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Abstract—Watermarked images are increasingly prevalent
in the internet. Hence, any practical steganalyzer has to take
the presence of watermarked images into account, particularly
as potential source of false alarms due to similar embed-
ding algorithms. In this study, we investigate the impact
of watermarked images on the performance of a standard
steganalyzer using two recent watermarking schemes: JPEG
Compression Resistance Watermarking (JCRW) in the DCT
domain [1] and Controllable Secure Watermarking (CSW) [2] in
the pixel domain. Our findings show that JCRW and CSW do
interfere with steganalysis. In particular, CSW-watermarked
images were mostly classified as stego images thus rendering the
investigated steganalyzer useless because of the excessively high
false alarm rate. We propose a two-step classifier to handle this
problem which achieves the same performance as the original
steganalyzer, but in the presence of watermarking.
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I. INTRODUCTION

The rising interest in the protection of digital content has
lead to an increased use of watermarking. As a consequence,
any steganalyzer applied to large assorted image datasets
(e.g. from the internet) is likely to encounter watermarked
images. In forensic steganalysis, where one is only interested
in detecting steganography, not in watermarks, this poses a
severe problem: Since both watermarking and steganography
are concerned with hiding a message in other information
it is quite plausible that both techniques interfere with each
other, e.g. certain watermarks are erroneously detected as
steganograms, or steganographic messages are embedded in
addition to the watermarks in order to further obscure them.

Note that especially the first point of watermarked images
as false alarms can render a steganalyzer completely useless
in spite of the fact that currently, watermarked images
account for only a few percent of all images available online.
Typically, watermarked images will still greatly outnumber
the few – if at all – real steganograms in an assorted online
image database. If a significant proportion of the water-
marked images is erroneously detected as steganograms,
the few real hits will be swamped in their sheer number.
In a realistic, highly unbalanced steganalysis scenario the
number of clean images will exceed that of steganograms by
many orders of magnitudes which makes keeping the false
alarm rate low a crucial feature of any practical steganalyzer.
Watermarking is likely to interfere with this goal.
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Figure 1: Steganalysis and watermark detection

We have to consider four image types that can arise in this
context (Figure 1):

• non-watermarked cover images1, denoted as C,
• non-watermarked stego images (S),
• watermarked cover images (CW ),
• and watermarked stego images (SW ).

The detection of both watermarks (CW vs. C) and stego
images (S vs. C) are well-studied fields (e.g., [3]–[5]).
However, to our knowledge, the combined problem has not
been studied in the literature so far. Here, we focus on
steganalysis in the presence of watermarking, i. e., on the
dichotomy S ∪ SW vs. C ∪CW . Our test scenario consists
of the image databases BOSSbase [6], [7] and BOWS-2
[8]. The images were represented in the formats JPEG and
PNG. The JPEG images were watermarked in the DCT
domain using JPEG Compression Resistance Watermarking
(JCRW) [1], the PNG images in the pixel domain using
Controllable Secure Watermarking (CSW) [2]. In the next
step, we generated stego images for all four image types
by LSB matching (also called ±1 embedding) [9]. Our test
steganalyzer is a standard Support Vector Machine (SVM,
e.g. [10]) with Subtractive Pixel Adjacency Matrix (SPAM)
features [11] which are known to give good results for LSB
matching.

SVMs need a training set consisting of cover-stego image
pairs to derive statistical regularities for predicting whether
an unknown image is steganographically manipulated or not.
We will show that such an SVM-based steganalyzer trained

1In the following, the terms cover and stego image always refer to the
non-watermarked cases C and S, respectively.
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exclusively on non-watermarked images fails in the presence
of certain types of watermarking. Here, a straightforward
approach would be to augment the training set by addi-
tionally including watermarked cover-stego image pairs. We
will see that this approach is indeed viable for steganalysis
in the presence of watermarking, however at the price of
a considerably reduced performance. It appears that water-
marking and steganography mask each other in the training
process. In order to handle watermarked images without
decreasing performance, we propose a two-step steganalyzer
with a preselection step that picks out the watermarked
images before steganalysis. Our experiments show that this
steganalyzer achieves the same performance in the presence
of watermarking as the original test steganalyzer.

In the next section, we describe the various components
of our test scenario in more detail. The experimental results
are presented in Section III. Finally, we conclude our paper
with a brief summary and discussion in Section IV.

