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Abstract. We present a purely vision-based scheme for learning a topological representation of an open environ-
ment. The system represents selected places by local views of the surrounding scene, and finds traversable paths
between them. The set of recorded views and their connections are combined into a graph model of the environment.
To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect
ethology. In robot experiments, we demonstrate that complex visual exploration and navigation tasks can thus be
performed without using metric information.
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1. Introduction

To survive in unpredictable and sometimes hostile envi-
ronments animals have developed powerful strategies
to find back to their shelter or to a previously visited
food source. Successful navigation behaviour can al-
ready be achieved using simple reactive mechanisms
such as association of landmarks with movements
(Wehner et al., 1996) or tracking of environmen-
tal features (Collett, 1996). However, for complex
navigation tasks extending beyond the current sen-
sory horizon, some form of spatial representation
is necessary. Higher vertebrates appear to construct
representations—sometimes referred to ascognitive
maps—which encode spatial relations between rele-
vant locations in their environment (see, O’Keefe and
Nadel, 1978; Gallistel, 1990, for reviews).

Under certain conditions, such maps can be acquired
visually without any metric information. Humans, for
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instance, are able to navigate in unknown environ-
ments after presentation of sequences of connected
views (e.g., O’Neill, 1991). This has led to the con-
cept of aview graphas a minimum representation re-
quired to explain experimentally observed navigation
competences (Sch¨olkopf and Mallot, 1995; Gillner and
Mallot, 1997). A view graph is defined as a topolog-
ical representation consisting of local views and their
spatial relations. Depending on the task, these relations
can be, e.g., movement decisions connecting the views,
or mere adjacencies.

Motivated by the findings of vertebrate ethology, re-
searchers have started to investigate topological repre-
sentations for robot navigation (e.g., Kuipers and Byun,
1991; Mataric, 1991). These systems rely primarily
on local sonar patterns for the identification of places,
in combination with metric knowledge derived from
compasses or wheel encoders. Bachelder and Waxman
(1995) have reported results on a vision-based topo-
logical system which uses a neural control architecture
and object recognition techniques for landmark detec-
tion. In their current implementation, however, the sys-
tem has to rely on artificially illuminated landmarks
and a pre-programmed path during exploration of the
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environment. For maze-like environments, Sch¨olkopf
and Mallot (1995) have shown that learning a graph
of views and movement decisions is sufficient to gen-
erate various forms of navigation behaviour known
from rodents. The scheme has subsequently been im-
plemented in a mobile robot (Mallot et al., 1995).

It is often not clear which of the features of these
robotic systems can actually be attributed to the topo-
logical representation since metrical and topological
knowledge is used together. The same problem arises
when interpreting biological navigation experiments
since animals usually use various kinds of information
depending on the task they have to perform. Therefore,
it is interesting from both the robotics and the biologi-
cal point of view to study systems which are restricted
to the use of just one type of knowledge.

The purpose of the present study is to extend the
view graph approach from the mazes of Sch¨olkopf and
Mallot (1995) to open environments. We will demon-
strate that view graphs can be learned autonomously in

Figure 1. 118× 102 cm sized test arena with toy houses and Khepera robot.

an environment with complex visual stimuli, without
making use of beacons or artificial landmarks. In do-
ing so, we present a navigation system that uses purely
topological information based on visual input. By fo-
cusing on just one type of information we want to make
the contribution of topological knowledge explicit.

In the next section, we describe the experimen-
tal setup, followed by an overview of the system’s
architecture and an account of the required basic
mechanisms, namely the procedures for selecting rep-
resentative views, homing and exploration. We present
experimental results in Section 4, and conclude our
study by discussing possible extensions of the view
graph approach.

2. Experimental Setup

Robot experimentswere conducted in an arena sized
118× 102 cm. Visual cues were provided by model
houses (see Fig. 1). We used a modified Khepera
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Figure 2. KheperaTM robot with camera module and custom made
conical mirror, which permits sampling of the environment over
360◦, in a range of±10◦ about the horizon.

miniature robot (Fig. 2) connected to an SGI Indy work-
station via a serial and video transmission cable. Obsta-
cles in a range between 0.5 cm and 4 cm were detected
with 8 infrared proximity detectors.

The imaging system on the robot comprises a coni-
cal mirror mounted above a small video camera which
points up to the center of the cone (Fig. 2). This con-
figuration allows for a 360◦ horizontal field of view
extending from 10◦ below to 10◦ above the horizon.
A similar imaging technique was used by Chahl and
Srinivasan (1996) and Yagi et al. (1995).

