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Abstract. The receptive field organization of a class of
visual interneurons in the fly brain (vertical system, or
VS neurons) shows a striking similarity to certain self-
motion-induced optic flow fields. The present study
compares the measured motion sensitivities of the VS
neurons (Krapp et al. 1998) to a matched filter model for
optic flow fields generated by rotation or translation.
The model minimizes the variance of the filter output
caused by noise and distance variability between differ-
ent scenes. To that end, prior knowledge about distance
and self-motion statistics is incorporated in the form of a
“world model”. We show that a special case of the
matched filter model is able to predict the local motion
sensitivities observed in some VS neurons. This suggests
that their receptive field organization enables the VS
neurons to maintain a consistent output when the same
type of self-motion occurs in different situations.

1 Introduction

While moving through the world, an animal experiences
characteristic patterns of optic flow. These patterns are
an important source of information about the animal’s
self-motion parameters, that is, the momentary transla-
tion and rotation. Before this information can be
extracted, the optic flow has to be analyzed locally by
elementary visual motion processing units. This causes
several problems for the task of self-motion estimation:

1. Locally measured velocities depend on both the
translatory and rotatory optic flow field. A single
flow vector cannot be decomposed into its rotational
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and translatory components. This task requires the
processing of at least seven flow vectors together
(Longuet-Higgins and Prazdny 1980).

2. Translatory flow fields depend on the distance dis-
tribution of the visible objects. Therefore, the same
translation in different scenes usually produces dif-
ferent flow fields.

3. Local image velocity measurements are affected by
the noise in the visual input (Bouman et al. 1985) and
in the synaptic signal transmission (Allen and Stevens
1994), as well as by the fact that biological motion
detectors do not faithfully represent the local image
velocity, due to their nonlinear and pattern-dependent
response characteristics (Borst and Egelhaaf 1993).

A wide-field integration of selected velocity measure-
ments can reduce the impact of these problems: by
selecting only motion detectors that are consistent with a
certain rotation or translation axis, a partial decompo-
sition of the flow field is achieved because all flow
components orthogonal to the selected ones do not
contribute to the integrated signal. In addition, the
integration of a large number of individual velocity
measurements reduces noise, and — to a certain degree —
the dependence on both the input pattern (Single and
Borst 1998) and the distance distribution of the currently
perceived scene. However, wide-field integration alone
cannot solve the complete self-motion estimation prob-
lem: the integrated signal is still not specific for the
selected self-motion axis because other self-motion types
can also induce signals in the selected motion detectors.
Moreover, a complete solution requires considering the
distance dependence of the translatory flow (see, for
example, the algorithms reviewed in Heeger and Jepson
1992), which is obscured by the integration process. But
still, a selective wide-field integration might provide
useful information on the global structure of the optic
flow field, for instance, as input for a later self-motion
estimation stage.

In the fly brain, the role of spatial integration is at-
tributed to a class of wide-field, motion-sensitive neu-
rons, the so-called tangential neurons in the lobula plate.
Most of the previous studies suggested that these neu-
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rons might be involved in the self-motion estimation
process (review: Hausen and Egelhaaf 1989). Krapp and
Hengstenberg (1996) have recently shown that the local
motion sensitivities and preferred motion directions of a
subgroup of the tangential neurons (vertical system, or
VS neurons) closely resemble certain self-motion-
induced flow fields. They argued that the VS neurons
might act as a matched filter to sense self-motions
(Krapp et al. 1998).

In the present study, we try to elucidate the functional
role of the VS neurons by comparing their receptive field
properties to a matched filter model for self-motion-
induced flow fields. In its original sense, a matched filter
is used to find matches between a template and an image
by cross-correlating the image with a filter. It can be
shown that, under certain assumptions, the best filter for
this purpose is the template itself (matched filter theo-
rem, Rosenfeld and Kak 1982; review of biological
matched filters: Wehner 1987). The matched filter model
proposed here is an extension of this idea from static
images to optic flow fields. The model is designed to
minimize the variance of the filter output caused by the
various noise sources and the distance variability be-
tween different scenes. We show that a special case of the
matched filter model is able to predict the local motion
sensitivities of several VS neurons. This suggests that
their receptive field organization minimizes the scene-
and noise-dependent differences in their output when-
ever the same self-motion occurs. The model, however,
does not reproduce the receptive fields of other VS
neurons, indicating that further constraints are at work
in their design.

In the following section, we briefly review the exper-
imental findings obtained in electrophysiological studies
on the tangential neurons. In Sect. 3, we develop a
simple matched filter that we use to model the tangential
neurons in Sect. 4. In Sect. 5, we compare the resulting
weight sets to the local motion sensitivities of the VS
neurons. We conclude by discussing the functional role
of the VS neurons and relating our study to other
approaches.

2 Processing of optic flow by wide-field neurons
in the fly visual system

In the third visual processing area (lobula plate) of the fly,
about 60 tangential neurons are known to respond in a
directionally selective manner to wide-field motion stimuli
(review: Hausen 1984, 1993; Hausen and Egelhaaf 1989).
Tangential neurons integrate on their large dendrites the
signals of many retinotopically arranged elementary
movement detectors (EMDs; review: Reichardt 1987).
At every tiny patch in the visual field retinal image shifts
are analyzed by at least six EMDs whose preferred
directions differ according to the arrangement of neigh-
bouring ommatidia within the hexagonal lattice of the
fly’s compound eye, (Buchner 1976; Gétz et al. 1979).
Two neuronal subsystems have been investigated
more thoroughly, both of which are thought to be in-
volved in gaze and flight stabilization: the horizontal