II. STEGANALYZER AND WATERMARKING TECHNIQUE

We start by introducing LSB matching as the steganogra-
phic algorithm, and CSW [2] and the JCRW [1] technique
as the two applied watermarking techniques. In Subsec-
tion II-C, we describe our initial steganalyzer and extend
the initial classifier by using a preselection step.

A. LSB matching
Assume that the image is denoted as a vector where the

pixel is indexed by a single number, i. e. x = (xk)nk=1 ∈
{0, ..., 255}n. LSB matching modifies the pixel elements by
incrementing and decrementing the pixel value. From this
point of view, LSB matching is also called ±1 embedding.
If the message bit mi ∈ {0, 1} is contrary to the least signif-
icant bit of the image, i. e. mi ̸= (LSB(xi)), LSB matching
can be described by the following function:

Emb±1(xi) =

⎧
⎪⎪⎨

⎪⎪⎩

xi − 1, if x = 255,
xi + 1, if x = 0,
xi − 1, for even message bit number,
xi + 1, for odd message number.

B. Watermarking techniques
The JCRW technique [1] is designed to be robust against

JPEG compression. JCRW operates in the discrete cosine
transformation (DCT) domain that is also used in the
JPEG standard. The watermark is embedded in the DCT-
coefficients. The process can be divided into two steps. The
first step identifies the DCT-coefficients which are suitable
to resist against high compression. To this end, JPEG com-
pression is applied from a quality factor of 1% up to 100%
to identify the likely DCT-coefficients for embedding. In the
second step, the determined DCT-coefficients from the first
step are selected again. Here, the method selects the DCT-
coefficients with a minimal difference to the uncompressed
DCT-coefficient.

The controllable secure watermarking (CSW) technique [2]
controls the tradeoff between robustness and security. In
CSW, the security means that the distribution of the host
contents and the marked contents is the same, i. e. the
DKL(x, y) = 0, where DKL indicates the Kullback-Leibler
divergence [12]. This security terminology is also used in
the transportation natural watermarking (TNW) [12] which
serves as basis for CSW. The CSW technique contains an
additional matrix V compared to the TNW technique, which
allows to alter the host signal in the orthogonal complement
of the embedding subspace [2]. The invariant subspace
is obtained from the column vectors of the matrix (VU)
where U is the key in the form of a matrix. The control
of the tradeoff lies in the dimension of V. The increase
of the dimension of V will increase the security of the
CSW whereas its robustness decreases. In the case the CSW
technique disregards the matrix V, the CSW is equal to the
TNW technique. According to [12], TNW does not reduce
the robustness of the classical natural watermarking (NW)
scheme.

C. SPAM features type steganalyzer
Our initial steganalyzer uses SPAM (Subtractive Pixel

Adjacency Matrix) features [11] as input features. The
classification was done with a 1-norm soft margin non-linear
C-SVM classifier using a Gaussian kernel. The choice
of the parameter C of the SVM and the width σ of the
Gaussian kernel was based on the paired cross-validation
procedure described in [13].

The SPAM features [11] make use of the dependencies
between neighboring pixels by regarding their
transition probabilities. For the 8-neighborhood
{↖,↙,↗,↘,←,→, ↑, ↓} of a pixel, the model
determines the probabilities of the eight transitions. Let
X = (Xij) ∈ {0, ..., 255}m1×m2 be an image. In the first
step [11], the model calculates the difference array D•, for
each direction • ∈ {↖,↙,↗,↘, ←,→, ↑, ↓} separately.
For instance, the horizontal left-to-right transition, D→ij is
calculated as

D→ij = Xij −Xij+1 , (1)

where 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 − 1. The next step permits
two options, either the first-order Markov process calculated
by

M→uv = Pr(D→ij+1 = u|D→ij = v) , (2)

or the second-order Markov process described as

M→uvw = Pr(D→ij+2 = u|D→ij+1 = v,D→ij = w) , (3)

where u, v, w ∈ {−T, ..., T}, 1 ≤ T ≤ 255. The SPAM
features are obtained by averaging the eight matrices M• as
follows

F.
1,...,k = 1

4 [M←. + M→. + M↑. + M↓. ] ,

F.
k+1,...,2k = 1

4 [M↖. + M↙. + M↗. + M↘. ] , (4)
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where k = (2T +1)3 for the second-order features and k =
(2T +1)2 for the first-order features. In our implementation,
the SPAM features were computed using the SPAM software
provided on the BOSS website [6]. Originally, the authors
in [11] propose to apply T = 4 for the first-order Markov
process (162 features) and T = 3 for the second-order
Markov process. Here, we use the second order features
resulting in 686 values for the support vector machine.

