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Abstract. Interest point detection in still images is a well-studied topic
in computer vision. In the spatiotemporal domain, however, it is still un-
clear which features indicate useful interest points. In this paper we ap-
proach the problem by learning a detector from examples: we record eye
movements of human subjects watching video sequences and train a neu-
ral network to predict which locations are likely to become eye movement
targets. We show that our detector outperforms current spatiotemporal
interest point architectures on a standard classification dataset.

1 Introduction

Interest point detection is a well-studied subject in the case of still images [14],
but the field of spatiotemporal detectors for video is fairly new. Currently, there
exist essentially two methods. The earlier one is a spatiotemporal version of the
Harris corner detector [4] proposed by Laptev [9]. This detector has been shown
to work well in action classification [15]. However, spatiotemporal corners are a
relatively rare event, resulting in overly sparse features and poor performance
for many real-world applications [1, 11]. To remedy this, the periodic detector
was introduced by Dollár [1]. It responds to simpler spatiotemporal patterns,
namely intensity changes in a certain frequency range. The authors show that
a simple recognition framework based on this detector outperforms the Harris-
based approach of [15].

As both of these approaches are relatively new, they are still far from being as
well-understood and empirically justified as their spatial counterparts. Clearly,
spatiotemporal corners and temporal flicker of a single frequency are only a
subset of all potentially interesting events in a video. Here, we present a new
approach to spatiotemproal interest point detection. Instead of designing new
interesting spatiotemporal features, we learn them from an already working, and
very effective interest point detector: the human visual system. Our basic idea
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is to record eye movement data from people watching video clips and train a
small neural network model to predict where people look. Used as an interest
point detector, the neural network is shown to outperform existing methods the
same dataset which has been used as a benchmark for both the Harris and the
Periodic detector.

The connection between eye movements and interest operators has been made
before by several authors. In [13], a biologically inspired attention model was
used for object recognition in images. The idea of designing an interest point
detector directly from eye movement data was recently proposed in [7, 8]. They
found that humans attend to center-surround patterns, similar to what is already
being used in some engineered detectors, e.g., [10]. However, their approach only
considers still images, and they do not report how their system performs on
typical computer vision tasks.

2 Eye Movements

The human visual system has its highest resolution at the center of gaze, or
fovea, which covers about one degree of visual angle. In fact, a disproportionately
large amount of cortical processing power is devoted to this small area. Towards
the periphery, both resolution and processing power decay quickly [17]. As a
consequence, a visual scene does not enter the visual system as a whole, but is
sampled by the eyes moving from one location to another. During eye movements,
the center of gaze is either held fixed over a constant image area during fixations,
follows moving objects during smooth pursuit, or changes rapidly during saccades
in which visual input is mostly turned off (saccadic suppression) [2]. The choice
of which image regions become saccade targets is not random, however. In part,
it can be explained by typical patterns in the local image structure occuring at
fixated image locations [12, 8]. Thus, the human eye movement mechanism bears
a resemblance to interest point detectors in that it uses local image statistics to
decide where to sample visual input for subsequent processing.

The aim of this work is to build an interest point detector that imitates this
effect. To this end, we recorded eye movement data from 22 human subjects. Each
subject viewed 100 short clips from the movie Manhattan (1979), presented on
a 19” monitor at 60cm distance at 24 frames per second with a resolution of
640×480 pixels. Each clip was 167 frames long (about seven seconds), and the
clips were sampled uniformly from the entire film (96 min) such that no cuts
occurred during a clip. Each subject viewed all 100 clips in random order and
with blanks of random duration in between. No color transform was applied, since
the movie is black and white. Eye movements were recorded using an Eyelink II
tracker, which, after careful calibration, yielded measurements of typically 0.3
degrees accuracy. Figure 1 shows three frames from an example clip together
with the recorded fixations from all 22 subjects.

