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Abstract: In this paper we give a survey on natural neighbor based interpolation, a
class of local scattered data interpolation schemes that define their support onnatural
neighborsin the Voronoi diagram of the input data sites. We discuss the existing
work with respect to common aspects of scattered data interpolation and focus on
smoothness of the interpolant.

1 Introduction

Scattered data interpolation (SDI) is the problem of finding an interpolating functional de-
scription which is as close as possible to an unknown function for which values are known
only at discrete, scattered locations. Among the SDI methods existing so far, those based
on natural neighbors possess the best adaption to inhomogeneous sample distributions
while only building on a highly local support.

After Sibson introduced natural neighbor coordinates [Sib80] (Sibson’s coordinates)
and their application to SDI [Sib81], the theory of natural neighbor based local coordi-
nates and SD interpolants built from them has received an in-depth investigation. Piper
developed formulas and geometric interpretation of derivatives of Sibson’s coordinates
[Pip92]. Probably inspired by Sibson’s original work, a less smooth type of natural neigh-
bor coordinates (Laplace coordinates) has been proposed independently by several authors
[CFL82, Sug99, BIK+97]. An interesting relationship between Laplace and Sibson’s co-
ordinates has been found and generalized by Hiyoshi et al. [HS00b], yielding local coor-
dinates of arbitrary continuity except at the data sites.

The problem of transfinite interpolation based on natural neighbor coordinates has been
subject to the work of Anton et al. for Sibson’s coordinates with respect to points and line
segments [AMG98], of Gross et al. with respect to circles and polygons [GF99], and of
Hiyoshi et al. for Laplace coordinates with respect to points, line segments, and circles
[HS00a].

The geometric definition of natural neighbor coordinates is inappropriate for actual
computation, especially in higher dimensions. The two main approaches to solve this are
either to reformulate the geometric entities based on the Delaunay neighborhood and al-
gebraic expressions [BS95, Sug99, Hiy05, BBU06b], or to solve the computation approx-
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imately on graphics hardware [FEK+05, PLK+06]. Results on the approximate computa-
tion of generalized Voronoi diagrams on graphics hardware can be found in [HCK+99].

The interpolation of smooth functions requires additional efforts to overcome deriva-
tive discontinuities at the data sites inherent to all natural neighbor based local coordinates.
We are only aware of two approaches, one building polynomials of the local coordinates
to interpolate derivatives [Sib81, Far90, HS04], the other a construction of non-convex
coordinates from a bigger natural neighborhood as explained in [Cla96, Flö03].

If the input data sites are scattered over a manifold rather than its embedding space, the
Voronoi diagram and consequently the notion of natural neighbors are subject to a mod-
ified metric. That special setting received attention from [BC00, Flö03], where the local
coordinate property is established for power diagrams and their restrictions to manifolds.

Outline: We will briefly review the aspects of scattered data interpolation for scalar valued
functions in Section 2 to introduce the problems addressed by the natural neighbor based
SDI methods which we discuss thereafter, focusing on:

• Smoothness of the local coordinates except at the data sites in Section 3,

• Smoothness of the interpolant at the data sites Section 4,

• Extension of the local coordinates to arbitrarily shaped sites Section 5,

• Extension of the local coordinates to manifolds in Section 6,

• Implementation of natural neighbor interpolation in Section 7.

We end this survey with a classifying summary of all considered methods and a compari-
son to some other established SDI methods in Section 8.

2 Scattered Data Interpolation

The problem of scattered data interpolation can be stated as follows: given sample data
sitesX = {xi}i=1...m ⊂ Rn and data valuesZ = {zi}i=1...m ⊂ R, find a function
f : Rn → R that satisfies the interpolation constraintf(xi) = zi. The subset{(xj , zj)}j

on which the value at a query positionq depends is called thesupportof f at q and leads
to the distinction between schemes withlocal andglobal support. While schemes with
global support usually have higher smoothness than local ones, their cost of computation
makes them inapplicable for large scale data sets.

The aspects that are addressed by a multitude of scattered data interpolation schemes
cover, among others:

Support: How is the support determined? If the size of the data set exceeds that of the
available RAM, global schemes fail. Local schemes have a small memory footprint
and can be computed much more efficiently, but are less smooth.

Smoothness:How often isf continuously differentiable?

Derivative Interpolation: Canf interpolate higher order derivatives at the data sites?

Polynomial Precision: Up to what order doesf reproduce polynomials?
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(a) (b) (c)

Figure 1: (a) Voronoi Diagram of points inR2. (b) Points in the shaded region have the bold point as
one natural neighbor. (c) Points in the shaded region have the four bold points as natural neighbors.

