
How to Find Relevant Training Data:
A Paired Bootstrapping Approach to Blind

Steganalysis
Pham Hai Dang Le #1, Matthias O. Franz #2

Institute for Optical Systems, HTWG Konstanz
Brauneggerstr. 55

78462 Konstanz, Germany
1 dangle@htwg-konstanz.de
2 mfranz@htwg-konstanz.de

Abstract—Today, support vector machines (SVMs) seem to
be the classifier of choice in blind steganalysis. This approach
needs two steps: first, a training phase determines a separating
hyperplane that distinguishes between cover and stego images;
second, in a test phase the class membership of an unknown
input image is detected using this hyperplane. As in all statistical
classifiers, the number of training images is a critical factor: the
more images that are used in the training phase, the better the
steganalysis performance will be in the test phase, however at the
price of a greatly increased training time of the SVM algorithm.
Interestingly, only a few training data, the support vectors, de-
termine the separating hyperplane of the SVM. In this paper, we
introduce a paired bootstrapping approach specifically developed
for the steganalysis scenario that selects likely candidates for
support vectors. The resulting training set is considerably smaller,
without a significant loss of steganalysis performance.

I. INTRODUCTION

Most of current blind steganalyzers are based on a statisti-
cal classification algorithm. These algorithms require a large
number of training images from which statistical regularities
are extracted in a training phase before the trained classifier
can be applied to unknown images in the test phase. Un-
fortunately, the complexity of the training process increases
polynomially with the number of training images, which sets
a practical limit on the training set size. Here, we consider
the most widely used classifier in steganalysis: the support
vector machine (SVM) [1]. In its most common form, the
separating hyperplane of the SVM is found as the solution
of a quadratic optimization problem with linear constraints.
The resulting solutions are sparse, i.e., they depend only on a
small subset of all training data, the so-called support vectors
of the separating hyperplane. If an SVM is only trained on
the support vectors, one obtains exactly the same hyperplane
as if the full training set was used.

Unfortunately, the support vectors cannot be known in
advance of the training process. Here, we propose a three-step
procedure that at least produces likely candidates for support

WIFS‘2012, December, 2-5, 2012, Tenerife, Spain. 978-1-
4244-9080-6/10/$26.00 c©2012 IEEE.

vectors and thus is capable of largely reducing training set
size without compromising on steganalysis performance. This
method is well-known in machine learning as bootstrapping
or shrinking [2], [3]. We show that using this method naı̈vely,
without adaptions to the steganalysis scenario, can even de-
crease the performance (Section III). Before, in Section II, we
give the details of the two steganalyzers used in our study. In
Section IV, we test our approach on the BOSSbase [4], [5] and
on the BOWS-2 [6] image data set using ±1 embedding (also
called LSB matching) [7] and the HUGO algorithm [8] for
generating the stego images. Finally, we conclude this paper
with a brief summary in Section V.

II. STEGANALYZERS

The two steganalyzers investigated in our study use different
features for characterizing the input images, but share the same
classifier which takes these features as input (Figure 1). This
final classification was computed with a 1-norm soft margin
non-linear C-SVM using a Gaussian kernel. The choice of the
parameter C of the SVM and the width σ of the Gaussian
kernel was based on the paired cross-validation procedure
described in [9].

A. Lyu and Farid type features

Our investigated features are similar to those of Lyu and
Farid [10], but use an improved image modeling procedure
[11]. In the first step, the input image is transformed from
its pixel representation into its wavelet representation using
QMF (quadrature mirror filter) wavelets of support size 9
[12].The number of subbands for an RGB image depends on
the number of pyramid levels s in the wavelet representation.
Because there are three orientation bands in wavelets, i.e. the
diagonal, vertical, and horizontal orientations, the total number
of subbands in a color image is 3(3s + 1).