In a post-processing step we discarded all fixations that occurred before frame
38 or after frame 148 to ensure a sufficient number of video frames both before
and after each fixation. Also, a set of background (negative) examples was gen-



3
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Fig. 1. Recorded eye movements on a sample video from our dataset (Section 2).
Fixations from all 22 users are shown as circles (there are no markers for subjects
which did not fixate, but moved their eyes during the respective frame).

erated by using the same fixation positions, but with the video data taken from
wrong, i.e., randomly chosen clips. This way of generating background examples
is common practice in eye movement analysis and prevents artifacts caused by
the non-uniform sampling prior due to the limitations of the viewing field and
head motion in the eye tracking setup [12]. Finally, we split the set of all fixations
and background points into a training set (18691 samples), and a test set (9345
samples). The training set was used for designing the learned detector (Section
3.3), the test set was used to compare the three interest point algorithms in
terms of how well they predict human fixations (Section 4.1).

3 Spatiotemporal Interest Point Detectors

3.1 The Spatiotemporal Harris Detector

The spatiotemporal Harris detector is due to Laptev [9], and extends the widely-
used Harris corner detector [4] to the time axis. Analogously to the spatial
case, the spatiotemporal Harris detector is based on the 3 × 3 second-moment
matrix M , which describes the local gradient distribution, spatially at scale σ
and temporally at scale τ . Interest points are computed as the local maxima of
the quantity

SH = det M − k(trace M)3, (1)

where k = 0.005 is an empirical constant [9], corresponding to the well-known
magic number 0.04 in the original spatial detector [4]. Here, we refer to SH as the
saliency function of the detector, according to the biological term saliency [5]
which is used to describe the interestingness of locations in an image. Note that
the output of the detector is a discrete set of locations, while SH is defined on the
entire video clip. In practice a second set of scales σi, τi is used for integration
of the moment matrix over a spatiotemporal window [9], usually taken to be a
multiple of σ, τ . Throughout this paper we used the implementation from [1],
with the default setting of σi = 2σ, τi = 2τ . Thus, the detector has two free
parameters, the spatial scale σ and the temporal scale τ .
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Fig. 2. Qualitative comparison of detector responses SH (eq. 1), SP (eq. 2), and SL

(eq. 3). The blended checkerboard texture in the top row illustrates detector responses
on frame 88 from Figure 1. The bottom row shows the corresponding regional (2D)
maxima. Parameters were set to σ = 2, τ = 3 for all detectors.

The response of the spatiotemporal Harris detector can be characterized
similarly to the 2D case: the saliency function SH , or cornerness, is large if
the spatiotemporal gradient varies significantly in all three dimensions. Laptev
intuitively describes the detected events as split or unification of image structure
and as spatial corners changing direction. The applicability of this concept to
action classification was shown in [15]. SH computed on the center frame of our
sample sequence in Figure 1 is shown in Figure 2 (left column). The highest
values are achieved where the racket passes the black bar in the background.

It should be mentioned that in the conceptual simplicity of the spatiotem-
poral Harris detector lies also a possible drawback. Clearly, the time axis is not
just a third image dimension, such as in volume data [3], but it describes a very
different entity. Perhaps not surprisingly, it was found that the 3D-Harris detec-
tor can lead to unsatisfactory results, in that it tends to produce too few interest
points [1, 11]. This has given rise to the development of the Periodic detector,
which we describe in the following section.

3.2 The Periodic Detector

The so-called Periodic detector was proposed by Dollár [1] as an alternative to
Laptev ’s method. In Dollár ’s approach, the image is smoothed spatially and then
filtered temporally with a quadrature pair of one-dimensional Gabor filters. The
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squared outputs of the two Gabor filters are added to get the saliency function

SP =
2∑

i=1

(I ∗G(σ) ∗ Fi(τ, ω))2 (2)

where I denotes the 3D image, G(σ) is a 2D spatial Gaussian filter with standard
deviation σ, and F1(τ, ω), F2(τ, ω) are 1D temporal Gabor filters with frequency
ω and scale τ (with odd and even phase, respectively, as illustrated in Figure 3,
right plot). Interest points are again the local maxima of the saliency function
over space and time. In the implementation we use [1] the frequency is fixed
to ω = 0.5/τ . In effect, this detector has the same parameters as the Harris
detector, namely σ for the spatial scale and τ for the temporal scale.