The video image was sampled at 25 Hz on four rings
along the horizon with a resolution of 4.6◦ and averaged
vertically to provide robustness against inaccuracies in
the imaging system and tilt of the robot platform. In a
subsequent processing stage, a spatiotemporal Wiener
lowpass filter (e.g., Goldman, 1953) was applied to the
resulting one-dimensional array. To remove changes in
the illumination, the average background component
was subtracted and, in a final step, the contrast of the
array was enhanced via histogram equalization.

The image data was read by an asynchronous pro-
cessing thread running at 7 to 12 Hz cycle time. In each
cycle, the Khepera’s infrared sensors were read out us-
ing a serial data link with a maximal transmission rate
of 12 Hz. The movement commands calculated from
the image and infrared data were transmitted back to
the robot via the same serial link.

The Khepera’s position was tracked with a camera
mounted above the arena. Position and image data
were recorded with a time stamp and synchronized of-
fline. Position information was not available to the
robot during the experiments. Except for Figs. 10 and
11, all dataplots show results of real world experiments
obtained with the described setup.

Computer simulationsfor Fig. 11 were done in a
two-dimensional environment containing triangular
objects of random size and shading (cf., Fig. 10). Views
were computed with standard ray-tracing techniques.
The simulated infrared sensors provided distance val-
ues corrupted by Gaussian noise. The control archi-
tecture and the interface to the simulated motors and
sensors were identical to the ones used in the real-world
experiments (Franz et al., 1997).

3. Learning View Graphs

3.1. Discrete Representation of Continuous Space

In view-based navigation tasks, visual information is
used to guide an agent through space. The reason
why this is feasible at all, is the fact that there is a
continuous mapping between position space (x- and
y-coordinates, possibly supplemented by gaze direc-
tions) and the space of all possible views: for each spa-
tial position, a certain view is perceived, and this view
changes continuously as the observer moves around in
space1. Unfortunately, this mapping can be singular,
as identical views can occur at different spatial loca-
tions, i.e., there is no guarantee for the existence of a
global coordinate system on the manifold of all possi-
ble views (cf., Fig. 3). In principle, this problem can
be dealt with using context information: In points with
identical views, we can use views from nearby spatial
positions to disambiguate between them.

Complete knowledge of this manifold would be very
useful to determine one’s spatial position. Memory and
computation requirements, however, prohibit storing
everything. Moreover, if we are not interested in de-
termining positions at arbitrary times but rather in car-
rying out specific navigation tasks, as for instance path
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Figure 3. (a) Sketch of a view manifold, consisting of all views that
can be seen by a continuously moving observer. The manifold is em-
bedded in a Euclidean space whose dimensionality is the number of
camera pixels. The actual structure of the manifold is much more
complicated, with holes caused by obstacles, and a tubular structure
due to the possibility to take snapshots at all orientations between
0◦ and 360◦. The self-intersection leads to a singularity of the co-
ordinate system inherited from position space: if one moves along
the path (black line), the same view occurs twice at different spatial
locations. (b) Example of a view graph representation of the view
manifold.

planning, this is not at all necessary. In that case, it is
sufficient to store views which allow the description of
relevant paths. This leads to a less detailed representa-
tion of the view manifold, namely by a graph consisting
of representative views and connections between them.

In discretized environments like mazes, there is a
canonical set of views to store: since no movement
decisions need to be taken while traversing corridors,
the views necessary to support path planning are solely
those at junctions. As open environments do not im-
pose a structure on the view graph, we have to select
a set of views which are representative for the mani-
fold (in the following referred to assnapshots), and to

find connections between them. Since the connecting
paths between the snapshots are not explicitly coded in
the view graph, we have to provide a homing method
which allows us to find connected views from a given
start view.

In the following sections, we introduce a system that
is able to solve these tasks. The vertices of the acquired
view graph are panoramic views of the environment,
and its edges are connections between views that can
be traversed using a visual homing procedure. In con-
trast to our previous implementation (Sch¨olkopf and
Mallot, 1995), this homing procedure allows the sys-
tem to approach a location from any direction such that
the graph edges denote mere adjacency relations with-
out any directional labelling. The resulting view graph
does not contain any explicit metric information.

