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Abstract. This paper presents a method for single-frame image super-
resolution using an unsupervised learning technique. The required prior
knowledge about the high-resolution images is obtained from Kernel
Principal Component Analysis (KPCA). The original form of KPCA,
however, can be only applied to strongly restricted image classes due
to the limited number of training examples that can be processed. We
therefore propose a new iterative method for performing KPCA, the
Kernel Hebbian Algorithm. By kernelizing the Generalized Hebbian Al-
gorithm, one can iteratively estimate the Kernel Principal Components
with only linear order memory complexity. The resulting super-resolution
algorithm shows a comparable performance to the existing supervised
methods on images containing faces and natural scenes.
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1 Introduction

The problem of image super-resolution, where one achieves high-resolution en-
largements of pixel-based images [1], has a lot of potential applications in graph-
ics, image processing, and computer vision. Methods of image super-resolution
can be conveniently divided into three complimentary classes [1]: 1) interpo-
lation and sharpening enlarges the low resolution image using generic image
interpolation techniques and sharpen the resulting image for better visibility; 2)
aggregation from multiple frames extracts a single high-resolution frame from
a sequence of low-resolution images; 3) single-frame super-resolution extracts
high-resolution image details from a single low-resolution image, which cannot
be achieved by simple sharpening. All three approaches rely on a certain type of
prior knowledge about the image class to be reconstructed. The third approach,
in particular, needs a specific characterization of its respective image class which
is often available in the form of example patterns.

Whereas the first two methods have already been extensively studied [2], [3],
the third method has been introduced only recently. Hertzmann, et. al [4] pro-
posed a patch-wise reconstruction technique. During the training phase, pairs
of low-resolution patches and the corresponding high-resolution patches are col-
lected. In the super-resolution phase, each low-resolution patch of the input
image is compared to the stored low-resolution patches and the high-resolution
patch corresponding to the nearest low-resolution patch is selected as recon-
struction. In [1], Freeman et. al. presented a similar technique to extract high-
frequency details from a low-resolution image. Both algorithms already demon-
strated impressive super-resolution results.

Here, we propose an alternative approach to super-resolution based on an un-
supervised learning technique. Instead of encoding a fixed relationship between
pairs of high- and low-resolution image patches, we rely on a generic model
of the high-resolution images that is obtained from Kernel Principal Compo-
nent Analysis (KPCA) [5]. In contrast to linear Principal Component Analysis
(PCA) which has already been widely used in image analysis, KPCA is capable
of capturing part of the higher-order statistics which are particularly impor-
tant for encoding image structure [6]. Recent success in related applications
[7] further motivates the use of KPCA for image super-resolution. Capturing
these higher-order statistics, however, can require a large number of training
examples, particularly for larger image sizes and complex image classes such
as patches taken from natural images. This causes problems for KPCA, since
KPCA requires to store and manipulate the kernel matrix the size of which is
the square of the number of examples. To overcome this problem, a new itera-
tive algorithm for KPCA, the Kernel Hebbian Algorithm (KHA) is introduced.
It is based on the generalized Hebbian algorithm (GHA), which was introduced
as an online algorithm for linear PCA [8][9]. The resulting algorithm estimates
the kernel principal components with linear order memory complexity, making
it applicable to large problems.

This paper is organized as follows. The remainder of this section briefly in-
troduces PCA, GHA, and KPCA. Section 2 present the proposed image super-
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resolution method while Section 3 and formulates the KHA. Experimental results
are presented in Section 4 and conclusions are drawn in Section 5.

Principal component analysis. Given a set of centered observations xk = R
N ,

k = 1, . . . , l, and
∑

l
k=1xk = 0, PCA diagonalizes the covariance matrix1 C =

1
l

∑l
j=1 xjxj

�. This is readily performed by solving the eigenvalue equation λv =
Cv for eigenvalues λ ≥ 0 and eigenvectors vi ∈ R

N \ 0.