system (HS; 1982a) and the vertical system (VS; Heng-
stenberg 1982; Hengstenberg et al. 1982). The three HS
neurons mainly integrate the output of EMDs with
horizontal preferred direction. In contrast, the VS neu-
rons were long thought to receive input primarily from
EMDs with vertical preferred direction, corresponding
to the strong sensitivity to vertical downward motion
within their receptive fields. Some hints that a few VS
neurons also receive input from horizontally oriented
EMDs (Hengstenberg 1981) led to a detailed investiga-
tion of the receptive field organization of the HS, VS and
some other tangential neurons. The results of these in-
vestigations showed that most of these neurons are
adapted to sense complex flow patterns rather than being
sensitive to either horizontal or vertical motion only
(Krapp and Hengstenberg 1996; Krapp et al. 1998).
During intracellular recordings from individual VS
neurons, the local preferred directions (LPDs) and mo-
tion sensitivities (LMSs) were determined while a black
dot rotated over a small area of the compound eye
(Krapp and Hengstenberg 1997). When the instanta-
neous direction of dot motion coincided with the LPD,
the measured response reached its maximum. An ex-
ample of the measured response is shown in Fig. 1. As
can be seen, the tangential neurons do not exclusively
respond to image flow along their LPDs. The depen-
dence of their output on the local stimulus direction is
rather broad and reverses its sign (with respect to their
resting activity) when the dot moves in the opposite di-
rection of the LPD. This response directly reflects the
directional properties of the EMDs (van Hateren 1990).
As an example, the distribution of LPDs and LMSs
of VS7 is shown in Fig. 2. The distribution of LPDs in
the VS7 response field is reminiscent of an optic flow
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Fig. 1. Directional tuning curve of a vertical system (VS) neuron: the
maximum occurs when the motion direction coincides with the local
preferred direction (LPD), the minimum when the motion direction
result is opposite to the LPD. The local motion sensitivity (LMS) is
determined by the difference between the maximal and the minimal
response (Krapp and Hengstenberg 1997). The dotted line depicts the
scaled and shifted projection of the flow on a unit vector pointing into
the LPD (cf. Sect. 3.1)
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Fig. 2. Mercator map of the response field of the neuron VS7. The
orientation of each arrow gives the local preferred direction, and its
length denotes the relative motion sensitivity. Measurement positions
are marked by small circles, arrows in between are interpolated
(Krapp et al. 1998)

field generated by a rotation about an axis at an azimuth
of about 30° and an elevation of about —15°. The LMSs
show a pronounced anisotropy: (1) the LMSs near the
rotation axis are generally smaller than those perpen-
dicular to it; (2) the LMSs in the ventral part of the
response field are smaller than those in the dorsal part.
All VS neurons have these properties in common (Krapp
et al. 1998). In addition, the response fields of most VS
neurons do not make up the entire visual hemisphere but
are confined to certain dorsal and medial regions only
(cf. Fig. 7c).

Another wide-field neuron in the lobula plate, the so-
called Hx neuron, belongs to neither the VS nor the HS.
The neuron was found to have a response field most
similar to a translatory optic flow field (Krapp et al.
1998). The LPDs of the Hx response field radially ex-
pand from a point at an azimuth of about 135° in the
equatorial plane (cf. Fig. 7e). Although there is also an
asymmetric sensitivity distribution, the Hx neuron re-
sponds more strongly to motion in the ventral than in
the dorsal part of the visual field.

Can the distribution of the LMSs — in particular the
dorsoventral asymmetry and the small LMSs near the
self-motion axis — be understood from the properties of
self-motion-induced optic flow? We will try to answer
this question in the following sections by comparing the
LMSs to a matched filter model for optic flow fields.

3 Matched filters for optic flow patterns
3.1 A matched filter model of a tangential neuron
Figure 1 shows that the local directional response

characteristic of a tangential neuron can be modelled
quite closely as the projection of the three-dimensional
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Fig. 3. Matched filter model: noisy optic flow vectors are projected
onto a unit vector field corresponding to the LPDs. The projections
are distorted by the response characteristic f of the EMD, weighted
according to the LMS, and linearly integrated to give the filter output

flow vector p; onto a unit vector u;. The vector w; is
tangential to the imaging surface and points into the
LPD. Assuming a linear integration over the receptive
field, the excitation e of a tangential neuron in response
to a motion field can be described by the simplified
model (cf. Fig. 3)

ezzwif(llrpﬂrni) : (1)

where denotes the dot product. The functional
dependence of the EMD output on the image velocity
of the input is described by f, which is approximately
linear for small velocities, reaches a flattened maximum
at higher velocities, and then decreases again. We will
discuss the modelling details of the EMD response
below. The sum is taken over all EMDs in the receptive
field at discrete locations with index i. The local weight
w; denotes the LMS, and »; the noise in the locally
measured motion signal. We assume the noise to be
additive and isotropic.

What are the properties of such a processing element?
The model produces its maximal output when the local
flow vectors are parallel to the LPDs defined by the unit
vector field. Similar to the matched filters in the image-
processing literature (Rosenfeld and Kak 1982), the
signal-to-noise ratio of the output is maximized when
the directions of the local flow vectors coincide with the
LPD template. This is obvious in (1), since in this case
the dot product is maximal in relation to the local noise
signal. We will call such a processing element a matched
filter for optic flow patterns since it can be used to detect
the presence of a particular directional pattern within
the currently perceived optic flow.

3.2 Filters for self-motion-induced flow fields

The flow field depends on the layout of the visual system
and of the environment. We model the visual system of
the blowfly as a collection of EMDs arranged on the unit
sphere. The viewing direction of an EMD (with index i)
is described by a radial unit vector d;. When the fly
translates with T while rotating with R about an axis
through the origin, the self-motion-induced image flow
p; at d; is given by
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where the “nearness” y; = 1/D; is the inverse distance D;
between the origin and the object seen in direction d;
(Koenderink and van Doorn 1987).