The modeling step takes place in the wavelet domain.
In order to model the dependency of a wavelet coefficient
from its neighborhood, we have to define a neighborhood
structure which is shown in Figure 2. Due to only including the
neighboring coefficients from closest orientations on the same

Image base

? RightLeft

Up

Down

? RightLeft

Up

Down

? RightLeft

Up

Down

Up

C

C

Prediction

log(|S
Ŝ
|)

mean, var
skewness,
kurtosis

Statistics

Difference array
{↖,↗,↘,←,→, ↑, ↓} Markov process Averaging

x

y

z

Ŝ

S
Wavelet Residual

Classification
Input image

Lyu&Farid

SPAM

Fig. 1. Steganalyzer architecture

Level i + 1 Level i

C RightLeft

Up

Down

Cousin

Parent
P

CousinAunt

Cousin

Horizontal Diagonal

Vertical

Aunt

(a) Horizontal

Level i + 1 Level i

C RightLeft

Up

Down

Cousin

Parent
P

Aunt

Cousin

Aunt

Horizontal Diagonal

Vertical

(b) Diagonal

Fig. 2. The neighborhood structure for image modeling (color neighbors
not included) is defined by white coefficients. The central coefficient to be
predicted is C.

scale (hence including horizontal and vertical coefficients for
predicting the diagonal subband, but only diagonal coefficients
for both the horizontal and vertical subbands), and correspond-
ingly only one (diagonal) or two neighbors (horizontal and
vertical) from the coarser scales. Neighborhoods in the wavelet
representation contain seven coefficients from the same color
channel as well as the corresponding central coefficients from
the other color channels (not shown in Figure 2).

The predictions are computed with linear regression applied
to each subband separately, i. e., the magnitude of the central
coefficient is obtained as a weighted sum of the magnitudes
of its neighboring coefficients greater than a given threshold.
It has been shown empirically that only the magnitudes of
coefficients are correlated, and the correlation decreases for
smaller magnitudes [13]. The weight sets over all subbands
thus constitute the image model. In their original approach,
Lyu and Farid use standard least-squares regression for this
purpose. In our implementation, we use Gaussian Process (GP)
regression [14], [15] after normalizing all subband coefficients
to the interval [0, 1]. The GP regression needs an additional

model selection step for estimating the noise content in the
image; we use Geisser’s surrogate predictive probability [16].
It is computed on a subset of the coefficients: The finest scales
are subsampled by a factor of five and the coarser by a factor
of three, each in both directions. Details on this regression
technique can be found in [15]. Each estimator is trained and
used for prediction on the same subband. Thus, the training
and test set coincide for this application. From the predicted
coefficients Ŝ, small coefficients with amplitude below a
threshold of t = 1/255 are set to zero. For reconstructing
complete images, the algebraic signs are transferred from the
original to the predicted subband coefficients.

Next, the four lowest statistical moments, i.e. mean, stan-
dard deviation, skewness, and kurtosis, of the subband coeffi-
cients (called marginal statistics in [10]) and of the subband
residuals (called error statistics) are computed, again for each
color and subband separately. Finally, all these independently
normalized statistics serve as input features for the support
vector machine. In this study, we use s = 3 pyramid levels
which results in a 80-dimensional feature vector.

B. SPAM features

The SPAM (Subtractive Pixel Adjacency Matrix) features
[17] are more suitable than the Lyu and Farid type features for
detecting ±1 embedding. The SPAM features make use of the
dependencies between neighboring pixels by regarding their
transition probabilities. For the 8-neighborhood {↖,↙,↗,↘
,←,→, ↑, ↓} of a pixel, the model determines the probabilities
of the eight transitions. Let X = (Xij) ∈ {0, ..., 255}m1×m2

be an image. In the first step [17], [8], the model calculates the
difference array D•, for each direction • ∈ {↖,↙,↗,↘, ←
,→, ↑, ↓} separately. For instance, the horizontal left-to-right
transition, D→ij is calculated as

D→ij = Xij −Xij+1 , (1)

where 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 − 1. The next step permits
two options, either the first-order Markov process calculated

by
M→uv = Pr(D→ij+1 = u|D→ij = v) , (2)

or the second-order Markov process described as

M→uvw = Pr(D→ij+2 = u|D→ij+1 = v,D→ij = w) , (3)

where u, v, w ∈ {−T, ..., T}, 1 ≤ T ≤ 255. The SPAM
features are obtained by averaging the eight matrices M• as
follows

F.
1,...,k = 1

4 [M←. + M→. + M↑. + M↓.] ,

F.
k+1,...,2k = 1

4 [M↖. + M↙. + M↗. + M↘.] , (4)

where k = (2T + 1)3 for the second-order features and k =
(2T + 1)2 for the first-order features. In our implementation,
the SPAM features were computed using the SPAM software
provided on the BOSS website [5]. Originally, the authors in
[17] propose to apply T = 4 for the first-order Markov process
(162 features) and T = 3 for the second-order Markov process.
Here, we use the second order features resulting in 686 values
for the support vector machine.

