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Abstract. Reconstruction of hand-held laser scanner data is used in
industry primarily for reverse engineering. Traditionally, scanning and
reconstruction are separate steps. The operator of the laser scanner has
no feedback from the reconstruction results. On-line reconstruction of
the CAD geometry allows for such an immediate feedback.
We propose a method for on-line segmentation and reconstruction of
CAD geometry from a stream of point data based on means that are
updated on-line. These means are combined to define complex local ge-
ometric properties, e.g., to radii and center points of spherical regions.
Using means of local scores, planar, cylindrical, and spherical segments
are detected and extended robustly with region growing. For the on-line
computation of the means we use so-called accumulated means. They
allow for on-line insertion and removal of values and merging of means.
Our results show that this approach can be performed on-line and is
robust to noise. We demonstrate that our method reconstructs spherical,
cylindrical, and planar segments on real scan data containing typical
errors caused by hand-held laser scanners.

1 Introduction

Hand-held laser scanners in industry are primarily used for reverse engineering.
A human operator moves the laser scanner along the surface of a physical object
to sample its geometry. Usually the point set generated by the scanning process
is shown to the operator. The reconstruction of geometric objects is computed
afterward in a separate step, where a manual extraction of the geometric pa-
rameters is done. When data is missing in the scan the complete process fails.
Thus, the whole scanning and reconstruction process must be repeated.

When using an on-line reconstruction algorithm, the reconstruction is done
simultaneously with the acquisition of the scan data. Missing data can immedi-
ately be detected and corrected by the operator: one simply scans the critical
region again. Thus, all data structures of the reconstruction are updated with
the new data to improve the quality of the reconstruction immediately.

In this context on-line computation means that the data is already processed
while the operator is scanning the object. Therefore, the operator can interact
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with the results of this reconstruction process. In contrast to real-time comput-
ing, no strict time constraints have to be guaranteed.

We present an on-line algorithm for segmentation and reconstruction of CAD
geometry from a stream of point data. It is based on accumulated means of
local geometric quantities and classification scores for different surface types.
Accumulated means allow for on-line insertion, removal, and merging of data.

Data structures for local geometry, edge detection, and segmentation are
described in Section 3. Accumulated means of local geometric properties and
classification scores are presented in Section 4. A segmentation strategy using
the advantages of accumulated means is described in Section 5. The performance
of the method with simulated and real scan data is analyzed in Section 7.

2 Related work

One of the first approaches of reconstructing data from triangulation laser scan-
ners is presented in [1], where cylinders are fitted to point data from a laser
scanner. To reconstruct complex objects a segmentation of the surface is nec-
essary. An extensive overview of surface segmentation methods is provided in
[24]. The underlying data structures are either meshes, e.g. [29], or a k-nearest
neighbor graph, e.g. [30], for an efficient local surface analysis. For CAD applica-
tions usually a segmentation by surface type is computed. The Gaussian sphere
is used in [3] to segment surfaces by their dimensionality, whereas variational
surfaces are used in [29].

Early methods for the reconstruction of geometry are discussed in [27]. They
are based on the reconstruction of polygonal boundary models and the fitting
of simple surfaces and free-form geometry. The method presented in [2] focuses
on the reconstruction of rotational and translational surfaces and blends. In [29]
variational surfaces are used to reconstruct implicit representations of geometric
primitives. These methods do not work for on-line computations of point streams.

Iterative methods for geometry reconstruction often apply stochastic algo-
rithms like Random Sample Consensus (RANSAC) fitting. They are used for the
reconstruction of geometric primitives [23] or super-quadrics [4]. These RANSAC
based methods are applied to random sub-sets of the data, whereas our segmen-
tation approach is based on all available data. Iteration between segmentation
and reconstruction is used in [26]. Here, based on quadric fitting the segmenta-
tion of an unorganized point cloud is iteratively improved. Complete data sets
are required for each iteration.

Stream processing of point data is discussed in [18, 6]. A sweep line approach
sequentially processes large point sets with a set of geometric operators. Thus,
the point sets have to be pre-sorted along one spatial direction.

Hand-held laser scanners generate unorganized streams of point data. Such
streams can be triangulated on-line [5]. The data is reduced to a set of vertices
that are almost uniformly distributed. A surface mesh is generated on-line con-
necting these vertices. This approach was extended by [10, 11] with a multi-level
data structure. Thus, the mesh can be adapted to non-uniform point densities.
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An incremental computation of means is introduced in [28, 22]. These meth-
ods are compared with other non-incremental methods to compute means and
variances with respect to numerical performance in [16, 8]. The application of
these methods for variance computations is also discussed in [15]. These incre-
mental means are constructed to add single values to the mean. The removal of
values or merging of multiple means is not considered.

