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Abstract—The detection of differences between images of a

printed reference and a reprinted wood decor often requires an

initial image registration step. Depending on the digitalization

method, the reprint will be displaced and rotated with respect to

the reference. The aim of registration is to match the images as

precisely as possible. In our approach, images are first matched

globally by extracting feature points from both images and

finding corresponding point pairs using the RANSAC algorithm.

From these correspondences, we compute a global projective

transformation between both images. In order to get a pixel-

wise registration, we train a learning machine on the point

correspondences found by RANSAC. The learning algorithm (in

our case Gaussian process regression) is used to nonlinearly

interpolate between the feature points which results in a high

precision mage registration method on wood decors.

I. INTRODUCTION

Today a large proportion of all furniture or floors with a
wood-like appearance are made of artificially printed wood
decors instead of actual wood. Camera-based inspection is
used to ensure that the printed decors do not differ from an
initial reference. Based on the production environments, line
scan cameras are often used for the digitalization of the printed
decors. Many defect detection algorithms require an optimal
registration of the print and the reference before comparison.
This paper describes a registration method for images of wood
decors with an accuracy of at least one pixel.

There are several difficulties for this registration process
which partly result from the specific image structure of the
wood decors and from the setup of the line scan camera. One
problem is the repetitive structure of wood. This characteristic
leads to a typical correspondence problem for this use case, i.e.
image regions at different locations are erroneously matched
due to their high visual similarity. Another characteristic of
wood is that its visual structure is often oblong and thin—
there are many edges but few corners to extract. Edges alone
can only be used to locally match image regions in the
direction perpendicular to the edge. Along the edge, no unique
correspondence between image regions can be established.
This is the aperture problem in optic flow processing [1].

Line scan cameras raise more difficulties. Either the line
scan camera moves over the image that is digitalized or the
printed decor moves on a transport system under the fixed
line scan camera. Variations in the speed of movement cause
partial stretching or compression of the image in both setups.
The difficulty is that this type of image transformation will be
different all over the image so that this has to be corrected

locally. Similar local distortions arise also because of lens
distortions in the line camera.

This paper addresses the problem of pixel-wise image regis-
tration on wood decors based on a hybrid registration method.
The registration method is built in five steps. The first four
steps are a part of the global image registration solution which
includes the extraction of feature patches, the correlation of
these patches, the calculation of model parameters and the
validation of the quality. The global registration step can only
correct for perspective transformations (including translations
and rotations). The fifth step of the registration method can
be considered as a local registration as local parts of the
image are transformed differently to account for movement
variations and lens distortion. This step is done with the help
of a machine learning method, Gaussian process regression,
which leads to a dense, pixel-wise correspondence between
both images. This application of machine learning to image
registration constitutes the novelty of this paper as this – to
our knowledge – has not been done in the literature before.

The paper is organized as follows: we briefly discuss previ-
ous work in image registration on wood decors in Section II. In
Section III, we present an overview of the global registration
and describe the approach on local registration using Gaussian
processes. A detailed description and experimental evaluation
of each registration step are presented in Section VI. The paper
concludes with a discussion in Section V.

II. PREVIOUS WORK

Image registration strategies are divided into two main
classes, both of which deal with different problems. The first
class is global registration: an entire image is registered at once
by finding its transformation parameters such as translation,
rotation, scaling and shearing. In this case, every pixel of an
image is transformed in the same way in order to match the
other image [2]. The second class of registration problems is
the registration of local image regions. In order to register
these kinds of images, different transformations for different
parts of the images are needed. Within these two classes,
there are several subclasses which treat different registration
problems [3]. Whereas there is a large literature on image
registration in general, the specific problems arising in the
registration of wood decors have not been addressed in detail.

