
Merging Multiple 3D Face Reconstructions
Leonard Thießen, Pascal Laube, Georg Umlauf, Matthias Franz

Institute for Optical Systems, University of Applied Sciences Constance, Germany

Abstract—In this paper we present a method to merge multiple
3D face reconstructions into one common reconstruction of
higher quality. The individual three-dimensional face recon-
structions are computed by a multi-camera stereo-matching
system from different perspectives. Using 4-Points Congruent
Sets and Iterative Closest Point the individual reconstructions
are registered. Then, the registered reconstructions are merged
based on point distance and reconstruction tenacity. To optimize
the parameters in the merging step a kernel-based point cloud
filter is used. Finally, this filter is applied to smooth the merged
reconstruction. With this approach we are able to fill holes in the
individual reconstruction and improve the overall visual quality.

I. INTRODUCTION

Face recognition is an important problem in biometric
applications that is usually based on two-dimensional images.
However, it has been shown that the recognition rate can be
improved, if the recognition is based on 3D face reconstruc-
tions, see Hensler et al. [1]. This requires an accurate and fast
reconstruction method, e.g. based on real-time multi-camera
stereo-matching as presented in [2]. The algorithm is based on
four synchronized cameras (Figure 1) which captures images
of a face from different perspectives (Figures 2(a)-2(d)). With
this system it is possible to generate high-resolution depth
images (Figure 2(e)) in real-time. This reconstruction also
contains detailed information about the reconstruction tenacity
(Figure 2(f)). A bad matching pixel correspondence in the
computation of the depth map will result in a low tenacity
value for the reconstructed 3D point. As a result, the algorithm
yields one 3D reconstruction of the captured face.

Fig. 1. Multi-camera stereo-matching system.

The main focus of [1] and [2] was on recognition rate and
reconstruction speed, reconstruction quality was not the main

(a) (b) (c) (d)

(e) (f)

(g) (h) (i) (j)

Fig. 2. Output of the multi-camera stereo-matching system. Figures (a)-
(d) show the camera images yielding the depth map in Figure (e) with
reconstruction tenacity (red: good tenacity, yellow: medium tenacity, cyan:
bad tenacity) in Figure (f) and 3D reconstruction in Figure (j). Figures (g)-(j)
show different 3D reconstructions from different perspectives.

concern. Thus, the reconstructions may be noisy or have holes.
On a single GPU, the reconstruction system can compute up to
four 3D reconstructions per second, the reconstruction quality
can be improved by merging several 3D reconstructions shown
in Figures 2(g)-(j). We propose a process to merge these
reconstructions to improve the overall visual reconstruction
quality. Due to the lack of a ground truth geometry the noise
level is used as an additional quality measure during the
merging process.

II. RELATED WORK

Registration and merging of 3D reconstructions are prob-
lems relevant to multiple research domains. For the scanning of
large objects or terrains, Tang et al. [3] give a general overview
of the techniques used to capture buildings. Their approach
includes filtering and merging of a large number of scans.
Bosse and Zlot [4] use a light detection and ranging sensor
mounted on a vehicle to estimate vehicle motion between the



acquired merged scans. Local shape and constraints based
on the vehicle motion are used to compute a 3D mapping.
A bimodal 3D laser scanner is used in [5] to navigate an
autonomous mobile robot. Range as well as reflectance data
are combined to generate a navigable map. MacKinnon et al.
[6] introduce quality metrics to detect regions which are likely
to produce good quality when scanned. These regions are later
on merged to generate a region map of optimal quality.

Scanning and reconstruction of smaller scale objects are
done in [7]. The objects are scanned from different viewpoints
and merged using the VRIP algorithm [8]. Lu et al. [9] use
reconstructions from different angles of the human face for
face recognition purposes but they do not describe how the
different reconstructions are merged.

Thus, existing approaches either do not give a detailed
outline of their merging techniques or do not use quality
information in the process.

III. MERGING 3D FACE RECONSTRUCTIONS

The reconstruction system used captures a face from four
different angles and uses multi-camera stereo-matching to
compute a 3D reconstruction. The reconstructed geometry is
represented as point cloud equipped with a measure to the
quantify the local tenacity of the reconstruction. For details
refer to [2]. Due to the speed of the reconstruction process
several 3D reconstructions can be computed per second. These
3D reconstructions are usually from different perspectives
since the person moves.