Clustering methods like k-means [19] or unweighted pair group method with
arithmetic mean (UPGMA) [25] use mean positions of multi-dimensional data.
On-line k-means methods like the ones covered in [31] allow the incremental
addition of data to the mean centroids of the clusters. New values are added
with a fixed or decreasing learning rate. Data changing the cluster is not removed
from the old cluster centroids. We note that on-line k-means is not an on-line
method in the sense we define in the Introduction. Efficient implementations of
UPGMA, as in [12] based on arithmetic distance means, use a reduction formula
to merge means. Though, no higher order geometric properties are used.

A method that combines local geometric properties to more stable estima-
tions is presented in [17]. Discrete estimates for normals and curvatures are
combined over an area using a voting algorithm. However, this is not an on-line
method and no geometric parameters derived from the local geometry are used.

The method presented in this paper is partially based on [9]. It differs in
the used methods for segmentation and reconstruction. In [9] the segmentation
is based only on local geometric properties and the reconstruction of geometric
primitives is based on quadric fitting.

In this paper we use a segmentation based on accumulated means. The seg-
mentation also provides the information for the reconstruction of geometric prim-
itives. Thus, there is no separate reconstruction step or quadrics fitting.

3 Data structures

The on-line reconstruction is based on a ball tree data structure as proposed in
[11]. It is used to store and process the data stream from the laser scanner and
to prepare it for the determination of surface segments.

3.1 Ball tree

The data stream generated by a laser scanner consists of noisy raw point data
in three-dimensional (3d) space and orientation data of the laser probe. The raw
points are assigned to n(eighborhood)-balls β that are defined as

β(c, r) = {x ∈ R3 : ‖x− c‖ < r},

where c denotes the center and r the radius of the n-ball. The n-balls might
overlap. Every new raw point q is added to the n-ball β(c, r) that contains q
with minimal distance ‖q − c‖. If no such n-ball exists, a new n-ball β(q, r) is
constructed. The radius r is the maximum r such that β(q, r) does not contain
any other n-ball centers. For detail we refer to [11].
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For fast access, the n-balls are organized in a ball tree, which is an octree
data structure. An n-ball is added to the octree region that contains its center.
The edge length of this region is the radius of its n-balls. Thus, n-ball radii are
dyadic fractions of the initial scan area’s edge length eO, i.e., r = eO/2

n, n ∈ N.
Each n-ball β stores estimates for the local normal and principal curvatures.

The principal component analysis (PCA) [14] is used to compute the normal n
of the raw points of a neighborhood of n-balls in the ball tree. The Weingarten
map [7] of a quadratic approximation Pβ to these raw points based on the local
tangent plane defined by n is used to compute estimates on the principal cur-
vatures κ1, κ2 and principal directions d1, d2. These estimates are only used,
when the ratio of the smaller eigenvalues of the PCA is less than 1/2.

For each n-ball β the arithmetic mean of its raw points is computed and
projected onto Pβ . The resulting point p represents the local geometry of β and
is used for the reconstruction. Additionally, each n-ball holds a list of closest
neighbor points, similar to [30].

3.2 Sharp feature detection

The quadratic polynomial Pβ approximates the geometry of the raw points of β
accurately only when the geometry is sufficiently smooth. Sharp features cannot
be approximated accurately by a single quadratic polynomial. Thus, we use
two polynomial approximations to reconstruct sharp features. More than two
approximations are possible but their reconstruction is not sufficiently stable.

To compute Pβ we use a least absolute deviation approximation instead of
a least squares approximation. It is based on the L1 norm instead of the L2

norm and is better suited for partial reconstructions. For the computation itera-
tively re-weighted least squares (IRWLS) [13] are used. For IRWLS compute the
weighted least squares approximation with weights wi = 1/

√
di, where di is the

distance of the approximation to the raw points. These weights are adjusted in
every iteration. The weight adjustment compensates for the difference between
the L1 and L2 norm. Usually, after approximately five iterations Pβ is sufficiently
close to a least absolute deviation approximation.

During the IRWLS computation the number of outliers with distance di >
εsdr is recorded. If there are more than 20% outliers, we assume a sharp feature
in the scanned geometry and approximate a second polynomial P 2

β . This second
polynomial is initially IRWLS approximated to the outliers. Both polynomials
P 1
β = Pβ and P 2

β are IRWLS approximated to all raw points with weights

w1
i = max

(
d2
i − εsd, 0

) /√
d1
i , and w2

i = max
(
d1
i − εsd, 0

) /√
d2
i .