Generalized Hebbian algorithm. From a computational point of view, it can be
advantageous to solve the eigenvalue problem by iterative methods which do not
need to compute and store C directly. This is particulary useful when the size of
C is large such that the memory complexity becomes prohibitive. Among the ex-
isting iterative methods for PCA, the generalized Hebbian algorithm (GHA) is of
particular interest, since it does not only provide a memory-efficient implementa-
tion but also has the inherent capability to adapt to time-varying distributions.

Let us define a matrix W(t) = (w1(t)�, . . . ,wr(t)�)�, where r is the number
of eigenvectors considered and wi(t) ∈ R

N . Given a random initialization of
W(0), the GHA applies the following recursive rule

W(t + 1) = W(t) + η(t)(y(t)x(t)� − LT[y(t)y(t)�]W(t)), (1)

where x(t) is a randomly selected pattern from l input examples, presented at
time t, y(t) = W(t)x(t), and LT[·] sets all elements above the diagonal of its
matrix argument to zero, thereby making it lower triangular. It was shown in
[8] for i = 1 and in [9] for i > 1 that W(t) → Vi as t → ∞.2 For a detailed
discussion of the GHA, readers are referred to [9].

Kernel principal component analysis. When the data of interest are highly non-
linear, linear PCA fails to capture the underlying structure. As a nonlinear ex-
tension of PCA, KPCA computes the principal components (PCs) in a possibly
high-dimensional Reproducing Kernel Hilbert Space (RKHS) F which is related
to the input space by a nonlinear map Φ : R

N → F [10]. An important property
of a RKHS is that the inner product of two points mapped by Φ can be evaluated
using kernel functions

k(x,y) = Φ(x) · Φ(y), (2)

which allows us to compute the value of the inner product without having to
carry out the map Φ explicitly. Since PCA can be formulated in terms of inner
products, we can compute it also implicitly in a RKHS. Assuming that the data
are centered in F (i.e.,

∑l
k=1 Φ(xk) = 0)3 the covariance matrix takes the form

C =
1
l
Φ�Φ, (3)

1 More precisely, the covariance matrix is defined as the E[xx�]; C is an estimate
based on a finite set of examples.

2 Originally it has been shown that wi converges to the i-th eigenvector of E[xx�],
given an infinite sequence of examples. By replacing each x(t) with a random selec-
tion xi from a finite training set, we obtain the above statement.

3 The centering issue will be dealt with later.
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where Φ =
(
Φ(x1)�, . . . , Φ(xl)�

)�. We now have to find the eigenvalues λ ≥ 0
and eigenvectors v ∈ F \ 0 satisfying

λv = Cv. (4)

Since all solutions v with λ �= 0 lie within the span of {Φ(x1), . . . , Φ(xl)} [5], we
may consider the following equivalent problem

λΦv = ΦCv, (5)

and we may represent v in terms of an l-dimensional vector q as v = Φ�q.
Combining this with (3) and (5) and defining an l × l kernel matrix K by K =
ΦΦ� leads to lλKq = K2q. The solution can be obtained by solving the kernel
eigenvalue problem [5]

lλq = Kq. (6)

It should be noted that the size of the kernel matrix scales with the square of
the number of examples. Thus, it becomes computationally infeasible to solve
directly the kernel eigenvalue problem for large number of examples. This mo-
tivates the introduction of the Kernel Hebbian Algorithm presented in the next
section. For more detailed discussions on PCA and KPCA, including the issue
of computational complexity, readers are referred to [10].

2 Image Super-Resolution

Single-patch super-resolution. To reconstruct a super-resolution patch (or small
image) from a low-resolution image patch which was not contained in the training
set, we first scale up the image to the same size as the training images by nearest
neighbour interpolation, then map the image (call it x) into the RKHS F using
Φ, and project it onto the KPCA subspace spanned by a limited number of KPCs
to get PΦ(x). Via the projection P , the image is mapped to an image which is
consistent with the statistics of the high-resolution training images. However, at
that point, the projection still lives in F , which can be infinite-dimensional. We
thus need to find its preimage, i.e., the corresponding point in R

N . To find it,
we minimize ‖PΦ(x) − Φ(z)‖2 over z ∈ R

N . Note that this objective function
can be computed in terms of inner products and thus in terms of the kernel (2).
For the minimization, we use gradient descent [11] with starting points obtained
using the method of [12].