3.2. A Minimalistic System for Learning
a View Graph

The overall architecture of the system is shown in
Fig. 4. Here, we discuss the basic building blocks,
the details are described in the following sections.

View Classifier. As we mentioned above, a cru-
cial component of any graph learning scheme is the
selection of vertices. The graph vertices have to be
distinguishable, because otherwise the representation

Figure 4. Block diagram of the graph learning algorithm.
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could not be used for finding a specific location. Since
we confine our system to use only visual informa-
tion, we must guarantee that the recorded views are
sufficiently distinct. This can be done by a classifier
which detects whether the incoming views can be dis-
tinguished from the already stored vertices of the view
graph. If this condition is fulfilled, the system takes a
new snapshot and adds it to the graph. The classifier is
described in Section 3.3.

Route Learning. In our system, a new snapshot is au-
tomatically connected to the previously recorded vertex
of the view graph. Thus, the systems records chains
of snapshots, or routes. These routes can be used to
find a way back to the start position by homing to each
intermediate snapshot in inverted order. We describe
the homing procedure in Section 3.4. The area from
which a specific snapshot can be reached by the hom-
ing procedure is called itscatchment area. The view
classifier has to make sure that every snapshot can be
reached from its neighbour, i.e., all vertices of the view
graph have to be in the catchment areas of their adjacent
vertices.

Choice of Exploration Direction. When the system
has taken a new snapshot, a new exploration direction
must be chosen. This choice primarily affects theex-
ploration strategyof our system, since it determines
how thoroughly an area is explored and how fast the
explored area grows. In the Section 3.5, we describe
several local exploration strategies used in our system.

Edge Verification. The route learning procedure de-
scribed above has no way of forming new edges to
previously visited views, i.e., the resulting graphs will
be mere chains. By adding the following behaviour
we can get nontrivial graphs: During exploration, the
system constantly checks whether the current view be-
comes similar to the already recorded snapshots. This
again is a view classification task which can be solved
by the same classifier as used for the selection of the
snapshots (cf., Section 3.3). In a second step, the sys-
tem checks whether the detected snapshot is not yet
connected to the vertex from which the current explo-
ration step started. Whenever these conditions hold,
the system tries to home to the snapshot. If successful,
an edge connecting the two vertices is included, and
the exploration continues from the detected snapshot.
In cases where the robot gets lost or bumps into obsta-
cles, we record a “non-edge” between both vertices thus
preventing the failed action from being repeated. Be-

fore starting to home, the verification procedure always
checks whether a “non-edge” for this action has already
been recorded. After a failed verification, we start a
new graph, which will typically get connected to the old
one in due course by the edge verification procedure.

If an already connected view is encountered dur-
ing an exploration step the system homes to it as well
(not shown in Fig. 4). This procedure does not produce
additional knowledge, but has the effect that edges in-
tersecting previously stored edges are less likely to be
recorded. Edge verification could in principle also be
used for the edges learned by the route learning proce-
dure. For reasons of excessive exploration times, we
did not resort to this more cautious strategy.

Arbitration and Obstacle Avoidance. As the focus
of this paper is on navigation, we did not use any
sophisticated obstacle avoidance systems. During ex-
ploration, the infrared sensors of the robot were con-
tinuously checked for the presence of nearby objects.
If obstacles were detected at distances larger than ca.,
1 cm, the robot tried to turn away without slowing
down. Smaller distances were interpreted as collisions
causing the robot to back up and turn away from the
obstacle. Both behaviours and the graph learning sys-
tem of Fig. 4 were combined into a subsumption ar-
chitecture (Brooks, 1986), where the collision-induced
escape behaviour had highest, the graph learning pro-
cedure lowest priority. This simple architecture proved
to be sufficient to guide the robot through the environ-
ment shown in Fig. 1.

The robot is not allowed to take snapshots as long as
the obstacle avoidance system is active. The resulting
graph structure tends to concentrate in the open space
between obstacles. This feature makes the navigation
system more effective, as the visual input changes very
rapidly near objects. Exploration of these areas would
require a large number of snapshots which, in complex
natural environments, would ultimately lead to a fractal
graph structure near objects.

3.3. View Classifier

In our robot implementation, the vertices of the view
graph are identified with snapshots of the surround-
ing panorama, namely one-dimensional 360◦ records
of the grey values at the horizon. Omnidirectional
views have the advantage that one view alone can
encode a location without requiring the computation-
ally expensive merging of several views to one place
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representation. In addition, this feature provides ro-
bustness against changes in the image affecting only
parts of the panorama, e.g., moving objects. Global
changes in the lighting conditions are removed by the
image processing (cf., Section 2) such that the view
manifold in our setup is relatively stable over time.