D. Two-step classifier

In this work, the extended steganalyzer is composed
of three 2-SVM classifiers: 2-SVMPre, 2-SVMN , and 2-
SVMW (see Figure 2). The proposed steganalyzer can be
divided into two steps: the first 2-SVMPre works as a
preselection step whereby the focus is on the classification
between non-watermarked images and watermarked images;
in the second step, we focus on the detection of stego and
cover images by using two different classifiers: the 2-SVMN

for detecting non-watermarked cover and stego images and
the 2-SVMW for watermarked cover and stego images
respectively. We use the identical 2-SVM and the SPAM
features as input features as described above for all three
classifiers, i.e. SPAM features are used for watermarking
detection and steganalysis.

III. EXPERIMENTS

Our test scenario is based on the image databases BOSS-
base 0.92 [6], [7] containing 9,074 images and BOWS-2 [8]
containing 10,000 images. We select 8,000 images from each
database resulting in 16,000 cover images in PNG format.
For each cover image, we also generated a corresponding
watermarked image using CSW according to [2]. Here, the
embedded watermarked message is {-1, 1}512. We reduce
the robustness in favor of security by setting the size of
the additional matrix V to the size of the input image.
From both image types, we generated stego images with
an embedding rate of ER = 40% using LSB matching [9].
As a result, we obtained 64,000 (16,000 x 4) PNG images
(Figure 4). Because of the popularity of JPEG formats, we
produced 64,000 JPEG images in the same manner but using
JCRW [1] for watermarking. In JPEG images, the embedded
watermarking logo is shown in Figure 3. Each of the eight
image sets (containing 16,000 images) was separated into
two disjoint sets: a training set containing 4,000 and a test
set containing 12,000 images (see Figure 4). In the case
of SW , the image sets was first watermarked and then
steganographic manipulated.

We report steganalysis performance as the error probabil-
ity PE at the point of the minimum overall error point of
the receiver operating characteristic (ROC) curve, and as
well as the area under the ROC curve (AUC). AUC was
determined according to [14].

Figure 3: Embedded binary watermark logo (24× 7)
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Figure 4: Training and test sets for PNG and JPEG images

A. Standard classifier trained on
non-watermarked images

In the first experiment, we trained a standard 2-SVM
with SPAM features (referred to as 2-SVMN ) on 4,000
non-watermarked cover images and 4,000 non-watermarked
stego images. Steganalysis performance was tested on the
remaining 12,000 images of each image type. Table I
shows that CSW-watermarked images CW are typically
misclassified as stego images SW . Only 1.70 % of the CSW-
watermarked images CW were correctly classified as cover
images. In contrast, steganographically manipulated JCRW-
watermarked images are mostly classified as cover images
(8.88 % Table I) which means that LSB steganography is
hidden by JCRW.

B. Training with watermarked images

In the second experiment, we augmented the training set
with cover-stego pairs of watermarked images. The training
set of the classifier consisted of the first 2,000 cover images
and its corresponding 2,000 stego images and the last 2,000
watermarked cover images and its corresponding 2,000
watermarked stego images. We denote the steganalyzer with
the augmented training set as 2-SVMW (naı̈ve approach).
The naı̈ve approach on the 2-SVMW increases the detection
performance both for watermarked cover images and water-
marked stego images. But in the case of CSW, the detection
performance of the non-watermarked images decreases from
94.31 % to 91.93 % in the case of C and from 95.72 %
to 87.33 % in the case of S (see Table I). Apparently,
steganography and watermarking mask each other during
training.

C. Two-step steganalyzer

As a potential remedy for the decreased detection perfor-
mance of the non-watermarked images for CSW, we tested
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Figure 2: Two-step steganalyzer

Table I: Steganalysis performance of standard (2-SVMN ) and naı̈ve approach (2-SVMW ). C, S, CW and SW denote the
detection rates for the corresponding image classes.