Transfinite Interpolation: Instead of points can one interpolate to curves or higher-dimensional
manifolds? Transfinite interpolation leads to a continuous representation of the input
data and usually requires considerably more effort in implementation.

Interpolation on manifolds: Can the interpolation scheme still be applied if the underly-
ing space itself is a manifold, and measurements are subject to other metrics?

Computation: How canf be efficiently evaluated? Naı̈ve implementations of interpola-
tion methods can lead to inacceptable performance. The appropriate implementation
of the interpolation schemes is important for its applicability.

Derived values: Exist formulas for derivatives or integrals off?
Extrapolation: Local schemes typically define onlyf |D with D being the convex hull

of X. Doesf have a meaningful definition outsideD?
Approximation order: If data is sampled from a known function, how close doesf get

to that function with increasing sampling density? To know the approximation order
of a method is to know how well it is suited to model phenomena with a certain class
of governing functions.

Non-scalar values: Can function valuesZ 6⊂ R, e.g.Z ⊂ Rd, be interpolated? For scalar
data at the input sites, the space of possible functions can be described using linear
combinations of neighborhood data. This does not necessarily hold for non-scalar
data, where more sophisticated blending functions may be needed.

3 Natural Neighbor Coordinates

The group of interpolation schemes we discuss here exploits geometric identities of natural
neighbors, building an interpolant by applying the same identity to the data values. We first
repeat some facts about Voronoi diagrams and local coordinates, then focus on Laplace,
Sibson’s and Hiyoshi’s coordinates.

3.1 Voronoi Diagrams

Let X be data sites that act as generators of a Voronoi diagram, andd(·, ·) the Euclidean
distance onRn. The resulting Voronoi diagram (Figure 1(a)) is the partition of space into
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convex tilesV(X) = {Ti}i=1...m,
⋃

i=1...m Ti = Rn, with

Ti = {x ∈ Rn|d(x, xi) ≤ d(x, xj), i 6= j}. (1)

Two generatorsxi andxj are callednatural neighborsif their associated tiles share a
non-empty hyperfacesij := Ti ∩ Tj . To ensure boundedness of the tiles, we will restrict
our considerations to the interiorD of the convex hull ofX. We denote the set of indices
of the natural neighbors for a generatorxi by Ni. If n + 1 or more tiles share a common
point, the unique circumsphere through their generators is calledDelaunay sphere, since it
contains no other generator in its interior. For an overview on Voronoi diagrams the reader
may refer to [Aur91, OBSC00].

We denote byx0 ∈ D an arbitrary point, calledquery point, and defineV(X∪{x0}) =:
{T ′

i }i=0...m. All notions from the Voronoi diagram carry over tox0, andT ′
0 is called the

virtual tile of the query position.

3.2 Local Coordinates

As long as the set of data sitesX is not degenerate and the query pointx0 lies inside
its convex hull, it is also always contained in the convex hull of its natural neighbors
{xi}i∈N0 . Since{xi}i∈N0 is in general position, i.e. containsn + 1 affinely independent
points, we can expressx0 in terms ofgeneralized barycentric coordinateswith respect to
its natural neighbors

(local coordinates) x0 =
∑

i∈N0
λi(x0)xi, (2a)

(partition of unity) 1 =
∑

i∈N0
λi(x0), (2b)

(convexity) 0 ≤ λi(x0), i ∈ N0. (2c)

Then, (2a) - (2c) guarantee affine invariance forλ, yielding the linear precision scattered
data interpolant

f(x0) =
∑

i∈N0
λi(x0)zi. (3)

We will refer to the local coordinatesλi by the|N0|-tupleλ and omit the argumentx0 for
the sake of brevity unless required by context. For|N0| = n + 1, λ reduces to the usual
barycentric coordinates andf is a linear function. If|N0| > n + 1, there are infinitely
many choices forλ that satisfy (2a)-(2c).

From (3) it is clear thatf is as smooth asλ. Therefore, we concentrate on how to
control the smoothness ofλ. The sequence of local coordinates we discuss next will be
denoted byλk andfk consequently denotes the interpolant (3) based on these coordinates.

3.3 Some Properties of Natural Neighbor Coordinates

Natural neighbor coordinates are based on sizes of geometric entities in the virtual tile
T ′

0 of the query positionx0. The rate at which these entities change withx0 basically
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(a) (b)

Figure 2: Interpolation of 1493 scattered points sampled from the crater lake data set. The original
data set is due to US geological survey with 344· 463 points. (a) The nearest neighbor interpolant
is piecewise constant and discontinuous along the edges of the Voronoi diagram. (b) The Laplace
interpolant is continuous with derivative discontinuities along the Delaunay circles.

determines the smoothness of the coordinates. Whenever the query position coincides
with a data site,x0 = xi, these entities are not defined. The coordinates, however, can be
continuously extended forx0 → xi, yieldingC0 continuity at the data sites.