In previous work, we addressed the problem of local image
registration on wood decors using the classical Lucas-Kanade
algorithm for optical flow [4]. This algorithm is widely used
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to detect movements between pictures or within videos. The
application of an optical flow algorithm to the registration pro-
cess was also proposed by J.-P. Thirion [5]. If an optical flow
algorithm is applied to two images which are not registered,
it detects the transformations as independent movements of
parts of the image. When applied to wood decors, the Lucas-
Kanade algorithm ran into problems as the contrast of the
wood decor image is not strong enough for the algorithm
to detect the optical flow in all parts of the image. In these
areas, no transformation could be predicted. Additionally, due
to linear structure of the wood grain, the aperture problem
affects the vast majority of all image regions so that in these
regions only the flow component normal to the edges can
be calculated. In order to solve these problems, we applied
a variant of the famous Horn and Schunck algorithm [6] in
which the diffusion of the flow vectors is weighted depend-
ing on a contrast-dependent confidence measure. While this
method was capable of capturing the local variations caused by
movement variations and lens distortion, it performed poorly
on estimating the global transformation between the images
due to the systematic underestimation of image displacements
caused by propagating local displacement vectors affected by
the aperture problem.

III. REGISTRATION APPROACH

A. Feature selection
The geometric properties of the images are represented by

extracted features. Two feature algorithms were examined and
compared in this work. Features should have several qualities:
(1) they need a strong invariance against small transformations;
(2) they have to be localizable which means that the same
features are found in both images and that it is possible to
match these features; (3) it must be guaranteed that enough
features can be found. In an ideal case, these features are
evenly spread across the image.

The first feature algorithm examined was the Harris corner
detector [7]. The advantage of the Harris corner detector is
that it is easy to implement, efficient and that it finds corners
independently of their orientation. A recursive Gaussian-like
low pass filter was used as pre-smoothing method. For the
calculation we used a four point central difference derivative
operator. From these filters, the Harris detector computes a
local ”cornerness” function fo each pixel. A point is considered
as a feature point when its ”cornerness” exceeds a certain
threshold. The threshold has to be adjusted according the
image and the number of feature points needed. In order to
achieve this, an algorithm was developed which is shown in
Fig. 1. To obtain a faster convergence, the desired count of
feature points is given in terms of an upper and a lower bound.
The step width is only adjusted if the number of features is
outside of these bounds.

Harris features have the disadvantage that they are only
computed at one image scale and that the corners are found
only with a maximum precision of one pixel. They also tend
to be very sparsely distributed in the image. We therefore
tested a second, scale invariant feature detector: the scale

Fig. 1. Algorithm for determining the detection threshold of a feature. n is
the number of iterations, the black rhombus symbolizes a decision based on
counting the number of the extracted features.

invariant Laplace operator [8], referred to as blob features.
The blob operator creates a Gaussian scale space, which is
subsampled by a factor of two after every octave. Subsequently
a Laplacian scale space is formed by subtracting adjacent
layers of the Gaussian scale space. Blob-like image structures
are identified as maxima or minima in the Laplacian scale
space. The position of blob features can be calculated at sub-
pixel accuracy. The underlying theory of the scale space and
the blob detector can be found in T. Lindeberg, “Feature
detection with automatic scale selection” [8].

B. Global registration
For the global registration we used the RANSAC (Random

Sample Consensus) algorithm [9] based on the perspective
transformation model [10]. The perspective transformation
of an image is described by eight parameters ai, bi with
i = 1, 2, 3 and cj with j = 1, 2. That is why at least
four corresponding control points in the reference and the
transformed image are needed. For each of the point pairs
(with index i), the image coordinates (xi, yi) in the reference
are connected to (x0

i, y
0
i) in the print by the equations

x

0
ia1 + y

0
ia2 + a3 � xix

0
ic1 � xiy

0
ic2 = xi (1)

x

0
ib1 + y

0
ib2 + b3 � yix

0
ic1 � yiy

0
ic2 = yi. (2)

These equations are linear in the unknown transformation
parameters, so they can be solved by a standard least squares
approach. We used the Moore-Penrose pseudoinverse for this
purpose. However, the solution requires establishing point
correspondences between both images which is the objective
of RANSAC. Here, one chooses a large number of randomly
chosen subsets of feature points in both images as candi-
date correspondences and tests the performance of the found
transformation on other subsets of feature points. The best
performing transformation is chosen to globally register the
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images. This procedure converges very slow for the large
number of features we detect in the images due to its stochastic
nature. We therefore replace the random selection of subsets
by a more directed form of selection: we extract a local image
region around all feature points and find the most similar
image region around a feature in the other image by searching
for the candidate with the highest Pearson cross-correlation
coefficient. All corresponding point pairs found in this way
were ranked according to their cross-correlation. We restricted
RANSAC to select its subsets only from the group of the
highest ranking corresponding point pairs. This crucial step
led to a considerable runtime improvement which made the
proposed registration procedure feasible at all.