Ideally, the set of snapshots taken to represent the
view manifold should satisfy three criteria: First, the
views should be distinguishable. In purely graph-based
maps, this is the only way to guarantee that specific
vertices can be navigated to. This can be achieved by
incorporating only distinct views into the graph. Sec-
ond, a large proportion of the view manifold should be
covered with a small number of vertices to keep pro-
cessing requirements small. Third, the spatial distance
of neighbouring views should be small enough to allow
reliable homing between them.

As we confine our system to use only visual input,
the selection of the snapshots must be based on the cur-
rent view and the stored snapshots. The above criteria
can be satisfied by measuring the degree of similarity
between views: Dissimilar views are distinguishable
by definition while being distant on the view manifold,
and similar views often are spatially close.

For measuring similarity, we take a minimalistic ap-
proach by using the maximal pixel-wise crosscorrela-
tion 8 as a measure of similarity. This is equivalent
to the dot product of two view vectorsai , bi , after first
rotating one of them such as to maximize the overlap
with the other one:

8 = max
i

∑
j

aj bj−i . (1)

Whenever a threshold of the image distance to all stored
snapshots is exceeded by the current view, a new snap-
shot is taken. The threshold classifier thus adapts the
spacing between the snapshots to the rate of change
in the optical input. Areas which have to be covered
by a denser net of snapshots, due to a rapid change of
views, are also explored more thoroughly. The thresh-
old is chosen to ensure that the snapshots are both
distinguishable and close enough to allow safe nav-
igation between them. Larger thresholds reduce the
number of recordable vertices and increase the spac-
ing between them. Smaller thresholds lead to a denser
net of snapshots, but increase the danger of incorporat-
ing false edges due to the confusion of vertices. Note,
that the spatial position of the snapshots is influenced
to a large degree by the position of the first snapshot
since all subsequent snapshots are selected according to

the internal distinctiveness criterion. For varying start
positions, the recorded view graph will always look
different.

Clearly, a threshold classifier can also be used to
detect whether the current view becomes similar to one
of the already recorded snapshots. If the image distance
to a snapshot falls below the threshold, the robot starts
its edge verification procedure (cf., Section 3.2) and
tries to home to the snapshot. In our system, we use
the same classifier for both tasks. A suitable threshold
was determined experimentally (cf., Section 4.1).

3.4. Navigating between Places:
View-Based Homing

In order to travel between the vertices of the view graph,
we need a visual homing method. Since the location of
a vertex is only encoded in the recorded view, we have
to deduce the driving direction from a comparison of
the current view to the goal view. After the robot has
moved away from the goal, the images of the surround-
ing landmarks in the current view are displaced from
their former image positions in the goal view. If the
robot moves so as to reduce these displacements it will
finally find back to the goal, where current view and
snapshot match. The displacement field has a focus of
contraction in the goal direction (cf., Fig. 5). Driving
into the direction of this focus most quickly reduces
the image displacements.

A number of experiments have shown that inverte-
brates such as bees or ants are able to pinpoint a location
defined by an array of nearby landmarks (see, Collett,
1992, for a review). Apparently, these insects search
for their goal at places where the retinal image forms
the best match to a memorized snapshot. Cartwright
and Collett (1983) have put forward the hypothesis that
bees might be able to actively extract the goal direction
by a homing mechanism as described above.

In order to apply the idea of Cartwright and Collett
(1983) to robotic homing tasks, two basic problems
have to be solved:

1. Correspondences between image points in the snap-
shot and in the current view must be established to
detect displacements between them.

2. If a visually navigating agent has no direct access to
the actual distance of the surrounding landmarks,
this lack of knowledge must be compensated by
some additional assumption about the distance dis-
tribution of possible landmarks in the environment.
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Figure 5. A robot with omnidirectional sensor uses a snapshot taken during a previous visit to find back to the goal position. After moving
away from the goal, the images of the surrounding landmarks are displaced to new image positions, as denoted by the arrows at the current view.
If the robot moves such that it reduces the displacements it will finally find back to the goal (after Cartwright and Collett, 1983).

