivision
scheme presented in [BHU10a].
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