Thus, raw points close to one of the approximations obtain a small weight for
the other one. The superscript k refers to quantities related to P kβ , k = 1, 2. The
ratio of outliers not close to any surface to the number of approximated raw
points defines a quality score qls for the approximation.

For sharp features, the point p is projected onto the intersection curve of P 1
β

and P 2
β by iterative projection to the intersection line of local tangent planes.
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3.3 Segment data structure

A segment is a set of n-balls of approximately the same geometric type. The
implementation is based on a hash table [20]. Thus, look-up and insertion op-
erations have amortized computational complexity O(1). For the on-line CAD
reconstruction segments are classified by their geometry. Currently the supported
segment types are planar, cylindrical, spherical, and unknown geometry.

Each segment maintains a set of its neighbor segments. This set contains
all segments containing n-balls that are neighbors to n-balls in the segment.
Neighbor segments are added to this set when n-balls are added or modified.
At the same time a back link is added to the neighbor segment’s set. Neighbor
entries are only removed upon segment deletion.

For the association of n-balls to segments also a hash table is used. Further-
more, a hash table for each n-balls is used to maintain all geometric quantities
that are associated to this n-ball in order to guarantee consistently accumulated
means, as described in the next section.

4 Accumulated means

The advantage of using means of geometric properties instead of purely local ge-
ometric properties for the detection of surface segments is the increased stability
in the computations.Thus, we use means throughout our on-line approach.

Weighted and unweighted arithmetic means of a set of n data xi with constant
weights wi are defined as

x̄n =

∑n
i=1 xiwi∑n
i=1 wi

and x̃n =
1

n

n∑
i=1

xi.

For on-line computations means are computed by incremental addition of data.
Besides, it is necessary to remove data from a mean or to merge two means. We
call a quantity accumulated when it supports these three accumulation opera-
tions, e.g., x̄n is an accumulated weighted arithmetic mean.

4.1 Accumulated arithmetic means

The incremental computation of an unweighted arithmetic mean x̃n when adding
a value xn, n > 1, is defined as

x̃n = x̃n−1 +
1

n
(xn − x̃n−1) , x̃1 = x1.

For numerical reasons we avoid adding (n − 1)x̃n−1, see [16]. To compute a
weighted arithmetic mean x̄n, the average weight w̃n is used

x̄n = x̄n−1 +
wn

(n− 1)w̃n−1 + wn
(xn − x̄n−1) , x̄1 = x1.
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A value xn+1, n ≥ 1, can be removed from an unweighted arithmetic mean by

x̃n = x̃n+1 −
1

n
(xn+1 − x̃n+1)

and from a weighted arithmetic mean by

x̄n = x̄n+1 −
wn+1

(n+ 1)w̃n+1 − wn+1
(xn+1 − x̄n+1) .

Two arithmetic means ãn and b̃m with m ≤ n are merged to one combined
arithmetic mean x̃n+m by

x̃n+m = ãn +
m

n+m

(
b̃m − ãn

)
. (1)

The combined weighted arithmetic mean is computed using the arithmetic means
of the weights ũn, ṽm of the partial weighted arithmetic means ān and b̄m

x̄n+m = ān +
mṽm

nũn +mṽm

(
b̄m − ān

)
.

The weight mean w̃n+m for the combined mean x̄n+m is computed from ũn, ṽm
by Equation (1). We note that the computational complexity of all accumulation
operations is O(1), which is optimal for an on-line algorithm.

4.2 Accumulated arithmetic means in the ball tree

For each n-ball in a ball tree we obtain sets of values that are combined in accu-
mulated arithmetic means. Unweighted arithmetic means are used for position
p, normal n, and ball radius r. Their means p̃, ñ, r̃ are used to detect planar
segments. Accumulated weighted arithmetic means κ̄1, κ̄2, H̄ are computed for
principal curvatures κ1, κ2, and mean curvature H. The respective weights are
given by the quality score qls of the least squares approximation.

4.3 Indirect accumulated means

For each segment accumulated weighted arithmetic means for both principal
curvatures and the mean curvature yield indirect accumulated weighted means
for the hypothetical cylinder and sphere radii r̄1, r̄2, and r̄s

r̄i = −κ̄−1
i , i = 1, 2, and r̄s = −H̄−1.

