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Fig. 1. A piggy bank. Original object (left), wire-frame (center), and smooth shaded
triangulation with uncertainty visualization (right).

Summary. Hand-held laser scanners are used massively in industry for reverse en-
gineering and quality measurements. In this process, it is difficult for the human
operator to scan the target object completely and uniformly. Therefore, an interac-
tive triangulation of the scanned points can assist the operator in this task.

Our method computes a triangulation of the point stream generated by the
laser scanner online, i.e., the data points are added to the triangulation as they are
received from the scanner. Multiple scanned areas and areas with a higher point
density result in a finer mesh and a higher accuracy. On the other hand, the vertex
density adapts to the estimated surface curvature. To assist the human operator the
resulting triangulation is rendered with a visualization of its faithfulness. Addition-
ally, our triangulation method allows for a level-of-detail representation to reduce
the mesh complexity for fast rendering on low-cost graphics hardware.

1 Introduction

In industry, the scanning of surfaces of 3d objects is used for measurement
and analysis of manufactured objects and for reverse engineering. Most scan-
ning devices use a laser to sample points on the surface. Some scanners move
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(a) Original object. (b) Raw points. (c) Vertices and normals.

Fig. 2. Different levels of data reduction shown with a little bronze bird.

the object while others move the laser device. While some scanning devices
measure the sample points in a regular pattern, hand-held laser scanners have
a movable scanning device that is moved along the surface by a human op-
erator. These scanning devices generate a vast amount of data in very short
time with very high precision. To process and triangulate this data the used
method must preserve the precision while reducing the data to an adequate
level, see Figures 1 and 2. Thus, it is necessary to allow for heterogeneous
triangulations and point densities, especially when areas are scanned multiple
times. This is particularly important for hand-held devices, where the opera-
tor most likely will scan the object from different directions and with different
speeds. This generates disconnected triangulation fragments with highly dif-
ferent point densities.

Since the local point density can become arbitrarily high by multiple scans,
the feature size that can be reconstructed is theoretically arbitrary small. Of
course, the measuring accuracy/error sets a lower bound for the feature size.

For these hand-held laser scanners, the operator has to cover the complete
surface of the object. Because the scanning may take a long time, it is difficult
for the operator to keep track of the already scanned area. Furthermore, there
is no feedback to tell the operator to re-scan a region to increase the point
density to improve the quality of the reconstructed surface. Therefore, a full-
automatic real time triangulation and visualization of the scanned points is
crucial to assist the operator to improve the scans in less time. Thus, the
crucial constraints for our triangulation task are:

A. Handling of large point sets,
B. handling of heterogeneous point densities of incoherently scanned regions,
C. handling of high precision point data with predefined measurement errors,
D. handling of point streams of arbitrary order, i.e., online triangulation,
E. triangulating full-automatically,
F. triangulating in real-time, and
G. assisting the human operator during the scanning process.

In the rest of the paper we first discuss related work in Section 2 and
describe the principle of our method in Section 3. Subsequently we discuss
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various aspects of our method in detail, i.e., in Sections 4–6 the neighborhood
and normal calculations and local triangulation, in Section 7 our octree-based
data structure, and in Section 8 local improvements of the approximation qual-
ity. In Section 9 we present a method to assist the human operator during the
scanning process and in Section 10 the integrated level-of-detail representa-
tion. Finally we show results of our method in Section 11 and close with an
outlook on our future research plans in Section 12.

2 Related work

To contrast our approach to other methods for surface reconstruction from
unorganized point clouds, we briefly describe alternative methods and discuss
their pros and cons with respect to the constraints A.–G. given above.

One of the first methods in this field was proposed in [14]. Here, for ev-
ery point a surface normal is estimated from its k nearest neighbors and its
orientation is propagated from the orientation of one particular normal to all
other normals using a global minimal spanning tree of the points. This allows
to estimate tangent planes defining an estimated signed distance function to
the surface. Its zero-set is used to compute a triangulation of the surface us-
ing marching cubes. This method can deal with surfaces with boundaries and
holes, and no additional information (such as surface normals) is necessary.
On the other hand, it is not capable of dealing with incremental insertion of
data points, since the orientation propagation is global, and the density of the
points on the surface is pre-defined, otherwise spurious holes are introduced.
The minimum feature size that can be reconstructed is fixed a priori by the
edge length of the marching cubes algorithm and increasing the density of
points does not reveal more details. Therefore, at least constraints B. and
D. are not satisfied.