C. Local registration
After applying the global transformation to register both

images we applied a second, local registration based on
machine learning. The point correspondences between features
were used as training data for a nonlinear regression technique.
The two-dimensional image positions of the features in the
transformed reprint were used as inputs and the x- or y-
position of the correspondences in the reference were used as
outputs. The result of the training is a dense mapping from 2d
positions in the reprint to 2d positions in the reference which
can visualized as a vector field (see Fig. 5). In other words, the
machine learning interpolates the displacement field between
both images at all pixels in the images, not only at the feature
points and thus leads to a pixel-wise registration.

We choose Gaussian processes as our regression technique
because they adapt well to non-linear functions with added
noise, as described by Rasmussen and Williams [11]. This is
made possible by the ability to use a covariance function in
function-space. In addition, Gaussian processes include only a
small number of hyperparameters that can be optimized using
gradient descent.

Our implementation of the Gaussian process regression is
based on kernel functions [12]. Kernel functions are used
to calculate covariance measures in high dimensional spaces
without actually transforming the input data. The choice of
the kernel function influences the regression function and how
well it fits the sample data. In our work, the shape of the map-
ping was unknown. We tested the Gaussian kernel which can
model smooth displacement fields of arbitrary shape and the
inhomogeneous polynomial kernel which restricts the shape of
the displacement fields to follow two-dimensional polynomial
curves. Details on the training of Gaussian processes can be
found in the book by Rasmussen and Williams [11]. To find the
hyperparameters of the Gaussian process, we used a gradient
descent scheme on a smoothed form of leave-one-out error on
the training set (Geissers surrogate predictive log probability)
[11].

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed pixel-wise
hybrid image registration approach we applied the method on
different test sets with known and unknown transformations. In

order to get representative results the cross validation method
was used. For each test set the feature points were divided into
equal random subsets and all but one of them were used for
the calculation of the solution. This solution was afterwards
applied to the unused subset and the error rate of the result
was calculated. The error was measured in terms of the average
absolute value of pixel deviation between the transformed and
true feature point in the test set.

The test sets were divided into different categories. The first
test category was artificially generated by applying known
transformations. The town hall of the city of Tübingen and
an artificially created wood decor served as test images.
The contrast to the natural scene is used as an example to
demonstrate the specific characteristics of wood decors. The
second test category was based on scans of wood decors.
Multiple scans of the same decor were made with different
scan positions using a line scan camera.

A. Feature extraction
Since feature extraction is important for both the global

and the local registration, we first examined the quality of the
feature extractors. The term quality is defined as a number
of properties of the feature extraction algorithm. The most
important property is that the algorithm finds the same features
in both images. Thus, it must be resistant to the noise of
the camera and the transformations that were applied to the
images. The number of features that can be extracted from the
image is also of importance. At least four matched features
were necessary for the calculation of the perspective transfor-
mation. For increasing robustness against imprecise features,
ten feature points were used to calculate the perspective
transformation by using the pseudo inverse. Additionally, five
more features were needed to verify the precision of the
calculated parameters. 1/6 of the features could not be used
as they were needed for the cross validation of the whole
system. Alltogether, at least about 20 correct matched features
were needed for our solution. The precision of the features is
a further measure of quality. To achieve the objective of a
pixel-wise registration of images, the features need to have a
precision of at least one pixel.

The first test was conducted to compare the feature ex-
traction on natural scenes and wood decors. Harris and blob
features were extracted from the test images and matched
manually to ensure that no mismatch was produced by the
correlation algorithm (see Fig. 2). 12 out of 15 features were
extracted by the blob algorithm from both images which
results in a retrieval ratio of 80%. The Harris algorithm
extracted 29 out of 63 from both images, resulting in a retrieval
ratio of a about 46%.

In the second image (artificial wood decor, see Fig. 3),
the blob algorithm extracted 10 out of 20 features from both
images (50% retrieval rate), the Harris algorithm 12 out of
17 features (70% retrieval rate). Obviously, the quality of
the feature detector strongly depends on the texture of the
images. Blob features are optimized for images with natural
scenes such as landscapes or buildings which is shown by
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(a)

(b)

Fig. 2. The left images are the originals; in the right images, translation
and rotation are applied to the image. The features marked in green can be
retrieved in the second image. The red features could only be found in the
first image. (a) Correlated blob-features of the town hall of Tübingen. (b)
Correlated Harris-features of the town hall of Tübingen.