Other geometric quantities are defined by normalized, non-oriented, vector-
valued data, e.g., principal curvature directions d1, d2. Thus, arithmetic means
cannot be used to combine principal directions. Due to normalization, this data
lies on the unit-sphere. Their distribution on the unit-sphere is estimated by
a PCA step. For both principal curvature directions di, i = 1, 2, the 3 × 3 co-
variance matrix Ci is computed. The eigenvalues λi,j , j = 1, 2, 3, of Ci character-
ize these distributions. The eigenvectors of the largest eigenvalues λi,3 are used
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d̃3−i

pcyl

p

p̄i

Fig. 1: Points and directions of a cylindrical segment.

as unweighted means d̃i for the non-oriented directions. Co-variance matrices
Ci are accumulated, because data d can be added or removed by

Cnew
i = Cold

i ± di · dti,

and two co-variance matrices C1
i ,C

2
i are merged by

Ci = C1
i + C2

i ,

yielding the co-variance of the union of both sets of non-oriented directions.
Thus, d̃i, i = 1, 2, are indirect accumulated means. They provide information
for cylinder detection: the cylinder axis has the same direction as the principal
direction of the smaller absolute principal curvature.

The complexity for the accumulation operations for a 3×3 co-variance matrix
C is O(1). Due to the constant size of C, the computation of its eigenvalues and
eigenvectors has also complexity O(1). Thus, the overall complexity is O(1).

4.4 Accumulated means depending on means

For each segment hypothetical cylinder and sphere center points are estimated
by locally approximated center points

pi = p− r̄i · n, i = 1, 2, and ps = p− r̄s · n.

These local estimates accumulate to the weighted arithmetic means p̄1, p̄2, and
p̄s with weights |κ̄1|, |κ̄2|, and

∣∣H̄∣∣, respectively. We use weighted arithmetic
means to account for the non-linear distribution of center points and the fact
that there is no multi-dimensional harmonic mean. Since the local estimates and
the weights vary with time, they are stored for the accumulation operations.

Using p̄1, p̄2, and p̄s a more stable local estimate for the radii can be com-
puted, see Figure 1,

Ri = ‖(p− p̄i)− ((p− p̄i)d̃3−i)d̃3−i‖, i = 1, 2,

Rs = ‖p− p̄s‖.

The accumulated weighted means of corrected radii R̄1, R̄2, and R̄s are computed
again with weights |κ̄1|, |κ̄2|, and

∣∣H̄∣∣.
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4.5 Scores for geometric primitives

For segmentation we define scores to measure the fitting quality of an n-ball to
planar, spherical, cylindrical, or unknown geometry. We use multiplicative scores
that are centered at 1 using a normalization weight ω, see Table 1. Values smaller
that 1 denote high fitting quality. Partial scores si are combined by weighted
multiplication using weights wi to yield a combined score

s =

n∏
i=1

((si − 1)wi + 1) with wi ∈ (0, 1).

For each segment all scores are maintained at all times. Currently we compute
scores for planar, cylindrical, spherical and unknown geometries. Each of these
scores consists of a partial score for the segment size, a distance score, an angle
score, and a curvature score. The latter is used only for cylindrical and spherical
geometries. In the computations all means belong to the same segment and all
local data belongs to the corresponding n-ball. The weights in the multiplicative
combination are 3/4 for the distance and angle sores and 1/2 otherwise.

The score for planar segments spln is computed based on these quantities:

Distance score: Normal distance ñ(p̃− p)/(r̄ωnd).
Angle score: ^(n, ñ).
Size score: Reciprocal of number of n-balls in the segment.

The score for cylindrical segments scyl is based of the direction of the cylinder

curvature κ̄δ that is orthogonal to the cylinder axis d̃∆ with

δ = argmin
i=1,2

|λi,3| and ∆ = argmax
i=1,2

|λi,3| .

Thus, the index δ is an indirect accumulated quantity characterizing the type
of the cylinder. To simplify radius computations we compute a point on the
cylinder surface in the plane normal to d̃∆ containing p̄δ, see Figure 1,

pcyl = p−
(

(p− p̄δ) d̃∆

)
d̃∆.

The partial scores for cylindrical segments are:

Distance score: Radius difference
∣∣‖pcyl − p̄δ‖ − |R̄δ|

∣∣/(ωcyl|R̄δ|).
Angle score: Average of ^(d∆, d̃∆) and ^(n,pcyl − p̄δ).
Curvature score: max(|κδ|, |κ̄δ|)/min(|κδ|, |κ̄δ|).
Size score: Reciprocal of number of n-balls in the segment.

The score for spherical segments ssph is computed from:

Distance score: Radius difference
∣∣‖p− p̄s‖ − |R̄s|

∣∣/(ωsph|R̄s|).
Angle score: ^(n,p− p̄s).
Curvature score: max(|H|, |H̄|)/min(|H|, |H̄|).
Size score: Reciprocal number of n-balls in the segment.