To merge these different 3D reconstructions we propose an
approach consisting of four steps. First a coarse registration of
the point clouds is done using 4-Points Congruent Set (4PCS)
[10], see Section III-A. This is followed by a fine registration
using Iterative Closest Point (ICP) [11], see Section III-B.
Then the registered point clouds are merged to one 3D re-
construction using tenacity weighted interpolation, see Section
III-C. In a last step the merged 3D reconstruction is filtered
to erase noise.

A. Coarse Registration

The target of 3D registration is to align a data set P to a
reference data set Q . If P and Q are identical point clouds
which only differ in position and orientation in space the
result are two perfectly aligned point clouds with identical
point coordinates. Thus, the actual result of a registration is
the affine transformation for the alignment. The registration
process is separated into a coarse registration step and the
fine registration step. This is due to the fact that algorithms
for fine registration are tuned to find local minima. Using these
algorithms without initial coarse registration would lead to
high computation times or most likely incorrect results.

For coarse registration we use 4PCS, see [10], [12]. This
is a RANSAC-based algorithm [13] which performs well
even for very noisy data. For RANSAC-based algorithms
one has do define appropriate candidates for comparison. In
3D at least three points from each point cloud P and Q
need to be compared. These randomly selected points define

a corresponding pair of local coordinate frames. An affine
transformation T can then be determined to align these frames.
After applying T to Q the alignment is evaluated based on
the number of points in T (Q) that are within distance d to
P . This is the so-called Largest Common Point Set (LCP).
This process is repeated until the desired size of the LCP or
a certain iteration threshold is reached.

In 4PCS four coplanar points determine the pair of frames.
A set of four coplanar points has the advantage that the
ratios in the planar congruent set are invariant under affine
transformations. A set B = {p1, . . . ,p4} of four points is
approximately coplanar, if the distance dc between the lines
p1p2 and p3p4 is small. Then, denote by pE the midpoint
of the shortest line perpendicular to p1p2 and p3p4, i.e. if
p1, . . . ,p4 are coplanar, pE is the intersection of these two
lines. The ratios characterizing a frame are given by

r1 =
‖p1 − pE‖
‖p1 − p2‖

and r2 =
‖p3 − pE‖
‖p3 − p4‖

.

Finding B in Q is done by selecting three random points p1,
p2, p3 and searching for p4 for which dc is within a given
tolerance. By selecting B with large diameter the algorithm
becomes fast and globally robust.

To find a congruent frame in P the four parameters r1, r2
and the point distance d1 = ‖p1−p2‖ and d2 = ‖p3−p4‖ are
used. After finding all point pairs in P with distances d1 and
d2, the ratios r1 and r2 are computed, and the corresponding
frames in Q and P are checked for congruence. The best
matching pair of frames is finally selected based on LCP.

Selecting 200 pairs of frames has shown to be a good value
for balancing run-time and registration error. Because points
near the boundary of the scanned faces are particularly noisy
we use only points in the center of the face, i.e. within a
certain radius around the tip of the nose. Since the camera
system is orthogonal to the captured face the tip of the nose
can be found by evaluating z coordinates.

If the overlap of the two data sets is known, search can be
limited for faster convergence. We assume an overlap between
50% and 60%.

An example for the coarse registration using 4PCS is shown
in Figures 3(a) and 3(b). We used the 4PCS implementation
of [12].

B. Fine Registration

The fine registration using ICP is based on direct point
neighborhoods, see [11], [14]. To register two point clouds
P and Q, for each point in P the nearest neighbor in Q
is determined. The transformation T to align P and Q is
computed by minimizing the squared distances between neigh-
bor points. The algorithm is iterated until a specified error
threshold is reached. Two error measures are used: The point-
to-point distance, which is the Euclidean distance between two
points, and the point-to-plane distance, which is the distance
between a point and the tangent plane of its neighbor point.
First we use the point-to-point distance up to a specified
distance threshold. Then, point-to-plain distance is used until



the maximum number of iterations is reached. Repeating this
ICP set-up two times yields sufficient registration results.

Figure 3(c) shows an example point cloud after registration
with ICP. We used the ICP implementation of the trimesh2
library [15].

(a) (b) (c)

Fig. 3. Registration of two example point clouds (a), after applying 4PCS
(b), and after applying ICP (c).