Equation (2) shows that the pattern of the local flow
directions depends not only on the self-motion param-
eters, but also on the distances of the currently perceived
environment. Thus, the repeated occurrence of a general
flow field is a rather improbable event. There are,
however, two exceptions: flow fields generated by either
pure translation or pure rotation. In both cases, the local
flow directions are independent of distance, which
means that all flow fields generated by pure rotation
about a common axis have the same local flow direc-
tions, as well as purely translatory flow fields with a
common translation axis. In the following consider-
ations, we will focus on these two cases as the most likely
candidates affording the presence of a matched filter in
the fly brain.

If we are interested in a rotatory flow field around an
axis a, which we refer to as the filter axis, the LPD
template has to be parallel to the local flow directions
given by
uR _ R x dl‘ a X d,‘

— = — 3
! ||R X d,” sin @,’ ( )

with ® being the angle between viewing direction d; and
the filter axis a. Analogously, the LPD template for a
translation along the axis a is

T_idiandl’

u;

4)

sin @j

Because of the broad directional response characteristic
of the EMDs, such a filter will not respond selectively to
self-motion along the filter axis but also to self-motion
along other axes. The filter tuning therefore is only
specific in the sense that, if the self-motion axis is varied,
the largest response occurs when self-motion and filter
axis coincide. The broadness of the response depends on
the spatial arrangement of the viewing directions d; and
the weights w; (cf. the detailed discussion in Dahmen
et al. 1997). The filters are neither specific to pure
rotation nor to pure translation since a rotatory filter
responds to translation and vice versa. Again, the
response is specific in the sense that it is maximal when
filter type and self-motion type are the same.

Even when the self-motion parameters remain un-
changed, the filter output will vary between different
trials. Apart from the noise in the EMD output, this is
due to the varying distance distribution of the current
scene, which affects the translatory flow. The variance of
the filter signal can be minimized by choosing an ap-
propriate set of local weights. EMD signals with high
noise content and viewing directions with high distance
variability should receive less weight, if a stable filter
output is desired. We will describe in Sect. 3.4 how to
design an optimal weight set that minimizes the variance
of the filter output as long as the self-motion parameters
do not change.

3.3 Modelling the EMD response

The steady state response of a tangential neuron to
different angular velocities is thought to reflect the
functional dependence of the fly EMD on pattern
velocity (shown in Fig. 4). For small velocities (0-10°/
s), the EMD signal is approximately linear with velocity,
until it reaches a plateau-like maximum in the range of
about 20-200°/s (Egelhaaf and Borst 1993). At higher
velocities, the EMD signal decreases again owing to the
intrinsic characteristics of a correlation-type EMD
(Reichardt and Varju 1959).

Instead of modeling the EMD response in one func-
tion, we consider here two limit cases that will allow us
to derive analytic solutions for the optimal weight set.
To keep the model simple, we do not consider the de-
pendence of the EMD output on contrast and spatial
frequency of the input pattern.

Linear range model. The linear range can be modelled
quite easily by using the identity function for f so that
(1) becomes

e:ZWi(Ui'P,--i‘ni) . (5)

Since this model uses the linear range of the EMDs, its
output can encode the relative value of the self-motion
parameter along its axis: the faster the translation or
rotation of interest, the larger are the flow vectors, and,
as a consequence, the larger is the filter output [cf. (5)].
However, such a filter responds also to flow fields
generated by rotation or translation along other axes
(cf. Sect. 3.2). To arrive at an estimate of the true self-
motion component, these components have to be
removed at later processing stages (Franz et al. 1999).
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Fig. 4. Steady state response of the tangential neuron HSE to a
grating moving at different velocities. Two limit cases are modelled:
the linear range at smaller velocities and the relatively constant range
around the maximal response (redrawn after Hausen 1982b)



Plateau range model. The plateau around the maximum
can be modelled by dividing the current detector input
by the absolute value of the local flow projection |u; - p;|,
which might be obtained from an averaging process over
a small time scale. When the local flow projection is
below some threshold P, we set the detector output to 0.
The resulting EMD signals above the threshold are
“equalized” to an average value of 1 for all velocities.
Using this EMD model, we obtain the filter output

u; - p; +n;
e= w;————— 6
Dy (6)

|ux‘pi+ni‘>P

Note that this model is still specific to the self-motion
along the filter axis since the percentage of ‘“‘activated”
EMDs will be highest when the current flow pattern and
the LPD template coincide. In contrast to the linear
range model, the plateau range model allows us to detect
only the sign of the self-motion along the filter axis, not
its relative value. In this case, a larger filter output
indicates a higher probability that the preferred flow
pattern occurred. Again, the filter output does not
encode the true self-motion axis since it responds also to
other self-motions.

In both models, it is desirable to keep the variance of
the filter output caused by noise and distance variability
as small as possible. This requirement leads to different
optimal weight sets for the two models that are derived
in the next section.

3.4 Minimization of filter output variance

Even when the self-motion parameters remain exactly
the same, the output of our matched filter model will
vary from trial to trial due to the noise in EMD signals
and the varying distances of the currently perceived
scene. In our model in (1), all the different noise sources
are combined into a common additive noise component
n; with standard deviation An; and zero mean. Among
the possible sources of error are photon noise in the
visual input, synaptic transmission noise, and the
characteristics of the elementary motion detectors such
as their limited aperture and the dependence of their
output on contrast frequency and image contrast.
Although the nature of these error sources is quite
different, they all lead to deviations of the measured flow
component from the real one.