For unknown geometry a score sunk is computed based mostly on local values
of two neighbored n-balls β and βnb:
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Distance score: Normal distance nnb(pnb − p)/(r̄ωnd).
Angle score: ^(n,nnb).
Size score: Reciprocal of number of n-balls in the segment.

Since the scores are combined from different geometric quantities, the ranges
for the overall scores spln, scyl, ssph, and sunk differ significantly, e.g., good
values of spln tend to be much smaller than good values of scyl. To compensate
for this effect and to avoid a time-consuming re-balancing of the partial scores,
the overall scores are re-balanced by correction factors. These factors are 2.5 for
spln, 0.7 for scyl, 0.9 for ssph, and 6.0 for sunk.

For spln, scyl, and ssph accumulated means s̄pln, s̄cyl, and s̄sph are computed
for each segment. These means are weighted by the quality qls and are used
to determine the overall segment type. The smallest mean score determines the
segment type. If it is larger than 1 the segment is classified as unknown geometry.

5 Segmentation strategy

Our segmentation algorithm is implemented as a separate layer on top of the
ball tree described in Section 3. The n-balls can be added, removed or modified
at any time. For each of these updates we need to update the segmentation.

5.1 Changing single n-balls

When a new n-ball is generated, it is assigned to the best-fitting segment. To
find the best-fitting segment the score spln, scyl, ssph, or sunk of this n-ball for
each hypothetical segment that contains an n-ball in the local neighborhood is
computed. The segment type of the hypothetical segment determines which score
for the n-ball is computed. Then it is added to the segment with the minimal
score by adding its data and scores to the means of the segment. The n-ball is
also inserted into the segment data structures.

To remove an n-ball its old values are removed from the means of its segment.
The n-ball is removed from the segment data structure. If a segments contains
no n-balls after a removal, the segment is deleted.

For modifications of n-balls the same minimal scores as for adding n-balls are
computed. When a score indicates a change of segments, the n-ball is removed
from the old segment and added to the new one. Otherwise, the the new values
of the n-ball replace the old values in the means of its segment.

Accumulating the means of a segment is of complexity O(1). Assuming that
the size of the local neighborhood of an n-ball is constant, the search for the
best-fitting segment has also complexity O(1). Updating the set of n-balls of a
segment and updating the global hash table of n-balls have complexity O(1).

5.2 Merging segments

After several updates for one segment, a hypothetical merged segment with each
of its neighbor segments is computed. This hypothetical segment contains the
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data of both segments using the accumulation formula for the means and co-
variance matrices. We note that in the sequel quantities with superscript k = 1, 2
refer to data associated with one of the merged segments and quantities without
superscript to data of the resulting hypothetical segment.

The segment type of the hypothetical segment is determined by the accu-
mulated mean scores s̄pln, s̄cyl, s̄sph. Depending on the resulting segment type
further merge conditions based on thresholds ε are evaluated, see Table 1. For
planar segments the normal distance between the center points p̃1, p̃2 of both
original segments and the angle between their normals ñ1, ñ2 are evaluated, i.e.

|ñ1(p̃1 − p̃2)|+ |ñ2(p̃2 − p̃1)| < εnds(r̃
1 + r̃2) and ^(ñ1ñ2) < ε^.

For cylindrical segments the angle between the cylinder axes, the deviation of
the cylinder axes are evaluated, and the difference of radii, i.e.

^(d̃1
∆d̃2

∆) < εca, ‖(p̄2
δ − p̄1

δ)− ((p̄2
δ − p̄1

δ)d̃∆)d̃∆‖ < εcc|R̄δ|, and

|R̄1
δ − R̄2

δ | < εcr|R̄δ|.

For spherical segments the difference of radii and the distance of their center
points are evaluated, i.e.

|R̄1
s − R̄2

s| < εsr|R̄s| and ‖p̄1
s − p̄2

s‖ < εsc|R̄s|.

Segments classified as unknown geometry cannot be merged.
When the hypothetical segment satisfies the combination of the merge condi-

tions, the merge operation is realized: The means and data of the smaller segment
are merged to the means and the data of the larger segment, the neighbor in-
formation is updated, and then the smaller segment is deleted. After a merge
operation, further checks for merges of the involved segments are dropped.

The complexity to compute a hypothetical segment is O(1). Hypothetical
segments are computed for each of the k neighbors, so the complexity of checking
for merges is O(k). The complexity of a merge operation is O(1) for merging the
means. Merging the sets of n-balls of the segments has an amortized complexity
of O(m), where m is the number of n-balls in the smaller segment. The global
hash table associating n-balls to segments is updated with complexity O(m).
Thus, the overall complexity to merge two segments is O(k +m).