The region of influence for each data valuezi is the set of points which havexi as
natural neighbor, i.e. for which the contribution ofzi is not zero. This region is just the
union of all Delaunay spheres passing throughxi, depicted in Figure 1(b) for the center
data site. The regions of constant neighborhood, i.e. whereN0 does not change, are all
areas that are bounded by Delaunay spheres, as depicted in Figure 1(c). These regions
are considerably more complex than those appearing e.g. in barycentric interpolation in
Delaunay tessellations, where they are polygonal domains.

3.4 Nearest Neighbor Interpolation

A simple scattered data interpolation scheme that uses the Voronoi diagram of data sites is
nearest neighbor interpolation. The weights used here are simply defined as

λ−1
i :=

{
1, x0 ∈ Ti,

0, otherwise.

Thus,f is discontinuous along the Voronoi edges, as can clearly be seen in Figure 2(a).

3.5 Laplacian Interpolation

A set ofCn−2-smooth local coordinates has been proposed by different authors as Laplace-
or Non-Sibsonian coordinates [CFL82, Sug99, BIK+97]. Denote byσi := voln−1(s0i)
then − 1-dimensional area of the hyperface shared byT ′

0 andT ′
i , andri := d(x0, xi).

Then Laplace coordinatesλ0 are defined as

λ̂0
i := σi/ri and λ0

i := λ̂0
i /

∑
j∈N0

λ̂0
j .
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(a) (b)

Figure 3: Reflection lines on the basis function of Sibson’s (a) and Hiyoshi’sC2 (b) coordinates,
seen from above. (a) The cusps indicate theC2 discontinuities at the Delaunay circles. (b) Due to
C2 continuity away from the data sites, the cusps have vanished.

These coordinates and the resulting interpolantf0 are continuous inD and have derivative
discontinuities at the generators. ForX ⊂ Rn, we find thatλ0

i is Cn−2 on the Delaunay
spheres. Forn = 2 this results in theC0 artifacts that can be seen in Figure 2(b). Different
proofs forλ0

i satisfying (2a) have been given in [HS00b, BIK+97].

3.6 Sibson’s Interpolation

The first appearance of natural neighbor based local coordinates is due to Sibson [Sib80],
who extended this to scattered data interpolation in [Sib81]. Sibson’s coordinates are based
on the volumesνi := voln(T ′

0 ∩Ti) via

λ̂1
i := νi, and λ1

i := λ̂1
i /

∑
j∈N0

λ̂1
j .

The fact thatνi is an-dimensional volume results inλ1 beingCn−1 continuous except at
the generators, where they are still onlyC0. See Figure 3(a) for an example.

Properties of Sibson’s coordinates received close attention by Farin [Far90] and Piper
[Pip92]. Withci denoting the centroid ofs0i their explicit formula for the gradient ofλi is

∇λ1
i = σi(ci − x0)/ri. (4)

Different proofs forλ1
i satisfying (2a) have been given by [Sib80, Pip92, HS00b].

3.7 Hiyoshi’s Interpolation

Hiyoshi and Sugihara [HS00b] proposed a generalization of Laplace and Sibson’s coordi-
nates based on an integral ofσi. In [Hiy05] Hiyoshi restated this as

λ̂k
i :=

1
(k − 1)!

∫
p∈Ti∩T ′

0

(
(x0 − xi) · (p− ci)

)k−1|dp|,
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λk
i := λ̂k

i /
∑

j∈N0
λ̂k

j .

For k = 0, 1, Hiyoshi’s coordinates coincide with Laplace and Sibson’s coordinates. For
k > 1, these coordinates areCk+n−2 in D \ X. As Hiyoshi pointed out in [Hiy05], the
limit k → ∞ does not lead toC∞ coordinates but to the piecewise linear interpolant on
the Delaunay tessellation.

4 Smooth Interpolation at the Data Sites

The previous section considered interpolants building on a linear combination of data val-
ues by local coordinates as in (3), resulting in derivative discontinuities atxi. Here we
consider basically two approaches to overcome this. One is to construct polynomials of
the local coordinates to control the derivatives at the data sites. Another is to construct lo-
cal coordinates from a larger neighborhood, which results in smooth, non-convex weights.
To apply the first approach, the derivatives at the data sites need to be known. Otherwise
they can be estimated using the approach described in [BBU06b].

In the remainder of this section we will denote byfab an interpolant based on local
coordinatesλa which has smoothnessCb at the data sites.