In addition to noise, the second cause of variable filter
output is the distance variability between different
scenes. We express this fact as a scattering of the near-
nesses around their average value (y;) over all scenes. To
facilitate the mathematical analysis, we have to assume
that the nearness variations at different points in the
visual field are statistically independent. This would be
ideally true in an environment consisting of small point-
like objects.

Based on these assumptions, we can find expressions
for both models describing the variance of the filter
output caused by noise and distance variability. By
choosing the appropriate weight sets, this variance can
be minimized using the standard Euler—Lagrange for-
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malism (details about the derivation can be found in the
Appendix). The resulting weight set for the linear range
model is given by

sin @,’

P NREAT )
T (w;) sin ©;
" =N A A ®)

where the w® and w! are the optimal weights for a
rotatory and a translatory filter, respectively. N is a
normalization factor and () denotes the average over all
trials. The variance A#> of the translatory flow projection
depends on the distribution of the translation speed and
direction, and on the distance distribution of the viewing
direction d;. A¢? is especially high in viewing directions
with small absolute distance, high distance variability,
and a large component of the translation vector along u;
[cf. 2].

The corresponding weight set for the plateau range
model is

: 2 2
sin” ©; + ¢;
Wi =N A + An? ®)
N2y o2
W,T:Nw ) (10)

! Atl-2 + Anl2

Here #? is the mean square translatory proportion of the
flow projection while rotating about the filter axis, 77 the
mean square rotatory proportion while translating along
the filter axis. These terms arise from the normalization
factor 1/(u; - p;) in (6), which amplifies not only smaller
local flow signals but also the corrupting factors noise
and variability of the translatory flow. When the average
flow (which includes #; and 7;) is large, the amplification
of the corrupting factors is small. Thus, the correspond-
ing EMD signal receives a higher weight in the optimal
solution.

As can be seen from the above equations, the optimal
solution for both models assigns the weights according
to the local variance of the corrupting factors noise and
variability of the translatory flow. Flow projections with
high noise content and large variation of the translatory
component receive less weight since they contribute
strongly to the variance of the filter output. The de-
nominators in all weight sets are identical; only the
functional dependence on sin ® and the additional terms
#2 and 7? lead to differences between the linear range and
the plateau range model.

The actual computation of the weight sets requires
prior knowledge about the distance statistics of the
habitat, the self-motion statistics, and the EMD noise
An?. Since all of these parameters are currently unknown
for the fly, we either have to provide crude estimates or
treat them as free parameters that have to be fitted to the
data. In the next section, we describe a mixed approach
based on a simplified “world model” that yields a low-
dimensional parameterization of the weight sets.
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4 Modelling of tangential neurons
4.1 Distance statistics

The variance of the translatory flow projection is
approximately given by [cf. (AS) in the Appendix]
2

A ~ 200 )

(D)
where AD? and (D;) denote the variance and mean of the
distance D; = 1/y; at the viewing direction d;, and (7?)
the average square projection of T on the LPD u;. A
concise statistical description of the flight patterns of
the blowfly and its habitat is still not available in the
literature, but we can make some guesses of how the
probability distribution of the distances might look. If
we assume that the animal usually flies at heights below
2 m, it is likely that, on the average, objects seen at lower
elevations in the visual field will have a smaller distance
than objects near or above the horizon. We model the
average distance (D) experienced during horizontal
flight by

D) Dy €>0
D) = BDo .
V1+(f=1)cos? e €<0,

where Dy denotes a typical distance, € the elevation of
the viewing direction and ff=h/Dy the ratio of the
average flight altitude # and Dy. The variance of the
distances AD? is chosen to be the same in all viewing
directions. The resulting geometry of the distance model
is that of a sphere that is flattened in the lower part of
the visual field (see Fig. 5a). This model is clearly a gross
simplification of the real-world situation, but for our
purpose it is sufficient insofar as it provides a basic
dorsoventral asymmetry.

(11)

(12)

4.2 Flight statistics

To estimate (7?) and ¢}, we assume a unimodal

distribution for the translation direction

(13)

plor, er) = Ny exp(k) cos oy + Kz cos er)

a)

Fig. 5. Simplified “world model” of a blowfly flying at an average
height 4 over ground. a Anisotropic distribution of the average
distances in the visual field. The distance deviation AD is assumed to
be independent of the viewing direction. b one thousand samples
generated by the two-dimensional von Mises distribution of the
translation directions. The arrow indicates the maximum of the
distribution that is in the forward direction

around the forward direction, where N, is a normal-
ization factor and o7 and e7 indicate the azimuth and the
elevation of the translation direction. This distribution is
a three-dimensional analogue of the von Mises distri-
bution (Batschelet 1981). The directional concentration
of the distribution are determined by x; and k,: smaller
values lead to a broader directional distribution. In this
study, we choose x; =2.0 and x; =4.0 so that the
distribution becomes broader in the horizontal than in
the vertical direction (see Fig. 5b). The exact choice of
the distribution is not critical for the results presented in
Sect. 5, as long as it is unimodal and sufficiently broad.
We tested several similar distributions with no signifi-
cant effect on the results. Additionally, we assume that
the absolute value of T is distributed independently of its
direction with a mean value 7. The (7?) in (11) are then
given by T%(p?) with the expectation (p?) of the square
projection of the translation direction on the unit vector
u;.

We assume rotation to be independent of translation,
and uniformly distributed. As a consequence, 77 is con-
stant over the visual field. These assumptions do not
always hold in the real fly, since some translatory mo-
tions may be coupled to rotations (Schilstra and van
Hateren 1998), or some rotation axes might be more
frequent than others. For our modeling purposes,
however, only rough estimates are needed.