III. PAIRED BOOTSTRAPPING

The purpose of our bootstrapping approach is to select
candidate training examples that are likely to become sup-
port vectors. In this way, we obtain much smaller training
sets without significantly losing steganalysis performance. An
alternative way is boosting through AdaBoost, but this does
not improve the performance as shown in [18]. In this paper,
bootstrapping [2], [3] works in three steps. First, we train a
classifier on a smaller subset of our training data; in the second
step, we apply this classifier to the remaining training data,
referred to as the bootstrapping set. Typically, the classifier
will misclassify some of these training images. These data are
likely to become the support vectors since they require a modi-
fication of the original hyperplane. The misclassified examples
are subsequently added to the original small training set, and
finally the classifier is re-trained on this augmented training
set. Note that we disregard the model selection procedure and
use the identical hyperparameters (C, σ) of the initial set for
the bootstrapping set.

However, if applied naı̈vely to steganalysis problems, boot-
strapping will work in a limited fashion. The reason for this
was already observed in the context of model selection [9]:
in steganalysis, cover and stego image pairs are much more
similar to each other than to any other image in the training
data. If only one image in a stego-cover image pair is added to
the augmented training set, the resulting separating hyperplane
is not automatically forced to separate this pair, instead it is
unconstrained from one side. This typically results in a largely
reduced steganalysis performance, often approaching random
guessing. Therefore, standard bootstrapping has to be modified
for steganalysis: when a misclassification occurs, both the
cover and the stego version of the misclassified image have to
be added to the augmented training set.

In our approach, misclassifications can occur in two types:
either we classify a stego image as a cover (miss), or a cover

image as stego (false alarm). Furthermore, we call a correctly
classified image either a hit (a stego image is classified as
stego) or a correct rejection (a cover image is classified as
cover). By choosing unbalanced bootstrapping sets, one can
focus on reducing only one error type: if the bootstrapping set
consists only of cover images, we reduce the false alarm rate,
whereas if the bootstrapping set consists only of stego images,
a reduced miss rate will result. The first option is especially
attractive for steganalysis since in most realistic scenarios,
there are many more cover images than stego images. In this
case, we are mostly interested in minimizing the number of
false alarms. In addition, cover images are much easier to
obtain in large numbers than stego images. Note, however,
that for each misclassified cover image one has to generate
the corresponding stego image before it can be added to the
augmented training set.

TABLE I
ORDERING OF THE TRAINING AND TEST DATA SETS USED FOR

BOOTSTRAPPING

No. training set bootstrapping set testing set
1. X1 {X2, X3, X4} X5

2. X2 {X3, X4, X5} X1

3. X3 {X1, X4, X5} X2

4. X4 {X1, X2, X5} X3

5. X5 {X2, X3, X4} X1

IV. EXPERIMENTAL RESULTS

As starting point, our paired bootstrapping approach was
applied to the BOSSbase 0.92 data set [4], [5] containing 9,074
images. We randomly permuted the 9,074 images and used
only the first 9,000. Next, the 9,000 images were separated into
five disjoint sets X1,X2,X3,X4,X5 (each containing 1,800
images).
For bootstrapping, one of the five sets acted as the initial
training set for the first step, one as the test set and the
remaining three were merged into the bootstrapping set. We
used the five orderings of the five sets shown in Table I for
testing both unbalanced approaches, i.e. the bootstrapping set
consisted either only of cover images or only of stego images.
In the following we compare the initial classifier (on the
training set), the classifier after bootstrapping with cover
images, the classifier after bootstrapping with stego images,
and the classifier after training with the Complete set, i.e.
both the training set and the bootstrapping set (Table I). In the
training set and the complete set, the data are always given
in paired form, i.e., consisting of cover and stego pairs. The
sets BCover and BStego are the union of the initial training
set with the falsely classified cover or stego images found
by bootstrapping. Note in the case of the set B{Stego, Cover}

paired
each misclassified cover image needs its corresponding stego
image. For this purpose, one has to generate the stego image
before it can be added to the augmented training set, whereas
the augmented training set B{Stego,Cover}

single contains only the
misclassified images.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