Intuitively, the saliency SP is large where image intensity changes temporally
at a rate ω = 0.5/τ . Accordingly, the authors [1] refer to this detector as the
Periodic detector. Figure 2 shows its output on the frame 88 of our example
sequence (Figure 1). This suggests that, as intended [1], SP takes significant
values in larger regions than the Harris measure SH .

3.3 The Learned Detector

The Harris and Periodic detector are based on analytic descriptors of local image
structure assumed to be useful for computer vision applications. The interest
point detector we propose here is instead based on image features selected by
the human visual system.

The architecture of our detector is movitated by that of the Periodic detector
(2). It consists of a simple feed-forward neural network model with sigmoid basis
functions

SL = b0 +
k∑

i=1

αi tanh(I ∗G(σ) ∗Wi + bi), (3)

i.e., the input video I is first convolved with a spatial Gaussian low pass G
of width σ, then by k temporal filters Wi. The k filter outputs are fed into
tanh nonlinearites (with bias bi) and then added together using weights αi and
a global bias term b0. Note that this generalizes the Periodic detector to an
arbitrary number of arbitrarily shaped input filters: instead of two quadratic
basis functions we now have k sigmoids, and the temporal filters will be fitted
to the eye tracking data instead of being fixed Gabor filters. Additionally, each
basis function contributes to the output SL with a different weight and bias.

In the learning step, we fit the saliency function (3) to our recorded eye
movement data: we optimize the filters Wi, the weights αi, and the biases bi

using regularized logistic regression, i.e., by minimizing

E =
m∑

i=1

(yisi − log(1 + exp si)) + λ
k∑

i=1

α2
i (4)

Here, the si are the values of SL at the training samples (see Section 2). The
corresponding labels yi are set to 1 if i is a fixation, and 0 if it is a background
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Fig. 3. The 19-tap temporal filters from the Learned (left) and the Periodic (right)
detector. Shown on the horizontal axis is the time relative to the beginning of a pre-
dicted fixation (horizontal gray line). Note that both detectors have different offsets in
time, corresponding to the values which are optimal in terms of predictivity (cf. Table
1): −7 and −5 frames (w.r.t. the central tap) for the Learned and Periodic detector,
respectively .

example. Note that this corresponds to a maximum a posteriori estimate in a
logit model, i.e., the learned saliency function SL has a probabilistic interpreta-
tion: it equates to the logarithmic odds ratio of a fixation by a human observer,
SL = P (Y = 1|I)/P (Y = 0|I). To carry out the optimization of (4) we used a
scaled conjugate gradient method [16]. Prior to training, the training data were
denoised to 95% variance by projecting out the least significant PCA compo-
nents. The network weights were initialized to random values.