Non-watermarked test set Watermarked test set
Classifier Watermark AUC PE C S AUCW PW

E CW SW

2-SVMN JCRW 99.99 9.14 98.79 99.73 72.06 49.68 91.76 8.88
CSW 99.17 4.98 94.31 95.72 41.97 49.97 1.70 98.36

2-SVMW JCRW 99.98 1.36 99.15 98.13 99.99 0.99 98.13 99.90
CSW 95.80 10.37 91.93 87.33 99.99 1.23 97.82 99.72

the two-step steganalyzer in our third experiment. Note that
we used only 4,000 images from each type of training
set for all three classifiers according to Figure 4 without
mixing training and test set. In a first preselection step,
watermarks are detected by a 2-SVMPre classifier. Table II
shows that the preselection step is highly accurate. In the
second step, we use exactly the same two classifiers as in
the first and second experiments: 2-SVMN and 2-SVMW .
We apply 2-SVMW if the watermark detector 2-SVMPre

classifies the input image as watermarked, otherwise we
apply 2-SVMN . The final result of the two step classifier

Table II: Watermark detection performance of 2-SVMPre

and 2-SVMPre
0.001

Classifier C CW S SW

2-SVMPre 99.29 96.17 99.00 98.93

2-SVMPre
0.001 99.91 87.37 99.86 95.20

(denoted as 2-Step-SVMPre) is shown in Table III. As in-
tended, Table III suggests that the performance of the 2-Step-
SVMPre is similar to the initial 2-SVMN for discriminating
between non-watermarked stego and cover images (PE =
4.98 % vs. PE = 5.11 %). If we further reduce the rate
of missed watermarked images by an appropriate choice

of the threshold of 2-SVMPre from 1 % to 0.1 % on the
training set, we obtain a more accurate preselection step,
denoted as SVMPre

0.001 in Table II. When the identical second
step is applied to the output of SVMPre

0.001, we obtain the
steganalyzer 2-Step-SVMPre

0.001 in Table III. The performance
of the conservative 2-Step-SVMPre

0.001 classifier could almost
reach the performance of the initial 2-SVMN classifier in
terms of PE (PE = 4.98 % vs. PE = 4.99 %, see Table III).
However, the performance on watermarked images decreases
since the input of 2-SVMW is more contaminated by non-
watermarked images on which this classifier was not trained.

Table III: Comparison of steganalysis performance for the
four investigated approaches (in %) for PNG (left) and CSW
images (right)

Classifier PE C S PE CW SW

2-SVMN 4.98 94.31 95.72 49.97 1.70 98.36

2-SVMW 10.37 91.93 87.33 1.23 97.82 99.72

2-Step-SVMPre 5.11 94.65 95.13 10.29 91.73 87.69

2-Step-SVMPre
0.001 4.99 94.39 95.63 9.93 91.82 88.32
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IV. CONCLUSION

In this paper, we investigated the influence of water-
marked images on steganalysis. To our knowledge, the
combined problem has not been studied in the literature
so far. We found that both watermarking schemes disturb
steganalysis. In particular, the standard steganalyzer based
on SPAM features classified most of the CSW images as
stego images. This shows that – as initially suspected –
steganalysis can be highly perturbed or even made impossi-
ble in a realistic unbalanced image dataset scenario where
watermarked images are likely to outnumber steganograms
by far. The results we found in the pursuit of a possible
answer to this problem can be summarized as follows:

• The naı̈ve approach of training a standard 2-SVMW

on an augmented training set consisting of both wa-
termarked and non- watermarked images reaches high
performance in detecting watermarked stego and cover
images, however at the price of a considerably re-
duced performance on non-watermarked images. This
precludes this approach from practical application since
watermarked images currently account only for a small
percentage of all available images.

• A SPAM-feature-based classifier is capable of detect-
ing CSW- and JCRW-watermarked images with high
accuracy and thus can be used as a preselection step.

• Our proposed two-step steganalyzer reaches the per-
formance of the initial 2-SVMN classifier on non-
watermarked images, with reduced performance on
watermarked images. Currently, this poses no practical
problem. However, if the proportion of watermarked
images further increases, the design of the steganalyzer
can be adapted, e.g. by tuning the preselection step to a
different false alarm rate, and by training the secondary
classifiers on the output of the preselection step.

According to our results, it seems that watermarked images
are not well-suited as cover images for steganographic
manipulation (PW

E = 0.99 for JCRW and PW
E = 1.23 for

CSW, see Table I). Therefore, we think that the need for
the detection of watermarked stego images is not a likely
scenario.
In future work, we want to extend our investigation to dif-
ferent steganalyzers and watermarking schemes. Of special
interest will be the question of how to combine a suite
of specialized steganalyzers and watermarked detectors into
one system. Here, the proposed two-step approach has the
advantage that the two problems of detecting steganography
and watermarks are decoupled and thus can be addressed
separately.
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