H
it
 r

a
te

ROC curves: LSB matching − average over all five orderings

initial classifier
bootstrapping cover
bootstrapping stego
complete

Fig. 3. LSB matching (ER = 40%) using Lyu and Farid features,
BOSSbase: Average ROC curves (through merging the instances) of the five
different orderings (Table I) of the training and test sets used for paired
bootstrapping.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

H
it
 r

a
te

ROC curves: LSB matching − average over all five orderings

initial classifier
bootstrapping cover
bootstrapping stego
complete

Fig. 4. Identical to Figure 3 but using single bootstrapping (LSB matching
(ER = 40%) using Lyu and Farid features, BOSSbase).

We expect that bootstrapping will have different effects de-
pending on the performance of the initial classifier. For this
reason, we use the SPAM features for detecting the HUGO
algorithm although there exist more suitable features [19].
Therefore, we chose four combinations of features, stegano-
graphic algorithms, and embedding rates according to the
performance of the base classifier:

1) HUGO with SPAM features with an error probability
PE of the base classifier of 42.98%;

2) ±1 embedding with embedding rate ER = 40%; Lyu
and Farid features and PE = 28.01%;

3) ±1 embedding with ER = 20%; SPAM features and
PE = 14.47%;

4) ±1 embedding with ER = 40%; SPAM features and
PE = 6.39%.

Thus, steganograms (ER = 40 % and ER = 20 %) were gen-
erated using ±1 embedding (also called LSB matching) [7]
from the BOSSbase 0.92 data set [4], [5]. Here, the embedding
messages are random values. Furthermore, we used the stego
images of BOSSbase 0.92 [5] with an embedding rate ER =
40 %. Although the images in the BOSSbase are from multiple
camera sources, we apply bootstrapping on a second database
to avoid possible bias towards a specific database (BOWS-2
image database [6]). We use 8,000 of the 10,000 images and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

H
it
 r

a
te

ROC curves: LSB matching − average over all five orderings

initial classifier
bootstrapping cover
bootstrapping stego
complete

Fig. 5. Paired bootstrapping on LSB matching (ER = 20%) using SPAM
features.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

H
it
 r

a
te

ROC curves: LSB matching − average over all five orderings

initial classifier
bootstrapping cover
bootstrapping stego
complete

Fig. 6. Single bootstrapping on LSB matching (ER = 20%) using SPAM
features, BOSSbase.

separated them into four disjoint sets (each containing 2,000
images) in the same manner as in the first experiment. In
addition, we report run-times to demonstrate the speed-up due
to bootstrapping.

We report steganalysis performance at PE , i.e. the minimum
overall error point of the receiver operating characteristic
(ROC) curve, and as well as the area under the ROC curve
(AUC). Note that the test result values in Table II are obtained
through first combining the decision values from all runs into
one set [20] and then generating the ROC curves according
to [21]. Table III gives the percentages of additionally found
data that became support vectors. Figures 3 – 6 compare paired
and naı̈ve (single) bootstrapping of all three feature types in
terms of the ROC curves of the steganalyzers. In Table II,
the highest bootstrapping performance in terms of the AUC
is highlighted (with a light gray background). The following
points summarize our findings:

1) In terms of the AUC, the paired bootstrapping approach
mostly leads to an improvement compared to the single
bootstrapping approach (Table II).

2) Paired bootstrapping leads in our experiments to a
comparable performance to the complete training set. In
the case of Lyu and Farid features (and SPAM features
with ER = 60%), paired bootstrapping with cover (and
with stego) images outperforms even the results for the

TABLE II
STEGANALYSIS PERFORMANCE OF THE INITIAL CLASSIFIER (ON THE TRAINING SET) AND AFTER BOOTSTRAPPING WITH COVER (BCover) AND STEGO

(BStego) IMAGES. PE (IN %) IS THE MINIMUM OVERALL ERROR, AND AUC (IN %) IS THE AREA UNDER THE CURVE. ER STANDS FOR THE
EMBEDDING RATE FOR THE STEGANOGRAPHY ALGORITHMS.