5.3 Consistency checks

Every time a segment changes its type, all its n-balls are checked for consistency.
This is also done when a cylindrical segment changes the direction of its axis.
For each n-ball in the segment the segment with the minimal score spln, scyl,
ssph, or sunk is determined. If it differs from the current segment, the n-ball is
removed from the current segment and added to the new segment.

The computational complexity of this consistency check is O(m) where m
is the number of n-balls in the segment. Each of these n-balls determines its
best-fitting neighboring segment with O(1) time complexity. It is removed from
the current segment with O(1) and added to another one with O(1), if necessary.
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βi+2
βi+1 βi βi−1

Fig. 2: Sector (gray) between half-angle lines (red) of a boundary edge 〈βi, βi+1〉.

6 Segment boundaries

In CAD applications one must handle trimmed surfaces. A boundary curve is
constructed that represents the outer contour of the surface. To render the re-
sults of the on-line CAD reconstruction a similar approach is used. Polygonal
boundaries are constructed surrounding the areas of the primitives. A polygonal
boundary B is an ordered sequence of n-balls βi with 1 ≤ i ≤ nB . By definition,
it is ordered counterclockwise when seen from the outside.

The segmentation in Section 5 uses a region growing approach. A segment
starts with a single n-ball and is extended by adding n-balls. When it consists
of three n-balls, a first initial boundary B with nB = 3 can be constructed. A
local planar projection is used to choose a counterclockwise orientation of B.

6.1 Boundary expansion

All the following operations use a local planar projection based on the segment
data, e.g., in the direction towards the center point of a spherical segment. The
orientation of a segment is defined by the sign of its average normal ñ or radius
r̄1, r̄2, or r̄s.

For each n-ball βnew that is added, modified or removed from a segment,
B is updated. When a newly added n-ball is outside of B, it is inserted into
the closest edge 〈βi, βi+1〉 of B. The neighbors βi of βnew on the boundary B
are determined. Both edges 〈βi−1, βi〉 and 〈βi, βi+1〉 are candidates for inserting
βnew. In the projection, βnew has to lie within the sector bounded by the half-
angle lines to its two neighboring edges, see Figure 2. The edge that fulfills this
condition and whose center point is closest to βnew is chosen for insertion. After
the insertion, consistency checks improve the shape of the boundary.

Changes of the values of an n-ball on the boundary trigger only the con-
sistency checks. If it is not on the boundary, it is treated like a newly added
n-ball. When removing an n-ball from the segment, it is also removed from the
boundary. If it was on the boundary, we attempt to re-connect the boundary
by inserting neighboring n-balls to the boundary. In the projection space, the
neighboring n-ball βnb with the smallest sum of inner angles to the half-angle
lines next to the deleted n-ball is searched, see Figure 2. If such a βnb is found
and it lies outside of the chosen boundary edge, it is inserted into the boundary.
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Symbol Threshold Value Symbol Threshold Value

εsd Distance to surface 0.14 ωnd Normal distance 0.8

ωcyl Cylinder radius difference 0.1 ωsph Sphere radius difference 0.1

εnds Normal distance between p̃ 0.4 ε^ Angle between ñ 20◦

εca Angle between d̃∆ 20◦ εcr Difference between R̄δ 0.2

εcc Deviation of cylinder axes 0.4 εsr Difference between R̄s 0.2

εsc Distance of p̄s 0.4

Table 1: Used scale invariant thresholds.

6.2 Multiple boundaries

A segment can have multiple boundaries Bi, e.g., a complete cylinder mantle
has two boundaries around the caps. When scanning such a cylindrical segment,
a single boundary B1 is created that is split into two boundaries B1, B2, when
a full scan around the cylinder was completed. Whenever two outsides of the
boundary are close to each other, such a split operation is performed.

Merging of segments, see Section 5.2, requires a merging of their boundaries.
After the segments are merged, all boundaries of the segment are checked for
neighboring n-balls on different boundaries of the same segment. If a part of
both boundaries is close together and runs in opposite direction, the boundaries
are merged. The boundary parts that are close to each other are removed and
their end points are connected to create a single boundary.

6.3 Local consistency checks

After connections or n-balls of B are modified, a local consistency check is per-
formed for a single n-ball βi. If the outer angle between both its edges 〈βi−1, βi〉
and 〈βi, βi+1〉 is smaller than 150◦, βi is removed from the boundary. For all
neighbors βnb of βi on the same boundary, intersections are computed between
all connected boundary edges. If two intersections are found, the boundary is
split by connecting the two segments before and after the intersections.