4.3 Parameterization of weight sets

The normalized distance model D; = (Dy)/Dy from (12),
a uniform AD? over the visual field, and the distribution
of flight directions allow us to compute the terms
requiring prior knowledge in the weight sets. Assuming a
uniform noise variance An? over the visual field, the
optimal weight sets (7) and (8) of the linear range model
can be expressed as

M:Ns1n<§)2§ (14)
1+ (57
T:Nsin(@i/b,» (15)
1+4

with the parameter { = AD*T?/An’D{. For the plateau
range model, this leads to the parameterized weight sets

: (16)
' 1+
20 A2
®;/D:
WiT:Nmn’/—én:vT (17)
L+ 05

where vg = T%/(D3(RI?)) and vy = r,/(TI?) [cf. (A19)
and (A20) in the Appendix]. The (p?) are computed from



1,000 direction samples generated by the von Mises
distribution.

The resulting weight sets (14) and (15) for the linear
range model depend only on four free parameters: the
degree of dorsoventral asymmetry f [cf. (12)], {, and the
direction of the filter axis (with azimuth « and elevation
€). The weight sets (16) and (17) of the plateau model
include an additional fifth parameter v. These weight sets
were fitted to the LMSs measured by Krapp et al. (1998)
using their mean values and standard deviations. The
fitting was done by evaluating the x> value for a given
parameter set using the standard deviation of the mea-
surements. The parameter values were varied until a
global minimum was reached. The step size of the pa-
rameters was 0.1 for 5, {, and v, and 1° for the angular
coordinates of the sensor axis. From the 52 LMS mea-
surement positions, the one at —15° elevation and 180°
azimuth had to be discarded since the fly’s body oc-
cluded part of the visual stimulus. Goodness of fit was
tested using a y> distribution with 47 df for the linear
range model, and 46 for the plateau range model. The-
oretical weight distributions with a significance p < 0.05
were rejected.

5 Results

Provided that the world model captures some essential
properties of the fly’s environment, the procedure
described above allows us to test two hypotheses: are
the VS neurons matched filters optimized (1) for the
linear range, or (2) for the plateau range of the EMDs?
The results with p > 0.0001 are summarized in Table 1.

The first hypothesis could be rejected for all VS
neurons with high probability. None of the weight sets
computed according to (14) produced a fit with
p > 0.004 (VS4) to the measured data. We conclude
from this result that the linear range model cannot ex-
plain the observed LMSs of the VS neurons.

2.5 T T T T T T T

LMS

0 30 60 90 120 150 180
azimuth [deg]
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Table 1. Results of the fitting procedure with p = 0.0001 for single
VS neurons. o and ¢ denote azimuth and elevation of the sensor
axis, o and €’ the axes estimated by Krapp et al. (1998). The table
shows results for the plateau range model (16) and the linear range
model (14). All weight sets with p < 0.05 are rejected

’ ’

14 v o € o €

r P B

(16)
VS4 308 096 04 09 0.1 26° -4° 29° =7°
VS5 521 025 05 23 05 14°  2° 10° -2°
VS6 57.6 0.12 0.5 23 02 5° —4° 0°  3°
VS8 753 0.004 05 18 0.6 -37° -9° -51° 9°
VS9 86.6 0.0003 0.5 14 04 -40° -1° -60° 12°

(14)
VsS4 767 0.004 040 09 - 21° -5°  29° -7°
VS8 853 0.0003 0.50 1.1 - -37° -8 -51° 9°

The second hypothesis cannot be rejected for VS4,
VS5, and VS6. The plateau range model accurately
predicts the LMSs of these neurons, as the low y? values
indicate. This suggests that VS4-VS6 can be understood
as matched filters that are optimally designed for de-
tecting self-motion-induced flow patterns in the plateau
range of the EMDs.

The second hypothesis does not hold for VS1-VS3
and VS7-VS10. This means that the plateau range
model cannot predict the LMSs of these neurons cor-
rectly.

Interestingly, the degree of dorsoventral asymmetry
f is almost the same in all results, which makes this
feature of the internal world model highly reproducible.
The differences in { and v arise mainly because of the
ad hoc chosen von Mises distribution, which affects
(p?). Although we did not fit the parameters x; and x;
to the measurements, variations in these parameters did
not lead to qualitative changes in the computed weight
distributions. The obtained filter axes of VS4-VS6
correspond closely to those estimated by Krapp
et al. (1998).

2.5 T T T T r

LMS

0. -

-75 -45 -15 15 45 75
elevation [deg]

Fig. 6. a Horizontal section at —15° elevation through measured LMSs (circles) and weights predicted by the plateau range model (dashed line)
for VS6. b Vertical section at 45° azimuth through measured (circles) and predicted data (dashed line) for VS6
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Fig. 7. a Averaged response field of VS4 from five animals. b
Theoretical response field obtained by fitting (16). ¢ Averaged
response field of VS10 from five animals. This neuron responds only
weakly to motion in the frontal area. d Theoretical response field

A closer look at the measured sensitivities shows that
the main difference between the tested alternative weight
sets lies in the different angular dependences: equa-
tion (16) predicts a sin’® dependence, whereas (14)
predicts a sin ® dependence. The horizontal section at
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obtained by fitting (16). e Measured response field of a single Hx
neuron. f Theoretical response field obtained from (17) by assuming a
constant standard deviation (notation as in Fig. 1)

—15° (Fig. 6a) for VS6 illustrates that the measured
LMSs, LMbs follow very closely a sin? ® curve so that a
sin ® curve would lead to large deviations.