BOSSbase

Training set BCover
paired BStego

paired BCover
single BStego

single Complete

Alg. ER Feat. PE AUC PE AUC PE AUC PE AUC PE AUC PE AUC

HUGO 0.4 SPAM 42.98 59.87 42.43 60.60 39.92 64.10 42.46 60.43 39.39 63.96 38.65 65.82

±1 emb. 0.4 Lyu&Farid 28.01 79.23 25.13 80.76 28.62 78.12 29.22 77.36 22.68 75.35 26.52 79.97
0.2 SPAM 14.47 93.28 14.39 93.32 12.18 94.92 13.30 93.84 12.53 94.29 9.27 96.94
0.4 SPAM 6.39 98.42 6.74 98.27 5.93 98.60 6.55 98.27 5.98 98.44 4.43 99.19

BOWS-2

Training set BCover
paired BStego

paired BCover
single BStego

single Complete

Alg. ER Feat. PE AUC PE AUC PE AUC PE AUC PE AUC PE AUC

±1 emb. 0.2 SPAM 9.23 97.47 8.58 98.32 3.78 99.63 9.85 98.13 8.28 98.60 3.28 99.83
0.4 SPAM 4.65 99.50 4.70 99.50 1.25 99.98 4.80 99.49 4.55 99.82 1.18 99.98
0.6 SPAM 4.35 99.72 4.35 99.72 0.85 99.99 4.35 99.72 4.02 99.89 1.03 99.98

TABLE III
BOSSBASE: PERCENTAGE OF ADDITIONAL TRAINING EXAMPLES THAT BECAME SUPPORT VECTORS IN THE CASE OF PAIRED BOOTSTRAPPING

APPROACH. THE FIRST COLUMN GIVES THE PERCENTAGE OF THE COVER IMAGES WHEN THE BOOTSTRAPPING SET CONSISTED ONLY OF COVER IMAGES,
THE SECOND COLUMN THE PERCENTAGE OF THE ADDITIONALLY GENERATED STEGO IMAGES. THE THIRD COLUMN GIVES THE PERCENTAGE OF THE

COVER IMAGES WHEN THE BOOTSTRAPPING SET CONSISTED ONLY OF STEGO IMAGES, THE SECOND COLUMN THE PERCENTAGE OF STEGO IMAGES. THE
LAST TWO COLUMNS SHOW THE NUMBER OF ADDITIONAL IMAGES FOUND BY BOOTSTRAPPING.

BCover
paired BStego

paired Additional imgs.
Alg. ER Feat. % cover imgs. % stego imgs. % cover imgs. % stego imgs. BCover BStego

HUGO 0.4 SPAM 99.3 97.4 92.6 94.3 1419 (±1237) 3461(±1617)

±1 emb. 0.4 Lyu&Farid 97.3 79.8 86.4 99.8 1567 (±198) 1374 (±160)
0.2 SPAM 98.4 86.9 77.8 96.4 706 (±51) 711 (±42)
0.4 SPAM 98.7 79.3 59.1 77.2 421 (±44) 377 (±22)

complete set. Bootstrapping on HUGO shows minor
improvement.

3) According to Table II, bootstrapping on stego images
seems to be more suitable for SPAM features. In con-
trast, bootstrapping on cover images appears preferable
for Lyu and Farid features.

4) Table III shows that — as originally intended by our
approach — most new image feature pairs in the aug-
mented data set indeed become new support vectors.
This effect is less pronouced in the case where the initial
detection performance is already high (±1 embedding
Table II and Table III).

5) When using cover images for bootstrapping, the cover
image features of the additionally included bootstrapping
pairs are more likely to become support vectors than the
corresponding stego image features. The converse is true
for bootstrapping using stego images (see Table III).

6) With increasing PE value (the minimum overall error
point of the ROC curve), the number of additional
images decreases (Tables II and III).

7) The single bootstrapping approach — instead of the

paired bootstrapping approach — improves the perfor-
mance in most cases to a smaller degree (see ±1 em-
bedding, Table II, Figure 4, and Figure 6). In the case of
LSB matching ER = 40% (BOWS-2 database), single
bootstrapping on cover images decreases the detection
performance.