If in the local neighborhood of βi a point on another boundary on the same
segment is found, a merge operation of these boundaries is initiated.

Finally, for segments of two edges on B that are close to the edges next to
βi with have opposite directions a split operation is done, see Section 6.2.

7 Results

For our method we demonstrate the effectiveness, robustness to noise, and per-
formance for real scan data. It runs at interactive speed, where the segmentation
takes only little processing power. All results are computed using the thresholds
in Table 1, which are scale invariant because they are angles or relative distances.
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Fig. 3: Sections of simulated scans without noise (left), with laser noise (middle),
and with tracking noise (right).

7.1 Synthetic scan data

To demonstrate the robustness to noise, we use synthetic scan data, where the
true segment types are known. These data sets are shown in Figure 3. The
simulated plane has an edge length of 20 cm. The cylinder height is 20 cm and
the radius is 10 cm; the sphere radius is 10 cm. The added noise is generated from
normal-distributed random numbers. It is scaled according to different levels of
standard deviation σ. We use two different types of noise:

Laser noise: Noise of the laser scanner is directed along the scanning direction.
It is applied to each raw point separately.

Tracking noise: Noise of scanner tracking is added to the scanner position and
the raw points in all three spatial directions. It is applied to each scan line.

The plots in Figures 4a to 4c show the results of our experiments with syn-
thetic planar, cylindrical, and spherical data, respectively. For each level of noise
with standard deviation σ = i/10[mm], i = 0, . . . , 10, we have computed 25 ex-
perimental segmentations and reconstructions. For each experiment new noise
is generated. The plots show the average distance of the parameters of plane,
cylinder, and sphere to the known ground truth parameters. For planes the av-
erage normal distance is plotted. For cylinders and spheres the average radius
difference and the average distances of the center lines or points are plotted.

The evaluation shows that tracking noise has the largest effect on the re-
construction. The plane reconstruction even improves when some laser noise is
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Fig. 4: Plots of the average normal distance of 25 experiments for noise levels
σ = i/10[mm], i = 0, . . . , 10, for plane, cylinder, and sphere reconstruction.
Plot (d) shows the result for all segment types using a 6DoF input controller.

Fig. 5: N-ball points p and normals n near a sharp edge computed without and
with sharp feature detection.
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Fig. 6: Sections of simulated scans scanned interactively with tracking of hand
movements.

added to the tracking noise. Cylindrical and spherical reconstructions lead to
better results for the radius than for the center line or point. Planar reconstruc-
tion is least affected by noise followed by spherical reconstruction. The added
noise has the most influence on the cylindrical reconstruction.

Planar reconstruction is based on positions p and normals n that are quite
robust to noise. Spheres also use the mean curvatures H for the radius. The
cylinder radius depends on principal curvatures κ1, κ2 and principal directions
d1, d2. Especially the principal directions are effected substantially by local
noise. The reconstruction errors of cylinder radii are around 10 times larger than
the errors of sphere radii for the same levels of tracking noise. Both segment types
use radii r̄1, r̄2, r̄s and normals n for center reconstruction. Here, the error for
cylinders is six times larger than for spheres in the presence of tracking noise.

While the precision of the reconstruction is affected by the noise none of the
reconstructions has failed. No outliers with extremely high error rates appear in
the data of these plots. Noise with standard deviation σ > 1 mm would cause
the segments to split into smaller segments, reconstructing parts of the data.
Most of these would be planar as a curvature based reconstruction would fail.

The sharp feature detection is shown in Figure 5. The n-balls near the edge
have two different normals and the points p are projected onto the feature line.

7.2 Hand-tracked synthetic scan data

The synthetic scan data simulates linear movements of the scanner that cause
a rasterized structure of the scan lines. To avoid this effect it is necessary to
track hand movements. We use a magnetic six degrees of freedom (6DoF) input
controller called Razer Hydra [21] to track interactive scans of the simulated
objects, see Figure 6. The sphere and the cylinder were scanned only from one
side to demonstrate the reconstruction of incomplete objects.

For all synthetic data-sets with noise level σ < 0.5 mm the segmentation
produces perfect results: a single segment containing all n-balls is reconstructed.

For the evaluation of these scans we plot in Figure 4d the same parameters
as in Figures 4a to 4c for both types of noise. The non-uniform distribution of
the scan lines does not influence the noise robustness for planar reconstruction
much. The partial scans of the cylinder and sphere are much more affected by
noise. Their reconstructions have errors roughly twice as large as those for the
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complete data-set. Since only one half of the objects is scanned, the corrected
radii Ri, Rs do not have the same stabilizing effect as for complete scans.

