ANALYZING THE CHARACTERISTIC MAP OF TRIANGULAR
SUBDIVISION SCHEMES
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Abstract. Tools for the analysis of generalized triangular box spline subdivision schemes are
developed. For the first time the full analysis of Loop’s algorithm can be carried out with these tools.
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1. Introduction. In the last two decades many subdivision schemes for different
purposes were devised, see e.g. [2, 1, 6, 11, 3, 4, 7]. All these algorithms generate
from an initial control net a sequence of nets which converges to a limiting surface.
Although sufficient conditions for the convergence to a smooth limiting surface were
given in [12] and [9], their rigorous application has been carried out only for some of
the above mentioned schemes by Peters and Reif [8, 7].

In this paper we will investigate the smoothness of the limiting surfaces obtained
by subdivision algorithms for triangular nets. According to the sufficient conditions of
[12] and [9], we have to analyze the spectral properties of the subdivision matrix asso-
ciated with the algorithm and the so-called characteristic map. Symmetry properties
of the algorithms help to simplify this analysis significantly.

Subsequently the analysis is carried out for Loop’s algorithm [6]. The spectral
properties of the subdivision matrix imply some characteristics of the algorithm as
already observed by Loop [6]. To prove regularity and injectivity of the characteristic
map we use its Bézier representation as in [13] and [8]. This leads to a rigorous proof
of tangent continuity of the limiting surface of Loop’s algorithm.

2. Generalized subdivision. We presume that all subdivision algorithms con-
sidered here are stationary, local, and linear schemes for tri- or quadrilateral nets.
Such an algorithm generates starting from an initial arbitrary tri- or quadrilateral net
Cj a sequence of ever finer nets {C,,}55_,. Thereby only finite, affine combinations,
represented by so called masks, are used to compute the points of the net C,, from
Cm—1,m > 1. This makes up for the locality and linearity of these schemes. Since
we use the same affine combinations in every step m of the iteration, the subdivision
algorithm is said to be stationary.

The sequence of nets {C,,}55_, generated by such an algorithm will eventually
converge to a limiting surface s consisting of infinitely many tri- or quadrilateral
patches.

An example for Loop’s algorithm is shown in Figure 2.1. The upper left net is
the initial net Cy. The other nets Cyq, ..., C4 are the result of the first four iterations
of Loop’s algorithm starting from Cg.

Suppose that on the regular parts of a net, i.e. parts of the net that contain only
ordinary vertices of valence 6 or 4 for tri- or quadrilateral nets respectively, standard
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FiGc. 2.1. The initial triangular net Co (top left) and the nets Ci,...,C4 of the first four
iteration steps of Loop’s algorithm.

subdivision rules for symmetric box splines apply. Examples for such standard sub-
division rules are the subdivision rules for tensorproduct splines [5] or for quartic box
splines over the three-directional grid. On this condition the regular parts of a net
determine C*-surfaces.

Near vertices of valence # 6 (# 4) for tri- (quadri-)lateral nets, the so-called
extraordinary vertices, special subdivision rules are used, which do not change the
number of extraordinary vertices in two consecutive nets C,,_; and C,,, m > 2.
Since the subdivision masks of stationary, local schemes have fixed finite size, we can
restrict the analysis to nets Cy with a single extraordinary vertex surrounded by r
rings of ordinary vertices. An example is illustrated in Figure 2.2 for r = 3.

Fi1G. 2.2. An initial net Cy with an eztraordinary verter of valence 5 (marked by ®) surrounded
by r = 3 rings of ordinary vertices.

The particular choice of r depends on the subdivision algorithm. It must be
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such that the regular parts of Cy define at least one complete surface ring. Loop’s
algorithm requires for example r» = 3.

If we denote by s, the surface that corresponds to the regular parts of C,,, then
the limiting surface is given by s = Usy,. Obviously s,,_1 is part of s,, for m > 1.
So taking s,;,,—1 away from s,, we obtain a surface ring r,, which is added to spy,—1 in
the mth iteration step. This yields s = so UJ,,51 Im-

At an extraordinary vertex of valence n the surface rings r,, can be parametrized
over a common domain Q x 7, in terms of a subnet D,,, C C,, and certain functions
Nk 1fdY ..., dE denote the vertices of D,,, we have

vy QxZ, > R3
K
(u,v,7) =l (u,v) = den N*(u,v,5) = N(u,v,7) dm,

k=0

where Q is either
Q% = {(u,v)|u,v>0and 1 < u+4v<2}
in case of trilateral nets or
Q" = {(u,v)|u,v > 0 and 1 < max{u,v} < 2}

in case of quadrilateral nets, see Figure 2.3.
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el
Fia. 2.3. The domains Q% (left) and QP (right).

Note that all nets D,, have equally many vertices. Hence the stationary, local,
and linear subdivision algorithm can be described by a square subdivision matriz A,
i.e.

d, = Adpo1.