8) Figures 4 and 6 show that single bootstrapping leads
only to improvements at small false alarm rates, whereas
performance deteriorates at higher false alarm rates in
the ROC curves.

9) Table IV demonstrates that training set and the aug-
mented training set need only between a third and a
half of the time in comparison to the full training set
(training set and bootstrapping set, Table I).

In the case of Lyu and Farid features, the small false alarm
rate as compared to the much higher miss rate indicates that
the classifier mainly tries to model the set of cover images by
fitting its decision surface as closely as possible around it. As
a result, misses of stego images are predominantly inside the
cover image set (as seen from the point of view of the Lyu
and Farid feature space). If one tries to improve steganalysis

TABLE IV
RUN-TIME RESULTS OF THE TRAINING AND TEST DATA SETS USED FOR

BOOTSTRAPPING ON THE BOWS-2 DATABASE.

ER training set augmented training set full training set
0.2 min 02 hrs 13 min 02 hrs 16 min 07 hrs 59 min

max 03 hrs 23 min 03 hrs 26 min 11 hrs 15 min
0.4 min 01 hrs 11 min 01 hrs 16 min 04 hrs 30 min

max 01 hrs 45 min 01 hrs 50 min 06 hrs 15 min
0.6 min 00 hrs 47 min 00 hrs 50 min 03 hrs 18 min

max 01 hrs 22 min 01 hrs 25 min 04 hrs 59 min

performance by including more misses into the training data,
one risks destroying the enclosing capability of the decision
surface on which the success of this steganalyzer is based. On
the other hand, including more false alarms leads to a finer
modeling of the cover image set enclosure. One reason why
this seems to be less risky could be that the cover images
form a more compact set in the space of the Lyu and Farid
features than stego images. The converse observation seems
to be valid for SPAM features: here, the stego images seem to
form a more compact set than the cover images. Unfortunately,
we currently do not have experimental results that explicitly
confirm this idea.

V. CONCLUSION

Our investigation of paired bootstrapping shows that one can
obtain a increased steganalysis performance by including only
a small number of additional training images. In this paper,
applying single bootstrapping naı̈vely, as is well-known in the
literature, works only at small false alarm rates. We observed
that almost all image pairs selected by the paired bootstrapping
process result in additional support vectors.

In the case of the Lyu and Farid features in conjunction with
SVM classifiers, best results are obtained on LSB matching
steganograms when bootstrapping is performed only on cover
images. Additional stego images, however, can sometimes
have the opposite effect, so it is not advisable to use them
for bootstrapping with this type of steganalyzer. In the case of
SPAM features, bootstrapping on stego images led to a better
performance than on cover images. Although bootstrapping on
stego images led to a a better performance for detecting HUGO
than on cover images, bootstrapping on cover images for
HUGO still will improve steganalysis performance, although
at a slower rate. Paired bootstrapping on cover images in terms
of Lyu and Farid features and bootstrapping on stego images in
terms of SPAM features lead to improvements at small false
alarm rates. This, however, is not a severe disadvantage in
realistic scenarios, since there are many more cover images
than stego images, so that reducing false alarms has a large
impact on the overall error rate. Moreover, bootstrapping sets
consisting entirely of cover images are much easier to obtain
than stego images.

ACKNOWLEDGMENT

P. H. D. Le was supported by the German Federal Ministry
of Research and Education under the research grant number

17N0208, PT-AIF. We would like to thank Andrew P. Smith.

REFERENCES

[1] B. Schölkopf and A. J. Smola, Learning with Kernels. Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2002.

[2] B. E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifiers,” in COLT, 1992, pp. 144–152.

[3] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges,
and A. Smola, Eds. MIT Press, Cambridge, MA, USA, 1999.

[4] P. Bas, T. Filler, and T. Pevný, “”Break our steganographic system”:
The ins and outs of organizing BOSS,” in Information Hiding, 13th
International Conference, ser. Lecture Notes in Computer Science,
T. Filler, T. Pevný, S. Craver, and A. D. Ker, Eds. Springer-Verlag,
May 18–20 2011, pp. 59–70.

[5] T. Filler, T. Pevný, and P. Bas, “BOSS (Break Our Steganography
System),” 2010, software available at http://www.agents.cz/boss/.