7.3 Real scans

We use point streams from a real laser scanner to evaluate the on-line recon-
struction method. For the presented experiments, we scanned objects with a
Faro Edge Laser ScanArm.

We scanned the toy fire truck shown in Figure 7. The length of the truck
is 0.6 meters. Its material is coated wood with stripes of black rubber as tires
around the wheels. The surface is composed of basic geometric primitives. There
are many flat areas that are reconstructed with planar segments. Cylindrical
regions can be found at the rounded edges, the wheels, and the holes at the
ladder. The front lights, the center of the wheels, and the head of the driver
figure are spherical. First we scanned the driver’s cabin of the toy truck. Most
segments are detected correctly, see Figure 8. Because of the dark material, the
tires are not detected as single cylindrical segments. They split up into multiple
smaller flat and cylindrical segments. At the rims, flat and spherical segments
are correctly reconstructed. Cylinders with small radii are reconstructed at the
rounded edges of the driver’s cabin. Even a small spherical segment can be seen at
the front left corner of the hood. At the radiator grill, a flat area is reconstructed
that contains two holes for the lights. The reconstruction shows some remaining
problems with the boundary reconstruction that result in incomplete and jagged
shapes. The floor below the toy truck in Figure 8d shows that missing regions
are covered by n-ball vertices. They are correctly segmented but not enclosed by
the reconstructed boundary.

For our second example, we scanned the rear end and the ladder of the toy
fire truck, see Figure 9. The bottom of the ladder platform consists of large
cylinders. They demonstrate the capabilities of the accumulated means recon-
struction to correctly classify segments with large radii. Four cylindrical holes
at the upper part of the ladder are scanned from the inside. They are correctly
reconstructed and rendered as cylinders with surface normals pointing to the
inside. The signs of principal curvatures are preserved during the accumulated
means reconstruction. The black rubber tire visible in this scan was captured
better than the one in the last scan and is reconstructed by a single cylinder
mantle. Another cylinder mantle with slightly smaller radius reconstructs the
visible part of the wooden wheel. Figures 9c and 9d show the tire in purple and
the outside of the wheel in blue. The narrow green cylinder in Figures 9b to 9d
shows a typical error of the boundary rendering. Temporarily, the outer parts
of the cylinder contained boundary points. Therefore, it is assumed that these
parts lie within the boundary. Instead of just a small area that really is inside
the boundary, almost the complete cylinder mantle is rendered.
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Fig. 7: Photograph of a wooden fire truck toy.

(a) (b)

(c) (d)

Fig. 8: Raw data and reconstruction from a scan of the driver’s cabin of the
wooden fire truck toy: 1 271 342 points, 12 325 scan lines, 15 013 n-balls, 1 011 seg-
ments. Raw data colored by curvature magnitude (a), segments colored by seg-
ment type: planar, cylindrical, and spherical (b), or each segment individually
(c), additionally the n-ball vertices are shown in the same colors in (d).
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(a) (b)

(c) (d)

Fig. 9: Raw data and reconstruction from a scan of the ladder of the wooden
fire truck toy: 3 128 055 points, 26 749 scan lines, 32 002 n-balls, 1 733 segments.
Raw data colored by curvature magnitude (a), segments colored by segment
type: planar, cylindrical, and spherical (b), or each segment individually (c),
additionally the n-ball vertices are shown in the same colors in (d).
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7.4 Performance

A large number of segments was reconstructed for these scans. Though, the
implementation always performs at interactive speed, processing 30 scan lines
with up to 5 640 points per second. We used an Intel Core 2 Quad Q6600 2.4
GHz computer with 8 GB of RAM. The most processing power is used to update
the ball tree data structure. The thread responsible for the computation of the
accumulated means and the segmentation only uses 18% on average and 28% at
maximum of a single processor core.

8 Conclusions

We presented an on-line segmentation and reconstruction method for CAD ge-
ometry from a stream of point data. This method is based on accumulated means
that are used for on-line computation of means of geometric properties. An ad-
vantage of this approach is that the results can be evaluated immediately by the
operator of the hand-held laser scanner.

Currently the approach is limited to planar, cylindrical, and spherical shapes.
We plan to extend the approach to other geometric primitives like cones, ellip-
soids, tori, and rolling ball blends. Furthermore, an on-line boundary recon-
struction of segments could be used to improve the results of the geometry
reconstruction. Such boundaries are necessary to reconstruct trimming curves
and intersections between geometric primitives.
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