Multi-patch image reconstruction. For the super-resolution of a rather large im-
age, we adopt the method of [1], where the large image is decomposed into its
low-frequency components and a set of small patches containing the local high-
frequency information. Whereas Freeman et. al. use a nearest neighbour classifier
to select appropriate high-frequency patches in the super-resolution phase, we
replace this classifier by the projection step described above. During the training
stage, images are high-pass filtered and a set of image patches are collected from
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the resulting high-frequency images. These image patches are contrast normal-
ized [1] and then fed to KPCA.

In the super-resolution phase, the input image is rescaled to the original
resolution using bicubic interpolation and band-pass filtered to remove the low-
frequency components. Then, the resulting high-frequency component image is
divided into a set of small image patches each of which is reconstructed based
on the KPCA in the same way as in single patch super-resolution. The resulting
image containing only high-frequency components is then superimposed on the
bicubic interpolation to give the final reconstruction.

3 Kernel Hebbian Algorithm

As noted in the introduction, the advantage of the GHA over conventional PCA
is that it does not require the storage of the covariance matrix. This is partic-
ularly useful when the size of covariance matrix is large. Similarly, the direct
formulation of KPCA becomes impractical for large sample sizes since the as-
sociated kernel matrix is too large to be stored in memory. For this case, we
reformulate the GHA in a RKHS to obtain a memory-efficient approximation of
KPCA.

The GHA update rule of Eq. (1) is represented in the RKHS F as

W(t + 1) = W(t) + η(t)
(
y(t)Φ(x(t))� − LT[y(t)y(t)�]W(t)

)
, (7)

where the rows of W(t) are now vectors in F and y(t) = w(t)Φ(x(t)). Φ(x(t)) is
a pattern presented at time t which is randomly selected from the mapped data
points {Φ(x1), . . . , Φ(xl)}. For notational convenience we assume that there is a
function J(t) which maps t to i ∈ {1, . . . , l} ensuring Φ(x(t)) = Φ(xi). From the
direct KPCA solution, it is known that w(t) can be expanded in the mapped
data points Φ(xi). This restricts the search space to linear combinations of the
Φ(xi) such that W(t) can be expressed as

W(t) = A(t)Φ (8)

with an r× l matrix A(t) = (a1(t)�, . . . ,ar(t)�)� of expansion coefficients. The
ith row ai = (ai1, . . . , ail) of A(t) corresponds to the expansion coefficients of
the ith eigenvector of K in the Φ(xi), i.e., wi(t) = Φ�ai(t). Using this represen-
tation, the update rule becomes

A(t + 1)Φ = A(t)Φ + η(t)
(
y(t)Φ(x(t))� − LT[y(t)y(t)�]A(t)Φ

)
. (9)

The mapped data points Φ(x(t)) can be represented as Φ(x(t)) = Φ�b(t) with
a canonical unit vector b(t) = (0, . . . , 1, . . . , 0)� in R

l (only the J(t)-th element
is 1). Using this notation, the update rule can be written solely in terms of the
expansion coefficients as

A(t + 1) = A(t) + η(t)
(
y(t)b(t)� − LT[y(t)y(t)�]A(t)

)
, (10)

139



or equivalently in component-wise form

aij(t + 1) =
{

aij(t) + ηyi(t) − ηyi(t)
∑i

k=1 akj(t)yk(t) if J(t) = j

aij(t) − ηyi(t)
∑i

k=1 akj(t)yk(t) otherwise,
(11)

where

yi(t) =
l∑

k=1

aik(t)Φ(xk) · Φ(x(t)) =
l∑

k=1

aik(t)k(xk,x(t)), (12)

which does not require Φ(x) in explicit form and accordingly provides a practical
implementation of the GHA in F .