In our approach, we assume that all visible landmarks
have approximately the same distance from the location
of the snapshot. The resulting displacement fieldsδ(θ)

have a very simple structure (Franz et al., 1997)

δ(θ) = arctan

(
ν sin(θ − α)

1− ν cos(θ − α)
)
− ψ, (2)

whereθ denotes the image position of a landmark in the
snapshot,α the direction in which the robot has moved
away from the goal,ψ the change in the sensor orienta-
tion, andν the ratio between the distance from the goal
and the average landmark distance. Since these dis-
placement fields depend only on three free parameters
ψ , α andν, they can be used as matched filters: From
the parameters of the best match to the actual displace-
ment field, we compute the driving direction given by
α + π . These steps are repeated until the current view
becomes identical to the snapshot.

REPEAT {
FOR all values of ψ, α, ν DO {

compute displacement field from Eq.(2)

distort snapshot with displ.field

compute image distance to current view

}
select parameter set with min.distance

drive in direction α + π.
}
UNTIL image distance to snapshot is 0

The matching of three parameters requires rela-
tively small computational resources compared to other
methods for image matching. On an SGI Indy work-
station, the calculation of a home vector from 78-
dimensional views took less than 40 ms which results
in smooth trajectories to the home position. It can
be shown mathematically (Franz et al., 1997) that the
goal can be approached with arbitrary accuracy even
though the differences in the distances to the individual
landmarks are neglected, and that each snapshot is sur-
rounded by a non-empty catchment area. In practice,
the accuracy depends mainly on the quantization and
sensor noise of the detector ring, since a displacement
can only be detected if it generates sufficient change
in the detector signal. In our experimental setup, this
was usually the case at distances from the goal in the
range of 1 to 3 cm, depending on the distances of the
surrounding landmarks. The size of the catchment area
for a single snapshot is mainly determined by the lay-
out of the environment. In our toy house arena, max-
imum homing distances of 45 cm were achieved. The
success rate was 95% for homing distances smaller
than 15 cm, and dropped to 50% in the range of 20
to 25 cm.

The displacements in panoramic views after ob-
server movements have been used in several robotic
systems for homing tasks. For example, Hong et al.
(1991) identified and matched image features in im-
ages with constant orientation. They used this scheme
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to successfully guide a mobile robot along a corridor.
In Röfer’s system (1995), a Kohonen network was used
to learn the correspondence between snapshot and cur-
rent view.

3.5. Local Exploration Strategies
for Graph Learning

The exploration strategies used by our robot have been
motivated by the principle ofmaximizing knowledge
gain (Thrun, 1995). As we have not formalized any
notion of knowledge, this principle was used as a qual-
itative guideline. In our context, knowledge gain is pos-
sible, for instance, through the recording of new edges
and new snapshots. In the following, we describe sev-
eral exploration strategies, which concern primarily the
choice of the next direction to explore after a snapshot
has been taken, or after an existing vertex has been
reached (cf., Section 3.2).

Exploration Direction during Route Learning. The
simplest conceivable rule is to choose a random direc-
tion and then to go straight until the next snapshot is
taken. The resulting Brownian motion pattern has the
advantage that eventually every accessible point of the
environment will be explored without the danger that
the exploring agent is caught in an infinite loop. Good
results can also be achieved if one uses a fixed turning
angle. Using smaller angles, distant areas are reached
faster, whereas angles closer toπ lead to a more thor-
ough exploration of the local neighbourhood. For the
experiments presented here, we used a fixed turning
angle of 90◦ to the left.

Exploration of the Largest Open Angle. Our nav-
igation scheme is designed such that all vertices of
the view graph remain in the catchment areas of their
respective neighbours. This property can be used to
choose the next exploration direction, if a vertex has
already more than one edge: The system determines
the directions to all neighbouring vertices using the
homing procedure, and directs the next exploration
step to the largest open angle between them (cf.,
Fig. 6). Alternatively, one could use information about
neighbouring vertices, such as their connectivity or
similarity. For example, exploring areas where neigh-
bouring views are connected to each other would be
more likely to lead to possibly undesired edge inter-
sections.

Figure 6. The robot estimates the directions to all connected ver-
tices (black arrows). The largest open angle is denoted by8. The
next exploration step will be directed alongγ into the middle of8.