4.1 Sibson’sC1 Interpolant

In [Sib81] Sibson described a construction of aC1 interpolant. He generates gradients∇i

based on the weighted least squares plane through the neighboring data values, which are
then interpolated by blending first order functions with the help of coordinatesλ1

i . With
ri := d(x0, xi), γi := λ1

i /ri, define

ζi := zi + (x0 − xi)T∇i and ζ :=
(∑

i∈N0
γiζi

)
/

(∑
i∈N0

γi

)
,

α :=
(∑

i∈N0
λ1

i ri

)
/

(∑
i∈N0

γi

)
and β :=

∑
i∈N0

λ1
i (ri)2.

Blending this with Sibson’sC0 interpolantf1(x0) yields Sibson’sC1 interpolant

f11
Sib(x0) = (αf1(x0) + βζ)/(α + β),

which does not easily generalize to higher orders of continuity.

4.2 Farin’s C1 Interpolant

A much more general approach which is not restricted to natural neighbor coordinates but
can be applied to all local coordinates having properties (2a)-(2c) was proposed by Farin
[Far90]. λ can be seen as barycentric coordinates in al-variate B́ezier simplex which
projects to the convex hull of{xi}i∈N0 , wherel = |N0|. In Bézier simplexes it is easy
to model directional derivatives at the verticesxi by appropriately choosing the Bézier
control net. From prescribed derivatives atxi, a certain number of control points is fixed.
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Figure 4: Planar projection
of the control net of a cubic
Bézier simplex inR3.

The remaining control points can be chosen arbitrarily with-
out interfering with the interpolation property. Exploiting
the concept of degree elevation, these can be chosen to
yield polynomial precision. In the following, we will de-
note byDv the directional derivative alongv. By α ∈ Nn,∑

αi = d, we denote then-dimensional multi-index that
enumerates thed-th degree B́ezier control pointsbα. The in-
dexes of the vertices of the Bézier simplex are denoted byαi,
where thei-th entry is set tod, andei is a multi-index with
zero entries except for thei-th component which is one.

Farin presented the implementation of the above idea for
cubic B́ezier simplexes overλ1 to interpolate gradients∇i,
yielding a globallyC1 interpolant. By setting the directional
derivatives in each vertexxi towards its neighborxj ,

Dxj−xi
= ∇i(xj − xi), j ∈ N0 \ {xi},

we constrainxi and all inner control pointsbαi−ei+ej , to be coplanar, i.e.

bαi = zi, and bαi−ei+ej = zi +
1
3
(xj − xi)T∇i for i 6= j.

This fixes all control points except those on simplex faces. By degree elevation for Bézier
simplices, these are chosen to ensures quadratic precision of the resulting interpolant, see
[Far90, Fl̈o03]. Letβ = ei + ej + ek for i < j < k, thenbβ is an inner control point. Set
u= 1

3 (bαi +bαj +bαk) andv= 1
6

∑
a,b∈{i,j,k},a<b bβ−ea+eb , the average of the remaining

fixed control points, thenbβ = 3
2v− 1

2u yields quadratic precision for the interpolant. The
resulting interpolant inheritsC1 continuity onC \X from λ1 and is given by

f11
Far(x0) := b3(λ1).

4.3 Hiyoshi’sC2 Interpolant

Applying the above approach to quintic Bézier simplexes overλ2, [HS04] present a con-
struction of control points that matches derivatives up to order two given by theHessian
Hi at generatorxi. Let i, j, k be mutually distinct anddij = xj − xi, then

bαi = zi,

bαi−ei+ej = zi +
1
5
∇ T

i dij ,

bαi−2ei+2ej = zi +
2
5
∇ T

i dij +
1
20

d T
ij Hidij ,

bαi−2ei+ej+ek = zi +
1
5
(∇ T

i dij +∇ T
i dik) +

1
20

d T
ij Hidik

fix the control points based on the prescribed derivatives. Cubic precision of the resulting
interpolant is given by the choice of the remaining control points based on the degree
elevation principle, see [HS04].



Submitted to Dagstuhl 2006 IRTG workshop proceedings 9

4.4 Clarkson’s Interpolation

One special kind of local coordinates that does not directly fit definition (2) is an idea of
Clarkson [Cla96, Fl̈o03]. It is based on the two-ring neighborhood of the query position
and is designed to reproduce spherical quadratics, i.e. functions of the formx 7→ a‖x−b‖2,
a ∈ R, b ∈ Rn. It is the only approach so far that has a really implicitC1 construction and
does not depend on prescribed derivative information. Clarkson’s local coordinates differ
significantly from those of Section 3:

• They depend on
⋃

i∈N0
Ni, i.e. the two-ring neighborhood ofx0.

• They are not convex, i.e. (2c) does not hold.

• They seem to beC1 atxi, which is not yet proved.