During learning, several design parameters have to be set: the regularization
parameter λ, the number of filters k, and the spatial scale σ of the Gaussian.
The size of the temporal filter Wi was set to 19 frames which corresponds to
three times the value of τ = 3 in the Harris and the periodic detector, the
standard setting used in [1, 11] and also throughout this paper. Additionally, we
introduce a temporal offset ∆t, which denotes the position of the center of the
temporal filters Wi relative to the beginning of a fixation. The rationale behind
this is that the time at which a fixation is made does not necessarily coincide
with the time at which the video contains the most useful information to predict
this. As an example, the typical saccade latency, i.e., the time between seeing
something interesting and making a saccade is 150−200ms (6−8 frames at 24
fps) [2]. The design parameters were found via 8-fold cross-validation, where
the performance was measured in area under the ROC curve (ROC score), the
standard measure for predicting eye movements [7]. The search space was a 4D
grid with log2 σ ∈ [−1 . . . 8] in steps of 2/3 ranging from single pixels to the full
screen, ∆t = −29 . . . 9 in steps of 2, k = 1, 2, 5, 10, 20, and log10 λ = −4,−2, 0, 2.
We found a clear performance peak at σ = 1, ∆t = −7, k = 5 and λ = 0.01. We
will refer to the detector trained with these parameters in the following as the
learned detector.
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The right plot in Figure 2 shows the output SL on our example sequence
from Figure 1. Note that, similarly to the periodic detector, our detector has a
large response over extended areas. Interestingly, the largest Harris response (at
the racket) leads to a high response, too. The five learned filter kernels Wi are
shown in Figure 3 (left plot). As found during learning, the optimal tenmporal
aligment of the filter kernels is at ∆t = −7, which centers them at about 300ms
before the fixation event. Examining the shape of the learned kernels, we find
that all kernels have a steep slope 200ms before the fixation event, which means
that the detector is tuned to temporal intensity changes occuring at that time.
Interestingly, this matches very well with the typical saccade latency of 150-200
ms, i.e., the time between deciding to make and making a saccade (the saccades
themselves are typically very short (20-50ms)). Note that we did not put any
such assumption into the design of our detector. Therefore, this property must
stem from the data, meaning that our detector has in fact learned a biologically
plausible feature of bottom-up saliency.

4 Experiments

4.1 Eye Movement Prediction

For still images it has been shown that simple local image statistics such as in-
creased RMS contrast attract the human eye [12]. As most spatial interest point
detectors strongly respond to local contrast, they do in fact explain some of the
variance in human eye movments. For time-varying images, it is known that
flicker and motion patterns attract our attention [2]. Since the Harris and Peri-
odic detector respond to such features, we expect a significant correlation with
human eye movements in this case as well. To quantify this, we computed ROC
scores of the saliency functions RH (Harris), RP (Periodic), and RL (Learned) on
our testset (Section 2). ROC scores are the standard measure for eye movement
prediction [8]. In still images, the state-of-the-art for purely bottom-up (based on
image content only) models is around .65 [8]. Note that this seemingly low score
makes perfect sense, since eye movements are also controlled by more high-level,
top-down factors, such as the observers thoughts or intentions [18], which are
not considered by bottom-up models by construction.

Here, we compare the three detectors in terms of how well they predict human
fixation locations. To reduce the inherent advantage of the Learned detector—
which was built for this task—we also trained the free parameters of the Harris
and the Periodic detector: analogously to Section 3.3, we fixed τ = 3 and opti-
mized σ and ∆t on the training set via cross-validation. Test ROC scores (aver-
aged over eight random subsets of the test set, ± standard error) are shown in
Table 1, together with the optimal values for σ and ∆t found in cross-validation.
This shows that our detector outperforms the two others by a large margin,
reaching state-of-the-art performance. This is not surprising since we specifically
designed the Learned detector for this, while the others were not. Another ob-
servation is that the optimal temporal offset ∆t is very similar in all three cases,
and in agreement with the typical saccadic latency of 6 − 8 frames (cf. Section
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Detector ROC score log2σ ∆t

Learned .634 ±.007 0.0 -7

Periodic .554 ±.015 -1.0 -5

Harris .522 ±.005 3.3 -8

Table 1. How human eye movements are prediced by spatio-temporal interest point
detectors (Section 4.1).

3.3). Also, all detectors have scores significnatly above chance level, which means
that they are indeed related to the spatiotemporal features that the human eye
is attracted to.