Limiting the Connectivity of Vertices. The explo-
ration can be made more effective by limiting the num-
ber of edges a vertex can have. If a vertex reaches
the maximum number of edges the robot moves on
to less connected neighbours instead of starting a new
exploration step. Similarly, the robot determines the
directions to all neighbours as described above. If the
largest open angle between the directions is smaller
than a preset value, the system moves on to other ver-
tices. Using this strategy, exploration tends to spread
out to less explored vertices and areas.

Together, these strategies form the routine for the
choice of the next exploration direction in Fig. 4:

Choose next exploration direction:

n := count number of edges

FOR all connected views DO

compute directions to connected views

φ := largest open angle

γ := vector pointing into the middle of φ

IF n > max edges OR φ < min angle THEN

move to least connected neighbour

IF n < 2 THEN

exploration direction := fixed angle

ELSE

exploration direction := γ

In this study, we were only interested in evaluat-
ing the performance of local rules, but the approach
can easily be extended to include global rules such as
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searching the graph for less explored vertices, or delet-
ing unnecessary edges.

4. Results

4.1. View Classifier Threshold

In order to find the threshold of the image distance for
the view classifier, we made the following experiment
(Fig. 7): During a test run, the robot covered the en-
tire free space of the arena with snapshots spaced at
most 2 cm apart. From these snapshots, view pairs
were selected randomly and their image distance was
computed. The range of image distances was divided
into 6 bins. For each bin, homing runs for 20 different
view pairs were performed. A run was counted as a
success if the robot reached a 1 cmradius around the
home position in less than 30 s.

Since the classifier is used for two different tasks,
20 view pairs were generated for each of the following
two categories: (1) Pairs connected by a direct line of
sight are relevant for the selection of snapshots, since
there must be traversable space between them during

Figure 7. Success rates (in %) for travelling between views with various image distances. In each bin, 20 pairs were tested. Light grey bars are
results for pairs connected by a direct line of sight, dark bars for general pairs. The dashed line marks the threshold2 of the classifier; image
distances are measured in multiples of2.

exploration. (2) For edge verification (see Section 3.2),
no restrictions on the set of possible views can be made.
Figure 7 shows the success rate for both categories.
We have chosen the threshold value2 (dashed line)
such that vertices connected by a direct line of sight
can be reached in 90% of all cases (light grey bars).
For the general case (dark bars), where the path may
be blocked by obstacles, at least 70% of all vertices
with image distance below2 can still be found by the
homing procedure.

As an example, we have computed the image dis-
tance map to a snapshot at the center of the arena for
the view dataset mentioned above (Fig. 8). Regions
with image distances below2 are surrounded by white
contours. If the robot starts at the center, the next snap-
shot would be taken after the white contour is crossed.
This leads to a spacing of the snapshots between 5 and
15 cm, depending on the variability of the visual input.
The number of snapshots that can be distinguished us-
ing this classifier usually falls in a range between 20
and 40, depending on the start position. This is due to
the low resolution and contrast of the mirror optic of the
robot and the occurrence of similar views in different
parts of the arena.
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Figure 8. Map of image distances to a snapshot at the center of the arena. Darker regions represent lower image distances. White contours
enclose regions with an image distance below the threshold2. Hashed regions mark the shape and position of the toy houses in Fig. 1.

If the threshold is used to detect similarity, there
are several regions with false positives. In these re-
gions, the edge verification procedure would try to find
new edges to the central view, but fail to find it since
the view never becomes similar enough to the snap-
shot. Although our setup allows only to record 20–40
snapshots, the visual input is sufficiently rich to prevent
false edges due to identical views in different locations.
Clearly, in some environments, e.g., in corridors, iden-
tical views may be more likely to occur, and thus would
require additional information to disambiguate the lo-
cations.

4.2. Graph Learning

Figure 9 shows some features of the graph learning
scheme. The trajectories were recorded using the track-
ing system described above. The robot starts by record-
ing a chain of vertices 1 to 4, turning at a fixed angle
of 90◦ after each snapshot. After leaving vertex 4,
the current view becomes similar to vertex 1. The edge
verification procedure establishes a new edge between
vertex 1 and vertex 4 by homing to vertex 1. The next

exploration direction is chosen to fall into the largest
open angle, where the robot collides with an obstacle
and backs up. It continues exploring until the momen-
tary view becomes sufficiently different from all stored
snapshots and starts a new graph by recording vertex 5.
This time, the proximity of vertex 2 is detected, and a
new edge between vertex 2 and 5 is established, con-
necting the two subgraphs.