It can be shown that the proposed algorithm (7) (and equivalently (10))
will converge, and that W will approach the matrix whose rows are the first
r eigenvectors of the covariance matrix C, ordered by decreasing eigenvalue,
provided that k is continuous with respect to both of its arguments, and A is
randomly initialized [13].

During the derivation of (10), it was assumed that the data are centered in
F which is not true in general unless explicit centering is performed. Centering
can be done by subtracting the mean of the data from each pattern. Then each
pattern (Φ(x(t))) is replaced by Φ̃(x(t)) .= Φ(x(t)) − Φ(x), where Φ(x) is the
sample mean Φ(x) = 1

l

∑l
k=1 Φ(xk). The centered algorithm remains the same

as in (11) except that Eq. (12) has to be replaced by the more complicated
expression

yi(t) =
l∑

k=1

aik(t)(k(x(t),xk) − k̄(xk)) − ai(t)
l∑

k=1

(k(x(t),xk) − k̄(xk)). (13)

with k̄(xk) = 1
l

∑l
m=1 k(xm,xk) and ai(t) = 1

l

∑l
m=1 aim(t). This is directly

applicable in the batch setting where all the samples are known in advance; in
an online setting, one should instead use a sliding mean, in order to be able to
adapt to changes in the distribution. It should be noted that not only in training
but also in testing, each pattern should be centered, using the training mean.

The time and memory complexity for each iteration of KHA is O(r × l×N)
and O(r × l + l × N), respectively, where r, l, and N are the number of PCs to
be computed, the number of examples, and the dimensionality of input space,
respectively.4 This rather high time complexity can be lowered by precomputing
and storing the whole or part of the kernel matrix. When we store the entire
kernel matrix, as KPCA does, the time complexity reduces to O(r × l).

4 Experimental Results

4.1 Single-patch Case: Super-resolution of Face Images.

In order to investigate the single-patch super-resolution capabilities of KPCA,
we performed face image super-resolution where the each single face image is
4 k̄(xk) and ai(t) in (13) for each k, i = 1, . . . , l are calculated only once at the begin-

ning of each iteration.
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Fig. 1. Face reconstruction based on PCA and KHA using a Gaussian kernel with
σ = 1 for varying numbers of PCs
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Fig. 2. Face reconstruction examples obtained from KPCA and KHA trained on 1,000
and 5,000 examples, respectively. Occasional erroneous reconstruction of images indi-
cates that KPCA requires a large amount of data to properly sample the underlying
structure

regarded as a single patch. The Yale Face Database B contains 5,760 images
of 10 persons [14]. 5,000 images were used for training while 10 randomly se-
lected images which are disjoint from the training set were used to test the
method (note, however, as there are only 10 persons in the database, the same
person, in different views, is likely to occur in training and test set). For train-
ing, (60 × 60)-sized face images were fed into the KHA with a Gaussian kernel
(k(x,y) = exp(−‖x − y‖2/(2σ2))). The learning rate η was fixed at 0.05 during
training. Then, the test images were blurred and subsampled to a 20 × 20 grid
and scaled up to the original resolution (60 × 60), before doing the reconstruc-
tion. To avoid overflow during the computation of exponential term in the ker-
nel, each pixel value is normalized into the interval around zero ([−0.05, 0.05]).
Figure 1 shows reconstruction examples obtained using different numbers of
components. For comparison, reconstructions obtained by linear PCA are also
displayed. While the images obtained from linear PCA look like somewhat un-
controlled superpositions of different face images, the images obtained from its
nonlinear counterpart (KHA) are more face-like. In spite of its less realistic re-
sults, linear PCA was slightly better than the KHA in terms of the mean squared
error (average 9.20 and 8.48 for KHA and PCA, respectively for 100 PCs). This
stems from the characteristics of PCA which is constructed to minimize the
MSE, while KHA is not concerned with MSE in the input space. Instead, it
seems to force the images to be contained in the manifold of face images. Similar
observations have been reported by [15].