Alpha shapes were defined in [9, 10]. For a given real number α > 0, the
alpha shape Sα of a point set P is the set of all k-simplices T ⊂ P (k < d)
with vertices lying on a sphere with radius α that does not contain any other
point of P . The alpha shape can efficiently be determined from the Delaunay
triangulation where α controls how many “details” of the point cloud are “cut”
out of the convex hull of P . If α is too large, details remain hidden under
larger faces, if it is too small, the object may be cut into disconnected pieces.
Therefore, the choice of α is crucial for the optimal reconstruction of a surface
from a point cloud. If the variation of the point density is too high, there may
not even exist a suitable α value, violating constraint B.

For the so-called weighted alpha shapes of [1] every point of P gets an
associated weight. This permits using different values of α for different regions
of P . The weights have to be tuned to the point density very accurately to
achieve a good reconstruction of the underlying surface, making it difficult to
achieve B. Another extension was proposed in [20]. The sphere with radius
α is deformed anisotropically into an ellipsoid, achieving a more accurate
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separation of surfaces close to each other. But their approach relies on user
input, violating constraint E.

All methods based on alpha shapes can be used to reconstruct surfaces
with borders and holes, an no additional information per vertex other than its
position is necessary. But, the correct choice of α or the point weights, respec-
tively, is crucial for the quality of the final triangulation, which is in contrast
to constraint C. Furthermore, the computed triangulation is not guaranteed
to be a 2-manifold with border. It can contain edges with more than two adja-
cent faces, or isolated edges and vertices. Therefore, a postprocessing clean-up
step is necessary, violating also constraint F.

The so-called power crust of [4] is based on an approximation of the medial
axis transform of the point set. It is computed from the Voronoi diagram and
the poles of the input points. From this, it calculates in an inverse transforma-
tion the original surface using the power diagram of the poles and taking the
simplices dividing the interior and exterior cells of the power diagram from
each other as triangulation for the surface. The power crust approach pro-
duces connected surfaces possibly with intentional holes. So, it is not suitable
for online triangulations (constraint D.) where the triangulation may consist
of disconnected fragments (constraint B.).

The eigencrust method proposed in [16] is specialized to produce high
quality surface reconstructions on noisy point clouds. It labels all tetrahedra
in the 3d Delaunay triangulation of the sample points as either being inside or
outside the surface based on a global optimization. The triangulation of the
reconstructed surface is the set of faces that are adjacent to one inside and one
outside tetrahedron. Because of the global optimization step, the results are of
high quality even with the presence of noise and outliers. The final surface is
always a 2-manifold without border. Therefore, the eigencrust method cannot
be used with constraint D.

The geometric convection approach for surface reconstruction described
in [6] starts with a Delaunay triangulation of the point set, and shrinks the
boundary surface by removing tetrahedra containing a boundary triangle that
does not fulfill the oriented Gabriel property, i.e., the half-sphere centered at
the triangle’s circumcenter and oriented to the inside contains point of the
point set. This procedure is repeated until all boundary triangles fulfill the
oriented Gabriel property. In some cases, cavities are not opened by this algo-
rithm, so another property has to be defined to remove the involved tetrahe-
dra. The approach requires the Delaunay triangulation of the complete point
set, therefore it contradicts constraint D.

An extension of [6] for streams of point sets is proposed in [3]. The point set
is divided into slices, and only a limited number of slices is kept in memory.
A slice that cannot have impact on the current slice can be removed from
memory, storing the triangles found for that slice. For the division into slices,
all points have to be known in advance, because they have to be ordered
according to one of the spatial coordinates. Therefore, this method is not
suitable for constraint D.
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A method suitable not only for surface reconstruction but also for re-
meshing of an existing mesh is presented in [18]. Using an advancing front
approach, triangles are constructed that fulfill two user-defined constraints:
the maximum edge length with respect to the curvature, and ratio bounds
of adjacent edges. For surface reconstruction, a projection operator P and a
guidance field g have to be defined, contradicting constraints B., D., and F.

A common problem of the methods [1, 3, 4, 6, 10, 16, 20] is their computa-
tional complexity, which is too high for real-time applications (constraint F.).
Another disadvantage of these methods is the fact that the sample points or
the same number of points are used to create the surface mesh. Thus, the
complexity of the meshes increases rapidly while scanning, and the measure-
ment errors are not corrected. Furthermore, if a region is scanned multiple
times, the additional vertices decrease the area of the mesh faces, but the
noise remains constant, leading to a bumpier surface after every scan pass.
These aspects are in contrast to constraints A. and C.