In order to illustrate the accumulation of knowledge
over time, we used a simulated two-dimensional envi-
ronment (cf., Fig. 10) as described in Section 2. This
environment provided sufficiently rich visual input to
record more than 100 snapshots in the view graph and
allowed for long exploration times. The simulated
world can be traversed in 30 time units, thus in the
overall time period depicted in Fig. 11, the arena was
crossed approximately 50 times. We first observe an
increase in the number of both graph vertices and edges.
However, after some time almost no new snapshots are
taken—the view manifold has been sufficiently densely
sampled, while the verification procedure still adds new
edges to the graph.

Figure 12 shows two examples of view graphsG1

andG2 recorded by the Khepera robot in the toy house
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Figure 9. Robot trajectory recorded by the tracking system during an exploration run. Circles denote locations of snapshots, dotted lines
recorded edges.

Figure 10. Simulated two-dimensional world with triangular ob-
jects of random size and shading. The depicted graph shows the
location of snapshots and recorded edges between them.

environment with different start positions.G1 contains
35 vertices and 46 edges,G2 21 vertices and 32 edges.
After exploration (G1 75 min,G2 60 min) all uncon-
nected vertices (6 inG1, 4 in G2) were deleted from
the graph. 89% of the edges inG1 and 97% inG2

could be reproduced in a subsequent homing experi-
ment. Note, that unreproducible edges do not render
the graph useless for navigation. Since the threshold
of the classifier is chosen such that the vertices remain
in the catchment areas of their neighbours, the system
does not lose orientation if a particular vertex cannot
be found.

Both graphs cover more than half of the open space
in the arena. The connectivity of the graphs reflects
the topological relations of the environment. As dis-
cussed above, the system records only snapshots which
are sufficiently distinguishable. This prevents the robot
from taking snapshots in the regions outside the areas
covered by the graph because there the view is too simi-
lar to the already recorded snapshots. Nevertheless, the
visual input provided by our setup is sufficiently rich
that no exactly identical views occured in the arena
such that no false links were recorded.

4.3. Examples of View Graphs

Once the graph has been learned, one can generate a
path to a goal by search algorithms, e.g., as described
by Schölkopf and Mallot (1995), and then sequentially
navigate along this path by homing. The use of the view
graph for global navigation tasks is illustrated by the
sample trajectory inG1 (Fig. 12). The robot traverses
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Figure 11. Number of graph vertices and edges as a function of exploration time during a simulated exploration. The number of edges continues
increasing when the number of vertices has saturated.

Figure 12. Two view graphs recorded by the Khepera robot with different start positionsS. Circles denote locations of snapshots, lines recorded
edges between them. The sample trajectory (diamonds) inG1 started at vertex 1. VertexL is a possible linking place betweenG1 andG2 (see
discussion).

a chain of 10 vertices, thus connecting regions which
have no visual overlap.

The final analysis sheds some light on the relation-
ship between topological (i.e., graph-based) and met-
rical maps. For all view pairs in the graphG1, we
computed both the graph distance (orcombinatorial
distance) and the Euclidean distance in space. It turned
out that in our experimental setup, the two distance
measures are strongly correlated (Fig. 13). This means
that even though our system has not acquired explicit

metrical information during exploration (no distances
or angles were recorded), the resulting topological map
does nevertheless contain some information about met-
ric distances. This is due to the properties of the graph
learning system. If two vertices are spatially far apart,
any possible edge connecting them would probably in-
tersect other edges, which our system tries to avoid
(cf., Section 3.2). If two vertices are close, the edge
verification procedure is likely to connect them in the
graph.
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Figure 13. Scatterplot of metric distance vs. graph distance for all connected view pairs of the graphG1 (Fig. 12). The correlation indicates
that graph distance contains information on metric distance.

5. Discussion

In this study, we presented a system which is able
to acquire a graph representation of an open environ-
ment using only visual information. The purely topo-
logical approach relies on the availability of a homing
mechanism to reach neighbouring vertices and a simple
threshold classifier for selecting snapshots. The robot
implementation demonstrates that complex exploration
and navigation tasks can be performed without resort-
ing to metric information.