TABLE I
RESULTS OF THE FEATURE ALGORITHMS ON SCANNED WOOD DECOR.

Inliers / outliers Precision

Harris, wood1, T1 2.76 0.38
Blob, wood1, T1 1.22 0.18

Harris, wood1, T2 2.15 0.40
Blob, wood1, T2 0.97 0.20

Harris, wood2, T1 1.49 0.28
Blob, wood2, T1 1.06 0.18

their higher retrieval rate for this case, whereas the Harris
extractor seems to be more suitable for wood decors. We also
measured the average cross-correlation coefficient for both
feature algorithms which was much higher for blob features
as compared to the Harris features in both images.

In a second experiment, a full registration and a calculation
of the ratio of outliers (incorrect correspondences) to inliers
was conducted on the scans of the wood decors where the
correct transformation is unknown. The results shown in
Table I can be seen as indicators of two aspects of quality: the
number of common features retrieved from both images and
the quality or distinctiveness of the image areas surrounding
the feature points.

Table I is structured as follows: the first column describes
the test setup: the algorithm, the decor and the transformation
used. The number after the transformation in wood1 indicates
two different positions on the same decor during the scanning.

(a)

(b)

Fig. 3. Same as Fig. 2 for the wood decor.

The second column contains the quotient of the number of
matches (correct matches with a distance smaller than one
pixel) divided by the number of mismatched features. As can
be seen, the Harris detector always found a larger number of
correctly matched features than the blob detector. The third
column shows the mean distance of all inliers. This value
should be low in order to obtain a high precision. The values of
the third column show that the blob features are more precise
than the Harris features with a relative improvement of at
least 100%. The last aspect of quality is that the algorithm
has to be able to extract a sufficient number of features from
the image. As we said in the beginning of this section, at
least 20 correctly matched features are needed for finding a
reliable solution. To guarantee that this can be achieved we
found in our experiments that at least 150 feature points have
to be extracted from both images. To control the number of
features, the threshold for the minimum contrast of a feature
was adjusted according to the algorithm described in Fig. 1.

B. Image registration using Gaussian processes

Since this was the first time that Gaussian processes are
applied to image registration we first tested whether this
method is capable of estimating a known displacement field
of a complex shape. Due to its clear horizontal and vertical
edges the image of the town hall of Tübingen was chosen for
this test. The town hall image was warped two times on a
grid, shown in Fig. 4a. No global transformation was applied.
The calculation of the Gaussian process response was done by

BW-CAR Symposium on Information and Communication Systems (SInCom) 2015

27



TABLE II
PRECISION OF THE GAUSSIAN PROCESSES CORRECTION WITH A

GAUSSIAN KERNEL.

1

without GP

1

with GP

2

F-score

Wood1, T1 0.1869 0.1891 3.17

Wood1, T2 0.2189 0.1006 1.17

Wood2, T1 0.1949 0.1210 3.00
1 Average precision in 5-fold cross-validation.
2 Number of improved features divided by degraded features.

TABLE III
PRECISION OF THE GAUSSIAN PROCESS CORRECTION WITH AN

INHOMOGENEOUS POLYNOMIAL KERNEL.

1

without GP

1

with GP

2

F-score

Wood1, T1 0.1755 0.1800 2.60

Wood1, T2 0.2259 0.2044 2.07

Wood2, T1 0.1700 0.1570 5.66
1 Average precision in 5-fold cross-validation.
2 Number of improved features divided by degraded features.

a set of correlated blob features as trainings points. For this
configuration a Gaussian kernel was used.

The result of the Gaussian process can be seen in Fig. 4b.
The first grid line of the warp in the Gaussian response is
where the arrows change the direction. The second warp was
done in the same direction as the first line. The resulting
arrows, which point in the same direction, follow the correct
transformation. The long arrows in the sky above the town hall
indicate an incorrectly learned transformation in this region.
As the contrast was very low in this area, no features for
the training the Gaussian process could be extracted. As a
consequence, the predicted displacements vary widly in this
area.