In [5] an interactive online triangulation method is proposed. The sampled
points are processed in a pipeline. In the first stage the number of points is
reduced by dropping every point that is closer than a specified radius from
an already existing point. In the second stage, the normal at the point is
estimated using the points in a local neighborhood. After another reduction
stage with a larger radius, the points with a stable normal are inserted into
the surface mesh which is re-triangulated locally with a shortest edge criterion
to decide which edges to keep. This approach works well and is fast, but has
some major drawbacks:

• A large fraction of the input is ignored and not used to reduce the noise
of the input data, violating C.

• The size of the smallest features that can be modeled is fix, violating C.
• The size of the mesh triangles is not adapted to the density of sample

points or the curvature of the surface, violating B. and E.

The method proposed in this paper uses some of the ideas of the approach
of [5], but satisfies all constraints A.-G.

3 Online triangulation

Our method is based on a laser scanner like the FARO Laser ScanArm [11]
as described in Section 11. Scanners of this type generate a stream D =
(d1, d2, . . . ) of data points di. Each data point is a pair di = (pi, hi) ∈ R3×R3

of a raw point pi, that is measured by the scanner on the scanned object, and
the scan position hi of the laser scanner at the moment of scanning pi.

A laser scanner of this kind scans an object line by line measuring a certain
number of data points per scan line. The scanner we used scans up to 30 lines
per second measuring up to 640 data points per scan line, see e.g. Figure 2(b).
These scan lines are arranged in scan passes that the human operator triggers
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by pressing a button. The pauses between two scan passes are usually used
by the operator to reposition the scanner for a different scan direction.

In order to triangulate this huge data stream online, the data points need
to be reduced. For this the data points are classified by their distance and
added to so-called neighborhood balls bj that represent a subset of data points
within a certain radius and similar scan positions. The radius depends on
the point density and estimated curvature. Subsequently only the averages of
data points of the neighborhood balls are used as vertex positions in the tri-
angulation T approximating {p1, p2, . . . }. So, the overall process is described
schematically as follows (for the used data structure see Section 7)

Online-Triangulation(d1, d2, . . . )
Input: Data point stream D = (d1, d2, . . . );
Output: Triangulation T approximating {p1, p2, . . . }.
1: while (D not terminated) do {
2: Add-To-Neighborhood-Balls(di); \\ see Section 4
3: Update normals of affected neighborhood balls; \\ see Section 5
4: Update local approximation; \\ see Section 8
5: Triangulate area of affected neighborhood balls; \\ see Section 6
6: Render triangulation with uncertainty visualization; \\ see Section 9
7: }

4 Neighborhood balls

A bounding cube of edge length R enclosing the maximal scanning range is

O = [xmin, xmin + R]× [ymin, ymin + R]× [zmin, zmin + R],

i.e., pi ∈ O for all i. Furthermore, a ball with center c ∈ R3 and radius
r ∈ R, r ≥ 0, is for the Euclidian norm ‖ · ‖ defined as the set

β(c, r) = {x ∈ R3 : ‖x− c‖ ≤ r}.

As in [5] we use neighborhood balls bj = (cj , rj , Dj) to represent a set of nj

data points Dj = {dj,1, . . . , dj,nj
} ⊂ D contained in the ball βj = β(cj , rj).

Every neighborhood ball corresponds to a local estimate Nj for the oriented
surface normal, which might be undefined (cf. Section 5), and a vertex vj of
T . Thus, neighborhood balls can intersect and serve three purposes:

• Collecting nj data points to reduce the number of visualized data points.
• Estimating a local oriented surface normal.
• Averaging its data points gives the position of a vertex of the triangulation.
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The minimal ball radius Rmin = 0.75 mm prevents ball sizes below scan-
ner accuracy. A neighborhood ball may contain up to nsplit = 40 data points.
Later this value is depending on curvature, see Section 8.2. The set of all
neighborhood balls bj is denoted by B. It is initialized with the first data point
B = {(p1, R, {d1})}. Then new neighborhood balls are generated by adding
one data point after the other with Add-To-Neighborhood-Balls(di), us-
ing the following steps:

1. To add data point di = (pi, hi), first all k neighborhood balls bj =
(cj , rj , Dj) are determined that contain pi ∈ βj with normals Nj aligned
to the scanning direction, i.e.