5 Transfinite Interpolation

In this section we discuss methods to interpolate line segments, polygons and circular
arcs instead of points. Non-point generators lead togeneralized Voronoi diagrams, and
the geometric primitives that constitute the local coordinates from Section 3 are no longer
convex polygons. The main consequence of this generalization is an increased complexity
in both data handling and the computation of the interpolant, which also seems to be the
reason that research in this direction has been restricted to two dimensions so far.

Interestingly, transfinite interpolation enables us to impose discontinuities along the
manifold data sites by using different values for each side.

This section will first explain the main differences between ordinary Voronoi diagrams
and such with curves as generators, before taking a closer look at how the identities from
Section 3 extend to the transfinite case.

5.1 Generalized Voronoi Diagrams in 2D

Assume the data sites are pointsxi ∈ X and non-intersecting curvesci ∈ C, wherei
runs over the combined set of data sitesX ∪ C. Definition (1) still holds with a modified
distance function,

d(x, ci) = min
q∈ci

‖x− q‖.

We denote the bisectorsTi ∩Tj by eij . Tiles induced by points are still convex, while for
curves this is in general not true. As in the ordinary Voronoi diagram, the virtual insertion
of a new pointx0 intoV(X) results in a new, convex tileT ′

0 . An example of a generalized
Voronoi diagram and the virtual tile (shaded) can be seen in Figure 5(a). The shape of the
bisectors between the various elements of the Voronoi diagram is at least as complicated as
that of the elements itself. Thus, an exact computation of areas and lengths seems feasible
only for simple shapes of the generators. For arbitrary shapes, the Voronoi diagram can be
approximated using graphics hardware, see Section 7.3.
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(a) (b)

Figure 5: (a) The Voronoi diagram of a set of points, line segments and general curves (drawn bold).
The virtual tile of a new point is shaded. Picture courtesy of [Hof99]. (b) Transfinite interpolation
of a directed line segments and a couple of points. Picture courtesy of [AMG04].

5.2 Interpolating Data on Line Segments

If the data sites are line segments, there are bisectors between lines, between points, and
between points and lines, where endpoints of line segments also count as points. The
bisectors are parabolic arcs between the interior of a line segment and a point, while all
other bisectors remain linear. In practice, the endpoints of a line segment are treated as
separate generators, which leads to a partition of its Voronoi tile into tiles for its directed
half edges and its end points, as shown in Figure 6(b).

To account for the continuous nature of the data sites, local coordinates in the transfinite
setting have their identity expressed similar to

x0 =
∑

i∈NX
0

λixi +
∑

i∈NC
0

∫
q∈ci

λi(q)q |dq|, (5)

with NX
0 ∪ NC

0 being the union of point shaped and line shaped neighbor indices, and
λi(q) denoting a scalar weight function over the length ofci. The interpolant thus is

f(x0) =
∑

i∈NX
0

λizi +
∑

i∈NC
0

∫
q∈ci

λi(q)zi(q) |dq|, (6)

with zi(q) being the scalar value distribution over the site.
In [GF99], the interpolation of arbitrary functions along polygons is solved. Each

subtileT ′
0 ∩ Ti can be interpreted to have a certain thickness abovexi, which is nonzero

only where the subtile projects toxi. Theλi(q) are taken to be this thickness, normalized
by the overall area, and define a meaningful density for the accumulation of data values.
The application of this interpolant to the data distributed along the non-convex polygon in
Figure 6(a) is shown in Figure 6(b).

In [AMG98, AMG04], the same approach has been implemented for arbitrary arrange-
ments of non-intersecting line segments and points. Although they restrict their approach
to a linear data distribution along the lines, the approach of [GF99] can also be applied to



Submitted to Dagstuhl 2006 IRTG workshop proceedings 11

(a) (b) (c)

Figure 6: Transfinite interpolation of curves. (a) The Voronoi diagram of a polygon, the contribution
of the lower subtile depicted by the thin lines. (b) Transfinite interpolation of the boundary values.
(c) Transfinite interpolation of a collection of points, line segments and circular arcs. Pictures (a),
(b) courtesy of [GF99], (c) courtesy of [HS00a].

interpolate to arbitrary scalar functions over the sites. By allowing different values on both
sides of the line segments, they are able to faithfully model discontinuities as they arise in
e.g. geology. See Figure 5(b) for an example.

While the last two approaches focus on a generalization of Sibson’s coordinates, [HS00a]
generalizes Laplace interpolation to arrangements of multiple classes of curves. The main
difference lies in the definition ofλi(q), which can now be interpreted as a density function
over the bisectors boundary ofT ′

0 . The result of this interpolant applied to an arrangement
of points, line segments, and circles is shown in Figure 6(c).