The qualitative features of the LMS distribution of
VS4 (Fig. 7a,b), VS5, and VS6 can be interpreted from



(16): the ventral retinal regions are less weighted because
of the less predictable influence of the translatory flow
field. This is due to the shorter distances in the ventral
part of the distance model that increase Az in (11). Flow
regions around the rotation axis receive less weight as
well, since the rotatory flow signal is small relative to the
sensor noise and Ar. While the horizontal LMS dis-
tribution is reproduced very closely (Fig. 6a), most of
the discrepancies between theory and data occur at
the highest and lowest elevations (cf. Fig. 6b). As our
theoretical world model is very crude, this could
probably be corrected by using a more sophisticated
world model. Figure 7 demonstrates also that the LPDs
of the neurons agree well with the predicted directions
from (3) and (4), but the statistical significance remains
to be tested.

Why does the plateau range model not reproduce the
LMSs of the other VS neurons? Figure 7¢ shows that
VS10 (and also VS7-VS9) is only weakly sensitive to
motion in the frontal visual field whereas the plateau
range model predicts a high frontal sensitivity
(cf. Fig. 7d). This property cannot be explained by an
optimality criterion based on self-motion estimation and
might be due to anatomical or physiological factors.
Figure 7 suggests that the plateau range model could
reproduce the LMSs in the motion-sensitive areas of
their visual field, but, as we have no clear description of
their extent, we cannot corroborate this claim by a sta-
tistical analysis. Similar considerations apply to VSI-
VS3, which are almost insensitive to motion in most of
the caudal hemisphere.

To test our predictions for translatory filters, we
compared the translatory weight sets (15) and (17) to the
measured LMSs of the Hx neuron (Fig. 7c, Krapp et al.
1998). Since we presently have only one data set of the
Hx neuron, we could not apply the same statistical
procedure. As a plausibility test, we assumed a constant
measurement error over the visual field and used again
the same fitting procedure for (15) and (17). Both weight
distributions succeeded in reproducing the elevational
dependence, but the azimuthal weight distribution is
again better described by the sin® f dependence in (17).
The asymmetry of the receptive field organization is
reversed with respect to the filters for rotatory flow
fields, so that ventral retinal regions receive more weight
than dorsal regions (Fig. 7e,f). This can be interpreted
from our theory: in the ventral part of the visual field,
the variability of the translatory flow is higher, but at the
same time the signal-to-noise ratio is better because of
the larger flow vectors. For the distance statistics we
consider here, the better signal-to-noise ratio is more
important, so that the ventral regions receive higher
weights.

6 Discussion

6.1 Summary

The local motion sensitivities of VS4, VS5, and VS6 can be
accurately predicted by a matched filter model that
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minimizes the variance of the filter output caused by
noise and the distance-dependent variability of the
translatory flow. This requirement explains the observed
dorsoventral asymmetry of the VS neurons: Since the
average distance in the ventral visual field is smaller, the
relative distance variability is higher, which in turn leads
to a higher variability of the translatory flow field. Thus,
the ventral regions contribute more to the variance of the
filter output, which results in a smaller weight. Although
not statistically shown, the theory can also reproduce the
reversal of the asymmetry in the translatory Hx neuron.
Here, the higher signal-to-noise ratio of the ventral flow
outweighs the detrimental effect of its variability so that
the ventral regions receive a higher weight.

The matched filter takes as input local motion de-
tectors operating in the plateau range. The output of
such a filter indicates the presence and the rotation di-
rection of the flow field about its filter axis but is not
proportional to the rotation rate. An alternative model
operating in the linear range of the motion detectors is
capable of directly encoding the rotation rate but could
be rejected with high probability. We conclude that the
VS neurons are not optimized for directly encoding ro-
tation rates in their output. The results on VS4-6 suggest
that they rather act as robust detectors for rotatory flow
fields about a set of selected axes.

The matched filter model failed to explain the LMS
distribution of VS1-VS3 and of VS7-VS10. The recep-
tive fields of these neurons are very close to the model in
some regions, but in other regions they show only weak
LMSs where the model predicts a high motion sensi-
tivity. This indicates that further, possibly anatomical or
developmental, constraints are at work in their design.

6.2 The functional role of VS neurons

In Sect. 3.2, we noted that a matched filter alone cannot
extract the true self-motion component along its filter
axis since it also responds to self-motion along other
axes. The VS neurons, for instance, not only respond to
horizontal rotation but also — to a lesser degree — to lift
translations (Krapp et al. 1998). Moreover, the wide-
field integration averages over all local distance depen-
dences of the translatory flow thereby neglecting the
information contained in local distance variations
(motion parallax). Most approaches in the computer
vision literature to self-motion estimation (see overviews
in Heeger and Jepson 1992; Lappe et al. 1999) either
explicitly (e.g. Rieger and Lawton 1985; Hildreth 1992)
or implicitly (e.g. Heeger and Jepson 1992; Lappe and
Rauschecker 1993) use motion parallax to decompose
the flow field into its rotational and translational
components. In contrast to these approaches, our
matched filters are explicitly designed to suppress the
effects of motion parallax to maintain a consistent
output. This, however, can only be achieved as long as
the distance statistics do not deviate too much from
those used for the filter design. An approach solely based
on wide-field integration therefore has to be confined to
a certain domain: it provides no general solution to the
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self-motion estimation problem. Our results on VS4—
VS6 suggest a further restriction: the VS neurons seem
to be optimized for operating in the plateau range of the
EMDs. In this range, the VS neurons can only encode
the sign of the rotatory flow about their axis, not its
apparent rotation rate.