Our experiments have also shown a principal lim-
itation of systems that have no access to metric in-
formation during exploration: Only areas providing
non-ambiguous information can be mapped reliably.
Although the 78-dimensional views used in our sys-
tem are able to encode more places than, e.g., the rela-
tively low-dimensional signatures of ultrasonic sensor
rings, the range of the system could probably be fur-
ther improved by using views with higher resolution
and contrast in combination with more sophisticated
classifiers. In addition, views could be made more dis-

tinct by considering also their context in the graph, as
proposed by Kuipers and Byun (1991) for place identi-
fication. Similarly, the neural architecture of Sch¨olkopf
and Mallot (1995) utilizes lateral weights to bias view
recognition by topological context.

A simple solution to the problem of ambiguous
visual input is to use distances and directions for disam-
biguation during learning. Once the topological repre-
sentation is learned, no metric information is needed for
navigation tasks since the vertices are uniquely defined
by their context. Piaget and Inhelder (1967) proposed a
similar idea in their theory of early spatial knowledge:
While children do not appear to memorize explicit met-
ric information, they seem to use it when they learn to
orient themselves in their environment.

Note that disambiguation can also be performed
without using metric information by including local
graphs such asG1 and G2 in Fig. 12 in a collec-
tion of linked graphs. Common vertices between sub-
graphs have to be marked aslinking placesto allow
transitions between them (Poucet, 1993). In our exam-
ple (Fig. 12), vertexL is common both toG1 andG2
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and could be used to switch from one subgraph to the
other.

Using a purely topological representation, our sys-
tem is necessarily confined to the known path seg-
ments coded in the graph. Although it is able to detect
neighbouring unconnected vertices, there is no sim-
ple way to find novel paths over terrain not contained
in the catchment areas of recorded views. However,
our experiments have shown that our simple topolog-
ical representation contains implicit metrical knowl-
edge which might be used to accomplish tasks ususally
attributed to a metrical representation. This has impli-
cations for the interpretation of experimental results:
If an animal can be shown to utilize metrical informa-
tion, one cannot directly conclude that it was acquired
explicitly during exploration.

Several information sources can be integrated into a
common graph representation, with vertices containing
information about different sensory input and internal
states. Lieblich and Arbib (1982) propose that animals
use a graph where vertices correspond to recognizable
situations. The same idea was also used in the robot
implementation of Mataric (1991) where vertices are
combinations of robot motions with compass and ul-
trasonic sensor readings. If metric information is avail-
able, graph labels can include directions or distances
to the neighbouring vertices. This allows not only for a
wider spacing between snapshots but also to find short-
cuts between snapshot chains over unknown terrain. A
generalization of purely topological maps are graphs
where edges are labelled by actions (e.g., Kuipers and
Byun, 1991; Sch¨olkopf and Mallot, 1995; Bachelder
and Waxman, 1995). This way, systems can be built
which do not depend on just one type of action (in our
case this was a homing procedure). Although presented
for navigation problems, similar graph approaches may
well be feasible for other cognitive planning tasks, as,
e.g., in the means-end-fields of Tolman (1932).

Clearly, the system we presented here is extremely
simple compared to biological systems. Our intention
is not to build models of animals, but to identify some
of the basic building blocks that might play a role in
biological navigation. This focus on understanding and
synthesizing behaviour in a task-oriented way leads
to parsimonious solutions with both technological and
ethological implications.
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Note

1. If the views are recorded using sensors with overlapping Gaussian
receptive fields, the view will be a smooth function of the position.
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Röfer, T. 1995. Controlling a robot with image-based homing. Center
for Cognitive Sciences, Bremen, Report 3/95.

Schölkopf, B. and Mallot, H.A. 1995. View-based cognitive mapping
and path planning.Adaptive Behavior, 3:311–348.

Thrun, S. 1995. Exploration in active learning. InThe Handbook of
Brain Theory and Neural Networks, M.A. Arbib (Ed.), MIT Press,
pp. 381–384.

Tolman, E.C. 1932.Purposive Behavior of Animals and Men, Irv-
ington: New York.

Wehner, R., Michel, B., and Antonsen, P. 1996. Visual navigation
in insects: Coupling of egocentric and geocentric information.J.
Exp. Biol., 199:129–140.

Yagi, Y., Nishizawa, Y., and Yachida, M. 1995. Map-based naviga-
tion for a mobile robot with omnidirectional image sensor COPIS.
IEEE Trans. Robotics Automat., 11:634–648.

Matthias O. Franz graduated with a M.Sc. in Atmospheric Sciences
from SUNY at Stony Brook, NY, in 1994, and with a Diplom in
Physics from the Eberhard-Karls-Universit¨at, Tübingen, Germany,
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