5.3 Interpolating Data on Circles, Lines and Points

In case the input consists of data distributed over a circle, the tileT ′
0 is an ellipsis. Conse-

quently, Sibson’s transfinite interpolant takes a simple form. Letx1 be the circle centered
at 0, z1(Θ) the data, parameterized overΘ ∈ [0, 2π), andx0 = (ρ, θ) be expressed in
polar coordinates with respect to0. Then in [GF99] a Sibson’s transfinite interpolant on
circles is defined as

f(x0) =
(1− ρ2)3/2

2π

∫ 2π

0

z1(Θ)
(ρ cos(θ −Θ)− 1)2

dΘ
{

0 ≤ ρ < 1
0 ≤ θ ≤ 2π

.

Based on a similar idea, [HS00a] formulated an identity and the thereby defined inter-
polant for Laplace coordinates.

6 Natural Neighbor Coordinates on Manifolds

The Voronoi diagram is defined by a set of points and a distance measure. For points on
a manifold, this definition still holds, at the expense of potentially non-convex tiles due to
a non-Euclidean metric, see [LL00]. The manifold setting results in bisectors of arbitrary
complexity and computing areas (volumes) becomes tedious for non-trivial geometries.
To the author’s best knowledge, there has been no work carried out on natural neighbor
based interpolation on continuous manifolds.
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In [BC00], however, it is shown that if the manifold has a sufficiently dense sampling,
a less complicated approach is possible. The data sites on the manifold induce a Voronoi
diagram in the manifold’s embedding space,Rn. The intersection of that Voronoi diagram
and the manifold gives a partition of the manifold that locally converges to the Euclidean
Voronoi diagram when the sampling density goes to infinity. Furthermore, the main result
in [BC00] states that Sibson’s identity holds for an infinitely dense sampling of the surface.

Based on this work, natural neighbor based interpolation on point clouds issued from
manifolds is developed in [Flö03]. As a main result, a point on a manifold can be ex-
pressed in local coordinates in the tangent plane at that point, given the manifold is sam-
pled densely enough. The intersection of then-dimensional Voronoi diagram of the data
sites with the tangent plane defined by the normal vector at the query position produces a
power diagram in the tangent plane. [Flö03] proves Sibson’s identity for power diagrams
and develops natural neighbor coordinates for point clouds.

7 Implementation of Natural Neighbor Interpolation

Natural neighbor based interpolants are based on an underlying identity that provides gen-
eralized barycentric coordinates in the natural neighbors. The definition of those local
coordinates is motivated geometrically on the Voronoi diagram of the input data sites. The
computation, however, can often be carried out in a more elegant and also more stable way.
These approaches can be classified as geometric, algebraic and approximate. For simple
settings, the geometric approach is still feasible. For higher dimensions, higher orders of
continuity and more complex input data sites, algebraic and approximate approaches yield
more efficient and more stable solutions.

In the rest of this section we describe the computation of natural neighbor coordinates,
since they are the main building block for all interpolants in this survey. The implementa-
tion of theC1 andC2 constructions at the data sites from Section 4 is straightforward.

7.1 Geometric Computation

The dual to the Voronoi diagram is the Delaunay tessellation. Therefore, evaluation and
traversal of the Voronoi diagram of a set of points can be carried out on its Delaunay
tessellation, for which the adjacency information is known. One drawback of this approach
is the numerical instability in cases where both nominator and denominator in the formulas
of Section 3 tend to infinity.

Laplace and Sibson’s coordinates relate to areas and volumes of intersections of Voronoi
tiles which are easily computed in two dimensions, and implementations are known for
three dimensions as well [Owe]. In case of line segment shaped data sites, the constrained
Delaunay tessellation can be used. Input data sites of arbitrary shape are difficult to handle
in classical geometric data structures and usually require more intricate representations of
the Voronoi diagram. The common solution to this is a tessellation of the input data sites,
once again allowing for the constrained Delaunay tessellation to be applied.

In three or more dimensions, the data structures required for storing the Delaunay
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(a) (b)

Figure 7: (a) Generalized Voronoi diagram computed on graphics hardware. (b) Polygonal approxi-
mation of a distance function. Pictures courtesy of [HCK+99].

tessellation and its adjacency graph become very complex, and traversing the topological
neighborhood becomes error prone and cumbersome.

7.2 Algebraic Computation

For algebraic computation the explicit construction of the Voronoi diagram is avoided, and
computation is carried out directly on the geometric entities by which it is defined. Note
that except for Hiyoshi’s approach [Hiy05], also algebraic approaches suffer numerical
instabilities when both nominator and denominator tend to infinity.