NT
j · (hi − pi) ≥ 0 (if Nj is defined). (1)

a) If k = 1, di is added to Dj .
b) If k > 1, di is added to Dj of the neighborhood ball bj with largest

radius and smallest distance ‖cj − pi‖.
c) If k = 0, a new neighborhood ball b = (p, r, {d}) is generated, with

radius r = 2−µR where µ is the smallest integer such that β(p, r) does
not contain the center of any other bj . The new ball b is added to B.

2. If in cases a) and b) nj equals nsplit after di is added and r > Rmin,
the neighborhood ball bj is removed from B and all data points in Dj are
added using Step 1. If in this process a data point dl ∈ Dj is not contained
in any other neighborhood ball of B \ {bj}, a new ball b = (pl, rj/2, {dl})
is generated and added to B.

Remark 1. This definition of neighborhood balls has two advantages over the
method of [5]: First all data points are collected in neighborhood balls and
not only the first one to support C. (see Sections 5 and 8.1), and second the
radii of the balls can be adapted to the density of the data points and the
estimated curvature of the surface to support B. and E. (see Section 8.2).

For later triangulation we use the average of a neighborhood ball bj

bj =
1
nj

nj∑
l=1

pj,l,

as position of vertex vj representing bj in the triangulation, see Figure 2(c).

5 Normal estimation

For every neighborhood ball bj an estimated surface normal Nj is calculated.
First all nl data points dl contained in β(bj , 2rj) 3 pl are determined. This
provides a more stable normal estimation than using only the data points in
Dj . These data points are used for a principal component analysis as in [5,15].
Computing the eigenvalues 0 ≤ e1 ≤ e2 ≤ e3 of the 3× 3 covariance matrix
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C =
∑

l

(pl − bj)(pl − bj)T

using [19], yields for Nj the direction of the eigenvector ve1 of C corresponding
to the smallest eigenvalue e1

Nj = ve1/‖ve1‖.

To get a stable normal estimate it is necessary that e2 ≥ 2e1. Otherwise bj

does not have a normal estimate and all subsequent computations requiring
a Nj are rejected. Thus, highly curved regions with too low point density are
either not triangulated or marked as regions that need a further scan pass,
see Section 9. This ensures a locally rather planar point distribution. To get
the orientation of Nj , the average scan direction of all determined dl

sj =
1
nl

∑
l

(hl − pl).

is used. The normal orientation is correct if NT
j · sj ≥ 0. Otherwise the ori-

entation is inverted. Finally, all data points of Dj that do not satisfy (1)
are removed from Dj and re-inserted using Add-To-Neighborhood-Balls.
Figure 2(c) shows the estimated normal of each neighborhood ball.

6 Local triangulation

Because every neighborhood ball corresponds to one vertex in the triangu-
lation, the latter is updated in five steps if a neighborhood ball is added or
removed from B:

1. Collect potential neighbor vertices in a set Vj . (see Section 6.1)
2. Project Vj onto the estimated tangent plane. (see Section 6.2)
3. Adapt the border of Vj . (see Section 6.3)
4. Determine the triangulation Tj of Vj . (see Section 6.4)
5. Insert Tj into the triangulation T . (see Section 6.5)

6.1 Collecting potential neighbor vertices

Every neighborhood ball bj corresponds to a vertex vj in T with position bj .
Thus, if bj is added or removed from B, the corresponding vertex vj is added
or removed from T . In both cases the local neighborhood of vj needs to be
re-triangulated. To determine the geometric neighbors of vj we define a ball

ηj(r) = {x ∈ R3 : ‖(x− bj) + ((x− bj)T Nj)(fη − 1)Nj‖ ≤ r}.

of radius r around bj flattened along the normal Nj by fη to provide a better
separation of close parallel surfaces sheets. Then, the geometric neighbors
are all bl with bl ∈ ηj(5rj) for fη = 3 and Nl · Nj ≥ 0.5. This yields a set
Vj = {vj1 , . . . , vjm

} ⊂ V ∪ {vj} of vertices that will be re-meshed.
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6.2 Projection onto the estimated tangent plane

Because the triangulation of the area around bj is computed in the plane per-
pendicular to Nj all vertices vji

∈ Vj are projected along Nj onto this plane,
i.e. bji is projected to tji . Then, because of the one-to-one correspondence of
vji to tji , triangulating the tji is equivalent to triangulating the vji . Therefore,
we will speak of a triangulation of Vj although the triangulation is computed
in the local estimated tangent plane.