What is the functional role of the VS neurons, after
all these restrictions? Robot experiments have shown
that the linear range model can be used to estimate self-
motion in indoor environments by a suitable linear
combination of matched filter outputs (Franz et al.
1999). A similar idea might apply to the plateau range
model: a later integration stage could interpolate be-
tween the responses of the single VS neurons that to-
gether would form a population code for the current
rotation axis and direction. This information should be
sufficient for flight or gaze control since the animal, in a
normal behavioural situation, operates under closed-
loop conditions (Warzecha and Egelhaaf 1998). A suit-
able combination with other matched filters could also
lead to signals that are more specific to one type of self-
motion: for instance, the inhibitory interaction of a hy-
pothetical translatory “lift” neuron could be used to
correct the responses of the VS neurons to lift transla-
tions. Finally, an integration stage could also explain the
“gaps” in the receptive fields of the VS1-VS3 and VS7-
VS10. If some VS neurons responded together as an
ensemble, they could mutually fill in their “gaps”. For
example, VS10 shows almost no motion sensitivity in the
frontal visual field (Fig. 7c) whereas VS3 responds
strongly in this area (Krapp et al. 1998). Together, they
could form an optimal matched filter at a later integra-
tion stage if the signal of one of them was reversed.

Thus, a complete characterization of the functional
role of the VS neurons requires further research: first,
the validity and the scope of the plateau range model for
self-motion estimation needs to be established in simu-
lations or robot experiments. Second, anatomical and
physiological investigations have to clarify how the
output of these neurons is processed and integrated at
later stages.

6.3 Model assumptions and approximations

EMD model. Our matched filter model considers only
the directional dependence and part of the velocity
characteristic of the Reichardt detector. It is well known
that the output of biological EMDs depends on the
contrast and the contrast frequency of the input pattern,
that is, the ratio of the velocity over the spatial
frequency of the pattern (Reichardt 1987). This does
not necessarily reduce the performance of a system
based on biological EMDs, though. Warzecha and
Egelhaaf (1998) showed recently that the performance
of the blowfly in optomotor tasks comes close to that of
a hypothetical observer using perfect velocity sensors.
From the modelling point of view, inhomogeneous
distributions of contrast and spatial frequencies in the
animal’s environment could be included in the optimi-
zation. For instance, a smaller weight could be assigned

to viewing directions where low contrasts are to be ex-
pected since this leads to less reliable motion estimates.
A systematic investigation of natural environments
could help to clarify whether animals utilize possible
anisotropies of the contrast distribution of their habitat.

For mathematical convenience, we had to limit our
study to the linear and the plateau range of the EMD
steady state response. We did not take into account
dynamical effects such as transients in the EMD output
or adaptation processes. Although it is not clear how
dynamical factors affect the filter performance, the
model includes two properties that might help to keep
the filter output stable: first, wide-field spatial integra-
tion reduces the influence of transient EMD output
(Borst and Egelhaaf 1993); second, the matched filters
are designed to minimize the variance of the filter output
between trials.

Distance model. Some of the remaining discrepancies
between theory and data can be attributed to the crude
distance model. Although more sophisticated world
models might lead to a better correspondence, they do
not necessarily provide more insights, as the asymmetry
of our simple distance model already suffices to repro-
duce the dorsoventral asymmetry of the measured
sensitivities. A more realistic world model certainly
would have to be modified, for example, by permitting a
variable distance deviation over the visual field, or by
including azimuthal variations of the average distances.
It is quite probable, for instance, that the average frontal
distances are larger than the lateral distances, since the
insect, if not landing, tends to fly in the open space
between obstacles.

While similar distance models might apply to other
flying animals, the distance distribution should look
different in walking animals. In contrast to that of flying
animals, the distance of the visual system to the ground
remains relatively constant during locomotion so that
the distance variability is small in the ventral visual
field. We expect therefore that the dorsoventral asym-
metry of rotatory neurons is less pronounced in walking
animals, but it should be still observable in the special
case of an essentially flat environment. A hint in that
direction could be the fact that some crab species
inhabiting mud flats respond more strongly to optoki-
netic stimulation near and above the horizon (Nalbach
and Nalbach 1987). As with flies, the decisive factor
could be the large distances near and above the horizon
that keep the translatory flow component too small to
interfere.

Flight statistics. We did not fit the von Mises distribu-
tion to the measured data. This primarily affects the
consistency of the parameters { and v between different
neurons. An appropriate choice of the translation
statistics might lead to more consistent values among
the data sets, but this would require a concise statistical
description of the blowfly’s flight trajectories, which is
currently not available in the literature. However, the
exact form of the distribution turned out to be
unimportant for the results as long as it was unimodal



and sufficiently broad. Qualitative differences arise when
the translation distribution becomes sharply peaked as,
for instance, in an animal that translates only in the
forward direction. In this case, the translatory compo-
nent almost vanishes in a rotatory filter tuned to roll
movements (such as VS6). As a consequence, distance-
dependent asymmetries should be hardly observable in
such a filter.

6.4 Relation to other matched filter approaches

Dahmen et al. (1997) derived a matched filter as a
special case of the iterative algorithm by Koenderink
and van Doorn (1987). Similar to many self-motion
estimation algorithms (starting with Bruss and Horn in
1983) including our approach, this algorithm is derived
from a least-square principle. Instead of minimizing the
variance of the filter output, Koenderink and van Doorn
minimize the difference of the measured flow field to a
flow field derived from the self-motion estimates. In
contrast to ours, their approach assumes no prior
knowledge about distance statistics.

Assuming a spherical environment, Dahmen et al.
(1997) showed that the first iteration of the algorithm of
Koenderink and van Doorn can be implemented by a
matched filter similar to our linear range model. Dah-
men et al. tested their filter using simulated noisy flow as
input. They report excellent performance in spherical
environments, in many cases close to that of the iterative
algorithm. However, the matched filter of Dahmen et al.
was derived for a homogenecous distance distribution
and thus cannot explain the dorsoventral asymmetry of
the VS neurons.