To compute Laplace coordinates in the two-dimensional setting, the calculation pre-
sented by Sugihara only assumes the natural neighbors of the query position to be given
in counterclockwise order [Sug99]. The resulting identity also holds in the more gen-
eral case of star-shaped neighborhoods, making this approach robust against topological
inconsistencies as they appear from numerical noise.

Watson [Wat92] explains Sibson’s coordinates as the signed decomposition of the area
of a triangle, spanned by the circumcenters of the involved triangles. Building on this
idea, [Hiy05] proposed a way to stably computeλk in R2 by encoding the construction of
Voronoi entities into algebraic expressions in Delaunay entities that circumvent numerical
instabilities based on zero denominators as they might appear in the equations in Section 3.

A straightforward computation of Laplace and Sibson’s coordinates in any dimension
exists once the one-ring Delaunay neighborhood is known. The content of the correspond-
ing tile facets and tile intersections can be expressed as an intersection of half-spaces that
are entirely defined by the query position and its Delaunay neighbors [BS95]. Thus, the
computation of Laplace and Sibson’s coordinates reduces to the determination of Delaunay
neighbors [Wat81] and volume computation inn dimensions [BEF00]. This approach has
been applied to derive a construction of Hiyoshi’s coordinates inR2 in [BBU06b]. Note
that the average number of Delaunay neighbors grows exponentially with dimension, and
so does the complexity of volume computations.
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(a) (b) (c) (d) (e)

Figure 8: Discrete computation of Sibson’s interpolant for the setting in (a). Each point in the
domain gives rise to a disc colored with the value of the nearest generator and the distance to that
generator as its radius, depicted in (b)-(d). The translucent overlay of all discs is the discrete Sibson’s
interpolant. Pictures courtesy of [PLK+06].

7.3 Approximate Computation

By allowing a certain error for the local coordinates, an approximate formulation of natural
neighbor coordinates can be given based on a discretization of the Voronoi diagram. The
discrete version of the two-dimensional Voronoi diagram can efficiently be computed by
rendering appropriate primitives to frame- and z-buffer, utilizing the capabilities of recent
graphics hardware.

The computation of generalized Voronoi diagrams with the help of graphics hardware
is discussed in [HCK+99]. Basically, the distance function of each of the generators is
represented by a geometric object. Rendering these leaves the minimum distances in the
z-buffer and the associated generator in the color buffer. An example is shown in Figure 7.

The computation of Sibson’s coordinates can now be performed by counting pixels in
the approximate Voronoi diagram with added query position [FEK+05]. However, this
does not allow for an efficient or stable evaluation of Laplace or Hiyoshi’sCk coordinates.

If, instead of evaluating single point queries, a whole field is to be evaluated, the influ-
ence of the data values at the generators can directly be distributed to the domain in a more
efficient manner. The way described in [FEK+05] requires the Delaunay triangulation to
be known, while [PLK+06] do without tessellation at all solely using a k-d tree to provide
nearby points. This is illustrated in Figure 8.

8 Summary and Comparison

The properties of all schemes discussed in this paper are summarized in Table 8. A dis-
cussion of the four blocks is given below.

Point Based Interpolation Schemes:Schemes with global smoothness have only been
proposed for the setting of data sites. Both Farin’s and Sibson’sC1 constructions op-
erate on Sibson’s coordinates and yield fairly straightforward implementations. Farin’s
construction has quadratic precision and adapts to a wider range of input constellations.

Hiyoshi’sC2 scheme provides a high quality interpolant but is computationally expen-
sive and tedious to implement even though explicit guidelines for its implementation inR2

exist. TheC2 construction at the data sites requires the construction of quintic Bézier con-
trol nets and bears considerable combinatorial complexity. In our experiments, we found
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a Cd−2 - C0 + -

lin
ea

r ++ 1 + [CFL82, Sug99, BIK+97]
Sib. coord. Cd−1 - C0 + - ++ 1 + [Sib81]
Hiy. coord. Ck - C0 (+)(1) + - 1 + [HS00b]
SibsonC1 C0 ∇ C1 + - s.q.(3) + 1 + [Sib81, Far90, Pip92]
FarinC1 C1 ∇ C1 + + (2) quad. + 1 + [Far90]
HiyoshiC2 C2 ∇,H C2 (+)(1) + (2) cub. – 1 + [HS04, Hiy05]
ClarksonC1 C1 in D - C1 + - s.q.(3) ? 2 + [Cla96, Fl̈o03]

Transfinite
Gross pol, ci C1 - C0 - -

lin
ea

r - 1 + [GF99]
Anton pt, li C1 - C0 - - - 1 + [AMG98, AMG04]
Hiyoshi pt, li, ca C1 - C0 - - - 1 + [HS00a]

Manifold
Flötotto points C1 - C0 + - n.a. - 1 n.a. [BC00, Flö03]

Other meth.
Nearest n. points C−1 - C∞ + - - ++ 0 - [OBSC00]
FEM points Ck - C0 + - lin. ++ 0 - -
RBF points C∞ - C∞ + + polyn. - - g - -

(1) ongoing research.(2) based on the B́ezier simplex approach.(3) spherical quadratics.(4) ++ low, - - high.
(5) {012}-ring, g(lobal).(6) pt=points, li=lines, pol=polygons, ci=circles, ca=circular arcs.