[6] European Network of Excellence ECRYPT, “BOWS-2 (Break Our
Watermarking System),” 2008, software available at http://www.agents.
cz/boss/ (accessed 2010).

[7] A. D. Ker and I. Lubenko, “Feature reduction and payload location with
WAM steganalysis,” in Media Forensics and Security, 2009, p. 72540.

[8] T. Pevný, T. Filler, and P. Bas, “Using high-dimensional image models
to perform highly undetectable steganography,” in Information Hiding -
12th International Conference, ser. Lecture Notes in Computer Science,
R. Böhme, P. W. L. Fong, and R. Safavi-Naini, Eds., vol. 6387. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 161–177. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1929304.1929317

[9] V. Schwamberger and M. O. Franz, “Simple algorithmic modifications
for improving blind steganalysis performance,” in Proceedings of the
12th ACM workshop on Multimedia and security, ser. MM&Sec ’10.
New York, NY, USA: ACM, 2010, pp. 225–230. [Online]. Available:
http://doi.acm.org/10.1145/1854229.1854268

[10] S. Lyu and H. Farid, “Steganalysis using higher-order image statistics,”
IEEE Transactions on Information Forensics and Security, vol. 1, no. 1,
pp. 111–119, March 2006.

[11] P. H. D. Le and M. O. Franz, “Single band statistics and steganalysis
performance,” in IIH-MSP. IEEE Computer Society, 2010, pp. 188–
191.

[12] E. P. Simoncelli and E. H. Adelson, “Subband transforms,” in Subband
Image Coding, J. W. Woods, Ed. Norwell, MA, USA: Kluwer Academic
Publishers, 1990.

[13] R. W. Buccigrossi and E. P. Simoncelli, “Image compression via joint
statistical characterization in the wavelet domain,” IEEE Transactions
on Image Processing, vol. 8, no. 12, pp. 1688–1701, December 1999.

[14] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced Lectures on Machine Learning, ser. Lecture Notes in Computer
Science, O. Bousquet, U. von Luxburg, and G. Rätsch, Eds., vol. 3176.
Berlin, Germany: Springer-Verlag, October 2004, pp. 63–71.

[15] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning, ser. Adaptive Computation and Machine Learning.
Cambridge, MA, USA: MIT Press, January 2006.

[16] S. Geisser and W. F. Eddy, “A predictive approach to model selection,”
Journal of the American Statistical Association, vol. 74, no. 365, pp.
153–160, March 1979.

[17] T. Pevný, P. Bas, and J. J. Fridrich, “Steganalysis by subtractive pixel
adjacency matrix,” IEEE Transactions on Information Forensics and
Security, vol. 5, no. 2, pp. 215–224, 2010.

[18] J. Kodovskỳ, “Ensemble classification in steganalysis-crossvalidation
and AdaBoost,” Binghamton University, Tech. Rep., 2011.

[19] J. J. Fridrich, J. Kodovský, V. Holub, and M. Goljan, “Breaking hugo
- the process discovery,” in Information Hiding - 13th International
Conference, IH 2011, Prague, Czech Republic, May 18-20, 2011, Re-
vised Selected Papers, ser. Lecture Notes in Computer Science, T. Filler,
T. Pevný, S. Craver, and A. D. Ker, Eds., vol. 6958. Springer, 2011,
pp. 85–101.

[20] T. Fawcett, “An introduction to ROC analysis,” Pattern Recogn.
Lett., vol. 27, no. 8, pp. 861–874, Jun. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.patrec.2005.10.010

[21] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The
binormal assumption on precision-recall curves,” in Proceedings of the
20th International Conference on Pattern Recognition. IEEE Computer
Society, 2010, pp. 4263–4266.

http://www.agents.cz/boss/
http://www.agents.cz/boss/
http://www.agents.cz/boss/
http://portal.acm.org/citation.cfm?id=1929304.1929317
http://doi.acm.org/10.1145/1854229.1854268
http://dx.doi.org/10.1016/j.patrec.2005.10.010

	Introduction
	Steganalyzers
	Lyu and Farid type features
	SPAM features

	Paired Bootstrapping
	Experimental Results
	Conclusion
	References