4.2 Action Classification

We have seen that the Learned detector outperforms existing methods in terms
of predicting eye movments. This, however, should be regarded only as a proof
of concept, since our main interest is to solve actual computer vision problems,
not to predict eye movements. To make a fair comparison, we tested our detector
within the domain for which the Harris and Periodic detectors were designed.
We used the KTH action classification dataset [15], which was also used by
the inventors of the Harris and Periodic detector to test their approaches. The
dataset contains 598 videos (160×120 pixels, several seconds long) of 25 people
performing 6 different actions (walking, jogging, running, boxing, handwaving,
handclapping) under varying conditions (indoor, outdoor, different scales). Fig-
ure 4 shows one example frame from each class.

In this experiment, we adapt Dollár ’s method for video classification, as used
in [1, 11]). The original method is based on the periodic detector. At each interest
point, a block of video data (a cuboid) is extracted. Then, a codebook is built
by applying PCA and K-means clustering. That way, a video is described by
the histogram of its cuboids, quantized to the codebook entries. As multiclass
classifier on top of this feature map, [1] train RBF (Radial Basis Function) SVMs
and [11] use pLSA (probabilistic Latent Semantic Analysis). To test our approach
we use Dollár ’s Matlab code with all settings to standard (in particular σ = 2,
τ = 3), but with the Periodic detector replaced with our Learned detector. The
periodic detector uses a threshold of 0.0002 on SP below which all local maxima
are rejected. For our detector, a natural choice for this threshold is zero, since
SL can be interpreted as the log odds of a fixation where SL = 0 corresponds to
a fixation probability above .5.

As in [11], we compute a leave-one-out estimate of the test error by training
on the data of 24 persons, and testing on the remaining one. This is repeated
25 times. Codebooks are generated using 60,000 random samples of the training
cuboids, 100 PCA components and 500 centers in K-means. Classification is done
with a hard margin linear SVM. The confusion matrix and the average accuracy
(the mean of the diagonal elements of the confusion matrix) are shown in Figure
4. This shows that our method outperforms previous approaches. Note that we
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Algorithm Accuracy

our method 82.8

Niebles et al. [11] 81.5

Dollár et al. [1] 81.2

Schüldt et al. [15] 71.7

Ke et al. [6] 63.0

Fig. 4. Action classification results.
Top left: The KTH action classifi-
cation dataset [15]. Top right: The
confusion matrix of our classifica-
tion system, which uses the Learned
interest point detector. Bottom left:
A comparison against existing algo-
rithms.

intentionally kept most of the settings in Dollár ’s original method in order to
isolate the effect that the new interest point detector has on the performance.
We therefore expect that our results improve further if we tune the entire system
to suit our detector best.

4.3 Real-Time Demo and Matlab Implementation

For many applications it is vital that interest points can be computed very ef-
ficiently. Being conceptually similar to the periodic detector, the learned de-
tector also very efficient. With five (eq. 3) instead of two (eq. 2) temporal
filters, we expect the number of operations to be about 2.5 times higher. A
demo application which shows the learned saliency function SL superimposed
onto a webcam feed in real-time (as in Figure 2, top right) can be downloaded
at http://www.kyb.mpg.de/∼kienzle. The Matlab code for detecting interest
points, which plugs into Dollár ’s feature extraction framework [1], is provided
at the same location.

5 Discussion

We have presented a new spatiotemporal interest point detector based on a very
simple neural network which predicts where a human observer would look in a
given video. The detector was trained on real eye movement data and we showed
that it predicts the location of human eye movements on independent test clips
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with state-of-the-art accuracy. We also tested our approach in a computer vi-
sion environment. We found that the learned detector, plugged into a simple
classification framework, outperforms previous action classification methods on
a large real-world dataset. This indicates that a biologically inspired measure of
interestingness can be indeed beneficial for computer vision applications. This
is a nontrivial result, since existing detectors were specifically designed for com-
puter vision problems, whereas our detector was designed to mimic human eye
movements. A possible drawback of our present approach is that the detector
is spatiotemporally separable, which makes it blind to time-varying spatial pat-
terns, such as the direction of motion. We are currently working on an improved
version which takes this into account.
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