3. The subdivision matrix and the characteristic map. Let Ag,..., g be
the eigenvalues of A listed with all their algebraic multiplicities and ordered by their
modulus

Aol > [A1] > ... > [Ak]

and denote by vq, ..., vk the corresponding generalized eigenvectors. If |Ag| > |A1]| =
|[A2| > |As|, the two dimensional surface that is defined by the net [vq, vq]

x(u,v,7) := N(u,v,j) [v1,va] : Q@ x Zp, = R’
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F1a. 3.1. The characteristic map of Loop’s algorithm for n = 7.

is called the characteristic map of the subdivision scheme [12]. Note that x can
be regarded as consisting of n segments x’ (u,v) := x(u,v,j). An example for the
characteristic map of Loop’s algorithm is shown in Figure 3.1.

The crucial theorem for the analysis of subdivision algorithms can now be stated
in terms of the subdominant eigenvalue A := Ay = A3 and x:

THEOREM 3.1. Let A be a real eigenvalue with geometric multiplicity 2. If the
characteristic map x is reqular and injective and

Ao =T1>[A[ > [As],

then the limiting surface is a Ct-manifold for almost all initial control nets Cq.
Proofs of this theorem can be found in [12] or in a more general setting in [9].
In the sequel we apply Theorem 3.1 to subdivision schemes with two additional
properties.
1. A subdivision algorithm is said to be symmetric, if it is invariant under shifts
and reflections of the labelling of d,,,. This means if permutation matrices .S and R
characterized by

N(u,v,j+ 1)dm = N(u,v,j)Sd»,  and
N(v,u,—j)dm = N(u,v,j)Rdpm

exist, then A commutes with S and R:
AS=SA and AR= RA.

Note that S and R exist especially for subdivision algorithms based on box splines
with regular hexagonal or square support.

2. A subdivision algorithm is said to have a normalized characteristic map, if
x%(p) = (p,0) with p > 0 and p = e; + e3 or p = 2e; + 2e, in case of tri- or
quadrilateral nets, respectively, see Figure 2.3.

The first property implies that the subdivision matrix A has a block-circulant
structure with square blocks A;,j = 0,...,n — 1. Thus A is unitary similar to a
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block-diagonal matrix A. The diagonal blocks of A result from A; by the discrete
Fourier transform:

n—1
A\j:Zw;jkAk forj=0,...,n—1,
k=0

where w,, = exp(2mi/n) denotes an n-th root of unity. This means, if ¥ is an eigenvec-
tor of some block A; corresponding to the eigenvalue g, then y is also an eigenvalue
of A with eigenvector

(3.1) v =[wiv, WiV, ...

If * denotes the complex-conjugate, the blocks of A satisfy A\j = A\Z—j for j =
1,...,|n/2]. Hence there are always two linear independent, real eigenvectors vi =
R(v) and vy = J(v) corresponding to the real subdominant eigenvalue A. From this
a first necessary condition for the subdominant eigenvalue can easily be deduced [8]:

Lemma 3.2. The characteristic map of a symmetric subdivision scheme in not
wngective, if the subdominant eigenvalue is from a block Ej forj#1,n—1.

Equation (3.1) shows also that normalization of an injective characteristic map
can always be achieved by an appropriate scaling of v.

4. Sufficient conditions for regularity and injectivity. Throughout this
chapter we will assume that the subdominant eigenvalue A is a real eigenvalue from
the blocks Ay and A,,_1.

The two properties of the last chapter imply that the characteristic map x is sym-
metric under rotations and reflections for subdivision schemes for tri- or quadrilateral
nets ([8]). They allow us to restrict the analysis of the characteristic map to its single
segment x:

TueoreEM 4.1. Let x° = [z,y] and denote by x¥ = [x,,y,] the partial deriva-
tives of x° with respect to v. If the normalized characteristic map x of a symmetric
subdivision scheme for quadrilateral nets satisfies

xg(u, v) >0 for all (u,v) € Q-

componentwise, then the characteristic map is reqular and injective.

For a proof of this theorem see [8]. The proof also applies to any map z : Q% x
Zn — IR? that shares the above symmetry properties of the map x.

Theorem 4.1 can be transfered to triangular nets by the observation that any
triangular net as in Figure 2.2 can be viewed as a quadrilateral net with diagonal
edges. This is shown in Figure 4.1 for the domains Q% and Q.

A A

/ S=
AR N

Fia. 4.1. Converting a triangular to a quadrilateral net.

AQH
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In case of triangular nets the domain of the characteristic map y consists of n
plane copies of Q%. Further we have AQ" C AQ# U Q% as illustrated in Figure 4.1.
Define the map z as

7z: 0% x 7, - R

e i 08
(U,t,J)H{ Ayd (u,v) if (u,v) € AQA

Thus z is "covered” by y and Ay and adopts its symmetry properties. Hence Theo-
rem 4.1 1s valid for the map z and can be applied to subdivision schemes for triangular
nets, if x is replaced by y and QF by Q%:

THEOREM 4.2. If for the normalized characteristic map 'y of a symmetric subdi-
vision scheme for triangular nets the segment y° satisfies

yo(u,v) >0 for all (u,v) € 04

componentwise, then the map z is reqular and injective.