C. Hybrid image registration

These tests analyze the performance of the full hybrid image
registration method on the scanned wood decor images. First
the global registration method were applied to the feature
points. In the second step, these corrected features were used
to train the Gaussian processes. As a last step, the Gaussian
processes were used to predict a correction of unseen feature
points in a validation set.

Fig. 5a shows the prediction of the Gaussian processes. The
error we observed in the previous experiment in the sky region
of Fig. 4b also occurred in the corners in Fig. 5a, where
due to the low contrast along the image edges no feature
points could be detected which led to a high uncertainty in
the prediction of the Gaussian process. The zoomed box shows
an enlarged portion of the displacement field. The results for
the inhomogeneous polynomial kernel are shown in Fig. 5b.
The edge effect observed in the Gaussian kernel is much less
pronounced here.

A quantitative evaluation is shown in Table II and III,
indicating a significant improvement in accuracy for most
cases.

(a)

(b)

Fig. 4. Image (a): grid warp of the image. Image (b): response of the Gaussian
process.

V. DISCUSSION

We presented a method for pixel-wise hybrid image reg-
istration on wood decors. Our experiments have shown a
considerable improvement in the registration quality using
Gaussian processes for local registration.

The results of several experiments show that the blob
features achieve a higher accuracy. As a first step, the ex-
tracted blob features are correlated by using the Pearson
cross-correlation coefficient. To guarantee that the succeeding
calculations can be done without outliers, only the feature
pairs with the highest correlation are retained. These feature
pairs are used as input values for the calculation of the
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(a)

(b)

Fig. 5. (a) Prediction of a Gaussian process with a Gaussian kernel on
wood decor; (b) prediction of a Gaussian process with an inhomogeneous
polynomial kernel on wood decor. Note that the arrows of the displacement
field are not to scale, but enlarged for better visibility.

transformation parameters of the projective transformation
model using the RANSAC algorithm. To increase the precision
of the registration, the local registration is used to interpolate
between the already globally corrected feature pairs. Thus, the
features are used as training data for the Gaussian processes.

The results of the global and the local registration process
depend both on the precision and reliability of the extracted
features. The Harris algorithm has better values with regard
to the ratio of inliers to outliers, but worse values in terms of
the position precision of the features. Since the blob algorithm
still has enough inlier features, its higher precision turns out to
be more important since the registration should be as precise
as possible. For this reason, blob features appear more suitable
for registering wood decors according to our experiments. The
global registration appears to be very robust against imprecise
features or outliers since only the subset with the highest
confidence is used to calculate the transformation.

We found a significant improvement in precision due to
local registration with Gaussian processes for most cases.
In the first test case, however, it is possible that the global
registration found a very good solution for the transformation,
so that the correction by the Gaussian processes did not
improve the precision of the features. The second and third

tests results in table II show that the precision is improved
– more than 100% in the second test. It comes as a bit of a
surprise that the quotient of the second test is the lowest. This
might result from the fact that the features which are corrected
are rather imprecise after global registration and the correction
of those seems to have a strong impact on precision.

The results of the Gaussian kernel and the inhomogeneous
kernel are comparable. The predicted correction in both cases
is almost completely smooth. It seems that the predictions of
the Gaussian kernel vary to higher degree across local image
regions and that it is more susceptible to an inhomogeneous
feature distribution, whereas the inhomogeneous polynomial
kernel generally gives a very smooth prediction. The training
data tended to be similar but not equal. The high value of
the F-score in the last test in Table III shows that there was
still a systematic error in the global registration which the
inhomogeneous polynomial kernel corrected best.

As a consequence, in order to use a Gaussian process with
a Gaussian kernel, the features should be evenly distributed
across the image. There are several options to deal with the
areas with a low number of features. One option is to use the
predicted variance of the prediction of the Gaussian process
which can be calculated together with the predictions [11]. In a
low contrast area, the predicted variance would be quite high.
In these areas, a correction with a Gaussian process can be
disabled or the correction can be done by using the predictions
from neighbouring features.

The overall algorithm has not been optimized for real-time
application yet. Especially the training process is computa-
tionally expensive and needs to be improved to be useful in
production systems, e.g. in an inspection system for printed
wood decors.
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