The weights of their matched filter can also be derived
from the linear range models (7) and (8) by assuming
constant average distance, distance deviation, and noise
over the visual field. This suggests that the linear range
model can be understood as an extension of the ap-
proach of Koenderink and van Doorn (1987) to cases
where prior knowledge about distance statistics is
available. As a consequence, our results on the linear
range model apply also to the matched filter model of
Dahmen et al. (1997). In particular, their model pro-
duces the same angular dependence as the linear range
model that could be rejected for the VS neurons with
high probability.

Perrone (1992) presented a matched filter model of
self-motion estimation in the primate visual cortex. In
his approach, the motion field was sampled at each
image position by several sensors tuned to different ve-
locity vectors. Perrone’s matched filters use only those
velocity signals as input that are consistent with a given
set of self-motion parameters and distances. Instead of
weighting the sensor according to an optimality criteri-
on, his filter chooses the most active velocity sensor at
each image position. These properties make Perrone’s
model less suitable for being applied to the VS neurons
since no evidence of a parallel system of EMDs with
different velocity tuning has been found in the fly. Since
the self-motion estimate is derived from the most active
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filter using a winner-takes-all strategy, every combina-
tion of self-motion parameters and distances needs its
own matched filter. The number of filters can be some-
what reduced by constructing only filters for the most
probable parameter sets, for example, by considering
only fixating eye movements (Perrone and Stone 1994).
But still this approach would require a number of mat-
ched filters well beyond the 60 tangential neurons of the
fly “to avoid” that self-motion directions between the
filter axes “‘are” misrepresented.

6.5 Conclusion

In the present study, we compared the receptive field
properties of the VS neurons to a matched filter model.
The comparison showed that some of the VS neurons
are optimized for detecting the sign of rotatory flow
fields about selected axes, but none of them for directly
encoding rotation speeds. Our results indicate that a
further understanding of the functional role of the
tangential neurons requires research efforts at three
different levels: first, theoretical studies on how the
plateau model can be used to estimate self-motion,
second, an investigation on how the output of the
tangential neurons is integrated at later processing
stages, and third, a characterization of the fly’s environ-
ment in terms of the distance statistics, flight patterns,
and the distribution of visual structures.
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Appendix. Derivation of the optimal weight sets
A.1 Variance of the filter output

The distance variability affects only the translatory flow
field. From (2) and (5), the translatory part of the flow
projection is given by

(T = (T - d))d;) - w; = —p;T; (A1)

with 7; =T -u;. The same self-motion in a different
environment results in a local flow projection differing
from the previous one by

AT + (A2)
because of the local noise signal n; and the different
nearness u; + Ay, at d;.

In the linear range model, this leads to the variance of
the filter output Ae? [cf. (5) and (A2)]

2
Ae® = < <Z wi(AwTi + nz)) >

(A3)
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where the () denote the expectation over all trials. As n;
and y; are assumed to be statistically independent, this
expression simplifies to

Ae® =) WAL + Any) (A4)

with A#? being the variance of the translatory flow
projection

AP = AR(T).

1

(AS5)

Analogously to the linear range model, the variance of
the filter output in the plateau range model is given by

[cf. (6) and (A2)]

AL + A
A =S w? 2 AL+ A (A6)
(e p))
For our model in Sect. 4, we approximate u; as
1 1 D; — (D;)
b= = (A7
Di <Dl> <D,‘>2 )

with the distance D;, so that the variance of the
translatory flow becomes

(T

;= W (A8)

A.2 Optimal weights

The optimal weight set is chosen such that the variance
Ae? of the filter signal is minimized. To find a unique
solution, we have to impose further constraints. For the
linear range model, we stipulate that the average filter
signal should be equal to the self-motion component
along its filter axis. In the case of a rotatory filter, the
filter output due to rotation component R/ (w1th

absolute value ||R!|| = Rll) along the filter axis is given
by [cf. (2)]

Z W,‘di X RH W = RH ZW,‘ sin ®i . (Ag)
This leads to the condition

R “wisin®; =R, (A10)
which is equivalent to

> wisin®; =1 . (A11)

The optimal weight set can now be derived from the
Euler-Lagrange equation

(Ae - <Zw,sm® —1)) =0,

(A12)

with a Lagrange multiplier A. This finally leads to the
analytic expression for the optimal weight set w® of a
rotatory filter

sin @,’

W= Np——— 1 Al3
! RAt,-z—i-Ani2 ( )

with a suitable normalization factor Np such that
EiWiSiI’I@,‘ =1.

In an analogous procedure, we obtain the condition
for a translatory filter

S wilu)sin®; =1, (A14)

which leads to the optimal weight set w! for translation
filters

(A15)

For the plateau range model, we impose the condition
that the filter output is 1 for some suitably chosen
reference rotation or translation

> owi= (A16)
[w;p;|>P
that results via the Euler-Lagrange equation
0 2
Ae” — 2 w; — 1 =0, (A17)
Wi
[u;-p;|>P
in the optimal weight set
N{(ui-p)’)
— i AlS8
YA+ A2 (A1)

with N chosen such that (A16) is fulfilled.
In the case of a rotatory filter, the average squared

flow projection during rotation about the filter axis is

given by [cf.(A9) and (A1)]

((u; - Pi)2> = <RH2> sin” ©;

+ T

since R and T are assumed to be statistically indepen-
dent. Similarly, we obtain for a translatory filter

(A19)

((u;-p,)%) = (i)(T1?) sin” O,
+{((d; x R-w)?) . (A20)
Setting
, {(d; x R-w;)?
ry = <( <T7H2> ) > (A21)
2
£ = —<ﬂ<’lz|<2T>’ ) (A22)

and substituting these expressions in (A18) yields the
weight sets of (9) and (10).
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