In practice we will use the Bézier representation of y® to apply Theorem 4.2.
Hence the proof of the positivity of y? for all (u,v) € Q# reduces to the proof of the
positivity of its Bézier points.

COROLLARY 4.3. [f all Bézier points of yU are positive, then the normalized
characteristic map 'y of a symmetric subdivision scheme for triangular nets is reqular
and njective.

5. Loop’s algorithm. Loop’s algorithm is a generalization of the subdivision

scheme for quartic box-splines over a regular triangular grid. The masks are given in
Figure 5.1, where the parameter a can be chosen arbitrarily from the interval

(5.1) (— cos(2m/n)/4, (34 cos(2m/n))/4) .
3/8
1/8 1/8

3/8

Fi1a. 5.1. The masks of Loop’s algorithm.

The limiting surface generated by this algorithm is a piecewise quartic C'2-surface
except at its extraordinary points. Here the surface is conjectured to be tangent
continuous, see [6].

Obviously, Loop’s algorithm is a symmetric scheme. The form of its subdivision
matrix A depends on the labelling of the vertices in the control net D,,. If we label
them segment after segment counterclockwise as in Figure 5.2 the subdivision matrix
A has a block-circulant structure:

Ay Ay Ap_
An_1 Ag Y
A= . . . c R7n><7n.

[

A A Ao
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Fi1G. 5.2. The labelling of the vertices of the control net Dy for n = 5.

Now we can use the discrete Fourier transform as in Chapter 3 to yield a unitary
similar block-diagonal matrix A with blocks

! l-—a
3/8 | 5/8
R 1/16 | 3/4 | 1/16 1/8
Ao=| 1/8 | 3/4 0 1/8 and
0 3/8 | 3/8 1/410 0 0
0 1/2 | 1/8 3/810 0 0
L 0 1/2 | 1/8 3/810 0 0 |
- 0 -
0| 3/84¢)/4
~ 0 5/8+d,/8 | 1/16 1/16+wi,/16
Aj=|0]3/8+3w,/8 0 1/8
0 3/8 3/8 1/8+wi/8 |0 0 0
0] 3/8+w;7/8 1/8 3/8 000
L 0| 1/8+3w;7/8 |w;7/8 3/8 0 0 0]
for j = 1,...,n — 1 and ¢} +is) = wl. From this we get the eigenvalues of the

subdivision matrix A as follows:
o 1,
® Ly =a—3/8,
o ;= 3/8+cljaforj=1,...,n—1,
e 1/8 and 1/16 each n-fold and
e 0 which occurs (4n — 1)-fold.
Note that pu; = p,_; for j=1,...,|n/2] and 1 > p; for j =2,...,[n/2|. Further-
more Ay = ;\\:‘1_1, so that pq has geometric multiplicity 2. Therefore py is the double
subdominant eigenvalue A of A, if |us| < p1. This last inequality yields the interval
(5.1) for « given by [6].
This verifies the conditions of Theorem 3.1 for the subdominant eigenvalue of the
subdivision matrix. What remains is the analysis of the characteristic map.
REMARK 5.1. The spectral analysis of A can also be used to modify the subdivision
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algorithm so as to generate smoother limiting surfaces [10].

6. The characteristic map of Loop’s algorithm. According to Corollary 4.3
we only need to show positivity of the Bézier points of y? to proof regularity and
injectivity of the characteristic map y of Loop’s algorithm.

Some calculations using a computer algebra system yield the Bézier points of y?
as given in Figure 6.1. Except for positive constants the denominators are given by

D} =5+ 4c),
D2 =54 + 36¢},
D2 =19+ 22¢} + 4c?.

Obviously DL, D%, D3 are positive for arbitrary n > 3 since ¢} > —1/2.
The numerators in Figure 6.1 are of the form

1 2 3
E; = ag + aic,, + asc;, + asc, ap,ai, as,as € 4, or
1 2 3
Efl = b] S, + bZSn =+ bgsn, b]r, bz, b3 c7.

Since ap, a1 > 0, the numerators £, are positive if
ao > a1/2 + |az| + |as|.

This last condition is fulfilled by all £S. The positivity of the other numerators £
for n > 3 can be shown in a similar fashion. This completes the proof for

LEMMA 6.1. Loop’s algorithm generates C'-manifolds for almost all initial tri-
angular nets Cy.

REMARK 6.2. This proof applies also to the subdivision schemes proposed in
[10]. Thus these schemes generate curvature continuous surfaces with flat spots at the
extraordinary points for almost all initial triangular nets Cy.
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