Table 1: Overview of considered interpolation schemes.

considerable increases in computation time for extreme situations with more than 20 nat-
ural neighbors, which very likely becomes an issue in higher dimensions. Besides these
drawbacks, theC2 interpolant provided the best results when applied to data representing
a smooth function, which has been verified in [BBU06a].

In contrast to the schemes above, Clarkson’s construction does not interpolate pre-
scribed derivatives but achievesC1 smoothness implicitly. Since the final interpolant is
a linear combination of data from the two ring neighborhood it is similar to the otherC0

schemes over natural neighbor coordinates, but requires a larger support and results in
non-convex coordinates.
Transfinite Interpolation: Research on transfinite natural neighbor interpolation has so
far only concentrated on expressing the identity of Laplace and Sibson’s coordinates with
respect to line- and circle-shaped generators in two dimensions. Consequently, the re-
sulting interpolants remainC0 across the data sites. In simple cases like line segments
and circular arcs, closed form integration is possible, but more general shapes require ap-
proximations. In spite of these restrictions the improved flexibility provided by transfinite
interpolation is useful e.g. for fault modeling in geosciences.
Interpolation on Manifolds: Sibson’s identity holds on smooth manifolds for an infinites-
imal sampling, but not necessarily for arbitrary samples of the manifold. The Voronoi
diagram in that non-Euclidean metric does not have the same, simple geometric structure.
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However, local restriction of the Euclidean Voronoi diagram to the tangent plane reveals
the lower-dimensional power diagram, for which Laplace and Sibson’s identity hold. As a
result, Sibson’s interpolant can be used on manifolds with sufficiently dense sampling.
Other Scattered Data Schemes:Many other scattered data interpolation schemes have
been proposed, among them finite elements, radial basis functions with global or local sup-
port, subdivision and bivariate splines, all of which have advantages in certain applications.
Yet, natural neighbor based interpolation offers a unique combination of the properties

• locality,

• support determined by truly automatic neighborhood,

• continuous dependency on positions of input sites.

Radial basis functions offer very good mathematical properties in terms of approximation
order and smoothness and do like natural neighbor based schemes not depend on a partic-
ular tessellation. But even the construction of a compactly supported interpolant requires
the solution of a global linear system. Finite elements can be constructed with high orders
of continuity but are defined over one fixed choice of elements, i.e. the tessellation of the
domain, and thus do not continuously depend on the positions of the data sites. Similar
arguments apply to bivariate splines and subdivision. In the more relaxed setting of scat-
tered dataapproximationapproaches like hierarchical B-splines, thin plate splines exist,
or moving least squares exist. Of these, only the latter has properties similar to natural
neighbor based schemes and can even be integrated with natural neighbor coordinates as a
replacement for the inverse distance weights.

9 Conclusion

Natural neighbor based interpolation offers some unique properties that make it appealing
in settings where the sample distribution is inhomogeneous or changes over time. Its local
support is an advantage in large scale data processing, its automatic neighborhood defini-
tion and the continuous dependency on the data site positions is especially interesting for
meshless methods in mechanical engineering and computational fluid dynamics, where
they have been successfully applied in two- and three-dimensional settings. Sibson’s iden-
tity as well as Laplace coordinates have been generalized to data sites of arbitrary shape,
which is useful in geological and terrain modeling.

The main drawback of natural neighbor based interpolation so far lies in the lack of
smoothness of the local coordinates at the data sites. For point shaped data sites, this can
be solved. One remedy is a non-convex coordinate construction by Clarkson. Another are
schemes that interpolate prescribed derivatives, which are unknown in most settings and
must therefore be estimated. Furthermore, local coordinates with higher smoothness so far
only exist for two dimensions and are tedious to implement.

Some unsolved aspects about natural neighbor based interpolation remain interesting.
The smoothness across the data sites in transfinite interpolation could be improved by
adopting one of the approaches from the point shaped setting. The implementation of
higher-dimensional local coordinates withC2+-smoothness is an open problem and sub-
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ject to current research. Furthermore, direct formulas for derived values such as integrals
would certainly add to the attractivity of natural neighbor based interpolation.
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