Interestingly, when the number of examples is small and the sampling of
this manifold is sparse, this can have the consequence that the KPCA (or KHA)
reconstruction looks like the face of another person than the one used to generate
the test image. In a certain sense, this means that the errors performed by
KPCA remain within the manifold of faces. Figure 2 demonstrates this effect
by comparing results from KPCA on 1,000 example images (corresponding to a
sparse sampling of the face manifold) and KHA on 5,000 training images (denser
sampling). As the examples shows, some of the misreconstructions that are made
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Fig. 3. The first 40 kernel PCs of 40,000 (14 × 14)-sized patches of natural images
obtained from the KHA using a Gaussian kernel with σ = 40

by KPCA due to the lack of training examples were corrected by the KHA using
a larger training set.

4.2 Super-resolution of natural images.

To examine the applicability of the KHA to larger scale problems, we trained our
algorithm on more than 40,000 patterns obtained from natural images. Figure
3 shows the first 40 KPCs of the 12 × 12-sized image patches obtained from
the KHA using a Gaussian kernel. The plausibility of the obtained PCs can be
demonstrated by increasing the size of the Gaussian kernel such that the distance
metric of the corresponding RKHS becomes more and more similar to that of
the input space [10]. As can be seen in Fig. 3, the KPCs approach those of linear
PCA [9] as expected.

Fig. 4. Training images of size 396 × 528. The training patterns are obtained by sam-
pling 2,500 points at random from each image

For the multi-patch super-resolution, the KHA was trained on a set of 10,000
(12×12)-sized image patches obtained from the images in Fig. 4. This time, the σ
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parameter was set to a rather small value (1) to capture the nonlinear structure
of the images. The reconstruction of the high-frequency image is then obtained
based on the first 200 KPCs. When applied to non-overlapping patches, the
resulting image as a whole shows a block structure since each patch is recon-
structed independently of its neighborhood. To reduce this effect, the patches
are chosen to slightly overlap into their neighbours such that the overlapping
regions can be averaged.

A (396×528)-size image not contained in the training set was used for testing.
The (198 × 264)-sized low-resolution image was obtained by blurring and sub-
sampling. Fig. 5 shows the super-resolution result. The final reconstruction was
post-processed using high-boost filtering [16] to enhance the edges that become
slightly blurred since only the first 200 KPCAs are used in the reconstruction. It
should be noted that the original KHA reconstruction of the high-frequency com-
ponents still contains blocking artifacts even with the use of overlapping patches.
This, however, does not severely degrade the final result since the overall struc-
ture is contained in the low frequency input image and the KHA reconstruction
only adds the missing high-frequency information. Regarding more advanced
techniques for the removal of blocking artifacts, readers are referred to [1] where
the spatial relationship between patches is modeled based on Markov random
fields.

Fig. 6 shows another super-resolution result. The low resolution image is
obtained in the same way as in Fig. 5. For comparison, bicubic interpolation
and the nearest neighbor technique also have been applied. Again, for all the
methods the final reconstructions are high-boost filtered. In comparison to the
image stretching (Fig. 6.b), bicubic interpolation (Fig. 6.c) produces far better
results. However simple edge enhancement without any priori knowledge failed
to completely remove the blurring effect. The two learning-based methods show
better capability in recovering the complex local structure.

As shown in Fig. 6 the KHA and the nearest neighbor-based method showed
comparable performances. However, the insight on the difference between the
modeling capabilities of two methods can be gained by enlarging the size of
reconstruction patch and performing super-resolution directly on raw images.
For this, a new KHA image model was trained on raw image patches with-
out high-pass filtering. Then, during the super-resolution, the input image was
decomposed into (16 × 16) patches and reconstructed independently based on
KHA. For comparison, the nearest neighbor-based model was trained in the
same way. As highlighted in Fig. 7.e, two learning-based approaches again show
better reconstruction results then bicubic reconstruction. Although the KHA
reconstruction shown in Fig. 7.e is noisier, it preserves the overall tree structure
which is lost by the nearest neighbor reconstruction (Fig. 6.d).