C. Tenacity Weighted Interpolation

Each 3D reconstruction has regions where the point posi-
tions are more or less reliable. This is due to lighting effects,
relative camera positions and orientations, etc. This reliabil-
ity of a reconstructed point p is measured by the tenacity
t(p) ∈ [0, 1], which is given as some weighted normalized
cross-correlation of corresponding pixel neighborhoods in the
four camera images, see [2]. Smaller values for t indicate
higher point tenacity.

Having several 3D reconstructions of the same face, a
rather frontal reconstruction is usually reliable for forehead,
nose, and mouth regions and unreliable for the cheeks. Thus,
we chose a rather frontal reconstruction as reference recon-
struction P0 that is enhanced and enriched be the addi-
tional reconstructions P1, . . . ,Pk. The merged reconstruction
R = {r1, . . . , rM} is generated by adding points from one
Pi, i = 0, . . . , k, or from a tenacity weighted interpolation of
points from several Pi.

Initially, the merged reconstruction R is empty. Then,
for every point in the reference reconstruction P0 =
{p1, . . . ,pm} a local merge step is computed. It is based
on the point neighborhood Ni of pi containing the n nearest
neighbors of pi from each of the additional reconstructions
P1, . . . ,Pk. Hence, Ni contains kn points. If pi and all its
neighbors have tenacity larger than tmin, no point is added
to R and further processing of pi is skipped. This ensures a
minimal overall point quality.

Denote by pt a point from Ni with best tenacity and by
pd a point from Ni with smallest distance to pi. Furthermore,
denote by dt and dd thresholds for the maximal distance of
pt and pd to pi. Ni contains candidate points that represent
the geometry better than Pi, if the set

PR = {pt | (t(pt) < t(pi)) ∧ (‖pt − pi‖ < dt)}
∪ {pd | (t(pd) < t(pi)) ∧ (‖pd − pi‖ < dd)}

is not empty. The point with best tenacity in PR is added R.

If PR is empty we define a set of points for interpolation

PI = {pt | (|t(pt)− t(pi)| < δt) ∧ (‖pt − pi‖ < dt)}
∪ {pd | (|t(pd)− t(pi)| < δt) ∧ (‖pd − pi‖ < dd)}
∪ {pi},

where δt denotes a tenacity difference threshold. If PI contains
only one point, it is pi which is added to R. Otherwise the
points in PI are interpolated:

Linear two-point-interpolation For the set PI = {q1,q2}
add to R the point r given by

r = λq1 + (1− λ)q2 with λ =
tq1

tq1
− tq2

.

Linear multi-point-interpolation For the set PI = {q1, . . . ,
ql}, l ≥ 3, add to R the point r given by

r =

l∑
i=1

(1− t(qi))qi

l∑
j=1

(1− t(qj))

Overall there are the five parameters n, tmin, dt, dd, and δt
in the merge process that need to be optimized to achieve the
best possible reconstruction. To compute an error measure for
parameter optimization the ground truth geometry is required.
However, this ground truth geometry is not available in our
application setting. Therefore, a point cloud filter algorithm is
used. If Rf = {rf1 , . . . , r

f
M} denotes the filtered reconstruc-

tion, the parameters are chosen such that R and Rf are close
with respect to the error e =

∑
‖ri − rfi ‖2, i.e. the filtering

has minimal effect on R.
As point cloud filter we use the kernel-based filter method

of Schall et al. [16]. For a point cloud P = {p1, . . . ,pm} a
density function

f̂(x) =
1

mh3

m∑
i=1

Φ

(
x− pi

h

)
is used to approximate the actual surface of a noisy point
cloud, where Φ is the 3D Gaussian kernel of size h. This
means, there is a likelihood function L(x) that gives the
probability that a point x ∈ R3 is on the surface. L is
an accumulation of local likelihood functions aligned to the
local geometry at pi. This local geometry is represented by
an anisotropic 3D Gaussian whose covariance is aligned to
the local weighted principal component analysis at pi. The
eigenvectors of the weighted covariance matrix

Ci =

m∑
j=1

(pj − ci)(pj − ci)
T ‖pj − pi‖

h

approximate the tangent plane and surface normal at pi, where
ci is the weighted centroid of points pj inside the kernel.
The eigenvector corresponding to the smallest eigenvalue of
Ci gives the (normalized) normal ni; the other two span the
tangent plane. Thus, L is defined as

L(x) =

m∑
i=1

Φi(x− ci)
[
h2 − [(x− ci)ni]

2
]
.