5 Discussion

This paper proposed an algorithm for running kernel PCA on large databases,
leading to an unsupervised learning approach for image super-resolution. KPCA
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a b

c d

Fig. 5. Example of natural image super-resolution: a. original image of resolution 396×
528, b. low resolution image (264×198) stretched to the original scale, c. reconstruction
of the high-frequency component (contrast enhanced for better visibility), and d. final
KHA reconstruction
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a b

c d

e f

g

Fig. 6. Comparison between different super-resolution methods: a. original image of
resolution 396 × 528, b. low resolution image (264 × 198) stretched to the original
scale, c. bicubic interpolation, d. example-based learning based on nearest neighbor
classifier, e. KHA reconstruction of high-frequency component (contrast enhanced for
better visibility), and f. KHA reconstruction, g. enlarged portions of b, c, f, and d (from
left to right)
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a b

c d

e

Fig. 7. Image super-resolution without high-frequency decomposition: a. original image
of resolution 500 × 300, b. bicubic interpolation obtained from low resolution image
(150 × 90), c. KHA reconstruction, d. nearest neighbor reconstruction, e. enlarged
portions of a, low resolution image, b, c, and d (from left to right)
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was used to learn the statistics contained in a set of the training patterns. By
mapping the input image into an RKHS and kernelizing the problem, we capture
part of the higher-order statistics which are particularly important for encod-
ing image structure. To overcome the memory complexity of KPCA, KHA was
proposed as a method for the efficient estimation of the PCs in an RKHS. As a
kernelization of the GHA, the KHA allows for performing KPCA without storing
the kernel matrix, such that large datasets of high dimensionality can be pro-
cessed. This property makes the KHA particularly suitable for applications in
statistical image processing applications, where large training sets are required
to capture the statistics of an image class with sufficient accuracy.

Compared to existing methods, the experimental results obtained using our
approach are promising. It should be stressed, however, that statistical super-
resolution methods can be compared in several important respects, out of which
accuracy is only one. For instance, the methods proposed by Hertzmann et . al. [4]
and Freeman et. al. [1] are based on supervised learning, i.e., the training data
are given as input-output pairs of low- and high-resolution images. In machine
learning, it is generally believed that when feasible, a supervised learning ap-
proach often leads to the best results. However, at the same time supervised
algorithms can have shortcomings in that the data may be more expensive to
obtain, and the solution can be less flexible in that it is strictly only useful for the
exact task considered. In our case, this means that once trained on a training set
containing labeled data, the above methods can strictly speaking only be used
for the one image super-resolution task it was trained for. In contrast, our unsu-
pervised method,5 which is only trained on high-resolution images, can directly
be applied to a variety of image restoration tasks, including e.g. denoising, or
image super-resolution using inputs of various resolutions, without retraining.
We plan to experimentally corroborate this in future work.

These kinds of differences should be kept in mind when assessing the per-
formance of the proposed method. We do not claim to have found the ultimate
solution to the problem of image super-resolution—we even did not try to remove
the blocking artifact to combine the patch-wise reconstruction, except boundary
smoothing. The contribution of this paper lies in developing a specific nonlinear
unsupervised machine learning technique that can be run on large databases and
demonstrating its potential on image super-resolution.

There are various directions for further work. The KHA, as a general iterative
algorithm of KPCA applicable to large datasets, can significantly enlarge the
application area of KPCA, which is a generic machine learning technique that
also enjoys some popularity in computer vision [10], [17]. For the image super-
resolution, we plan to also explore supervised estimation methods in RKHS’s
(e.g., [18]), to study in more detail the benefits and shortcomings of a more
task-specific solution to the problem.

5 Our method is unsupervised in the sense that it is not given input-output pairs for
training, but outputs only.
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