Filtering the point cloud is now done by using the mean-shift
method to move all points to positions of high probability.
Using gradient-ascent maximization an iterative scheme

p0
i = pi and pk+1

i = pk
i −mk

i

with

mk
i =

m∑
j=1

Φj(p
k
i − cj)[(p

k
i − cj)nj ]nj

m∑
j=1

Φj(pk
i − cj)

is applied. Iteration is stopped if

‖pk+1
i − pk

i ‖ < 10−4h.

h is in the interval of one to ten times the average sampling
density of the point cloud.

The final step in the merge process is a smoothing step on
R using this kernel-based method.

IV. RESULTS

To demonstrate the effectiveness of the proposed method
we compare one reference reconstruction P0 of a male head
to the merging results with three additional reconstructions
P1,P2,P3. Examples are shown in Figures 2(g)-(j). The
optimal parameters for the merging process were determined
manually. A major influence on the overall visual quality
of the reconstruction is the size n of neighborhoods Ni. If
n is large the chance to find neighboring points with good
tenacity increases. However, these points can be spatially
far away, leading to visible holes in the reconstruction. In
our tests, smaller neighborhoods led to better values for e.
The reconstruction tenacity tmin has the biggest impact on
the error e. Smaller values for tmin result in sparser point
clouds with higher quality and small e. Distance thresholds
dt and dd have similar effects on the reconstruction. Large
distance thresholds result in holes in the point cloud and
reduce the overall appearance. Small distance thresholds lead
to merged reconstructions R mostly consisting of points from
P0. Smaller distance thresholds as well as a tenacity difference
threshold δt between 5% and 10% have a positive effect on
appearance. Applying the kernel-based filter in a last step
further smooths the surface and improves the visual quality.

Figure 4(a) shows a reconstruction with non-optimized
parameters. It contains visible gaps and cracks that have not
been part of the initial reconstructions. Parameters have then
been stepwise adjusted to minimize e. For the given example
in Figure 4(b), we use tmin = 0.5. The smallest error e was
achieved for parameters n = 1, dt = 0.000005, dd = 0.000005
and δt = 1.0. Because point coordinates are based on pixel
distance of the camera images, dt and dd are relative pixel
distances. With these parameters almost all gaps and cracks
have been removed from the merged reconstruction. By ap-
plying the filter to the point cloud, blurred and noisy regions
4(c) are smoothed and the contours become well defined.
Evaluation of overall quality improvement is shown in Figures
5 and 6 with tmin = 0.4. The reference reconstruction and the

merged reconstruction are colored according to tenacity. One
can see that the algorithm succeeds in filling the holes in the
reference reconstruction and in expanding regions with high
tenacity. With tmin = 0.3 the merged reconstruction contains
up to 25% more points than the reference reconstruction while
maintaining or improving the average tenacity.

V. CONCLUSION

We present a method for merging face reconstructions to
improve the overall reconstruction quality for use in face
recognition. By endowing the merging process with thresholds
and a tenacity-based interpolation as well as with an error
measure for optimizing the merging parameters, we could
increase the overall visual reconstruction quality.

The initial reconstructions that are merged later on contain
color information which at the moment is lost in the interpo-
lation step. For future work, point color has to be included in
the process. Color information could be used when deciding
point neighborhood as well as for lifelike visualization. The
presented method and the resulting parameters have shown
to be optimal for reconstructions generated by the stereo-
matching approach in [2]. To prove the general applicability
of our algorithm data sets of other 3D face reconstruction
systems need to be evaluated. The overall algorithm has not
been optimized for real-time application yet. Especially the
filtering process is computationally expensive and could be
improved by splitting the 3D-separable Gaussian function into
three 1D functions as described in [17].
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(a) (b) (c) (d)

Fig. 4. Merged reconstruction with non-optimized (a) and optimized (b) parameters. Closeup of the nose of a joined reconstruction with optimized (c)
parameters and after filtering (d).

(a) (b)

Fig. 5. Tenacity colored images of a reference reconstruction (a) and the the respective merged reconstruction (b). The color gradient ranges from bright
green (high tenacity) to yellow (bad tenacity).
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Fig. 6. Closeup on tenacity colored images of a reference reconstructions (a), (c), (e), (g) and the respective merged reconstructions below in (b), (d), (f),
(h). The color gradient ranges from bright green (high tenacity) to yellow (bad tenacity).