6.3 Adapting the border of the local triangulation

Triangulating Vj yields a triangulation Tj of the local neighborhood of vj .
Because most vertices in Tj are also in T , the edges in Tj should match
edges in T . Thus, the border ∂Tj of Tj has to match edges in T . The border
∂Tj = (vx1 , . . . , vxnx

) is represented as a counter-clockwise oriented, ordered
sequence of nx border vertices vxl

∈ Vj , l = 1, . . . , nx − 1 with v1 = vxnx
, i.e.,

the index of border vertices is understood modulo nx. Every pair (vxl
, vxl+1)

is a so-called border edge and the border ∂Tj is initialized as the convex hull
of Vj using “Jarvis’ March” [7]. Subsequently Vj and ∂Tj are modified until
the border edges match edges in T as good as possible.

If a border edge eb = (vxk
, vxk+1) does not match any edge in T , deter-

mine the edge es = (vxk
, vs) or es = (vs, vxk+1) ∈ Vj × Vj in T inside ∂Tj

vxl+1

vxl
vxl+2

vxk
vxk+1

vs

vj

Fig. 3. The border ∂Tj before (blue) and after
(red) the modification.

with smallest angle ϕ to eb.
Then vs is inserted to ∂Tj be-
tween vxk

and vxk+1 , if es re-
spectively es is either an inner
edge or ϕ < 20◦ and if this
does not cause proper intersec-
tions of the interior of two edges
of ∂Tj or any loops containing
more than two border edges, see
Figure 3. This approach can lead
to a border of the form (. . . ,
vxl

, vxl+1 , vxl+2 , . . . ) with vxl
=

vxl+2 , see Figure 3, which is han-
dled by removing vxl

and vxl+1

from ∂Tj and vxl+1 from Vj .
Repeating these operations until there are no more edges that can be

removed results in a border that fits the existing triangulation T better. This
process terminates because the border shrinks monotonically in each step.

6.4 Triangulation of the border

To triangulate Vj first ∂Tj is split into monotone sub-polygons which are
triangulated individually, see e.g. [7]. This determines a triangulation T ′

j of
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∂Tj . Second all vertices of vl ∈ Vj \ ∂Tj are added to T ′
j successively by

splitting the triangle of T ′
j that contains tl at tl into three new triangles. This

is repeated for every vertex of Vj \∂Tj yielding a triangulation T ′′
j . Finally, the

Delaunay criterion [13] is applied repeatedly constrained by ∂Tj to improve
the triangle quality generating a triangulation Tj of Vj .

6.5 Insertion of the local triangulation

Before Tj can be inserted into T , the triangles of T in conflict with Tj must
be removed. We first remove all triangles of T incident to a vertex of Vj \∂Tj .
Remark 2. Note that this also removes triangles from vertices in Vj \ ∂Tj to
vertices in V \ Vj outside of ηj(5rj). Thus, the global topology of the surface
is corrected due to the increased local point density.

vl vl vl

e1

e1e1

e2

e2e2

∂Tj∂Tj ∂Tj

Fig. 4. Topologically preparing the border ∂Tj (red) for the new triangulation Tj by
deleting the blue faces. All triangles shown in the figures are in T , Tj is not shown.

At this stage T contains no triangles connected to vertices of Vj \ ∂Tj . All
triangles remaining in T conflicting with Tj involve only vertices on ∂Tj . For
such a vertex vl ∈ ∂Tj with border edges e1 = (vl−1, vl) and e2 = (vl, vl+1),
all faces potentially pointing to the inside of the border are deleted. Thus,
there are three different cases that are solved topologically:

1. If both edges e1 and e2 belong to T , all faces of the one-ring of vl are
removed if they are left of e1 or e2 or if they are not connected to the
right faces of e1 or e2. This removes triangulated areas of T that are also
covered by Tj and reduces the complexity of the one-ring, see Figure 4
(left).

2. If only e1 belongs to T , the face of the one-ring of vl left of e1 and all faces
not connected to the right face of e1 are deleted, see Figure 4 (middle).

3. If both e1 and e2 do not belong to T and vl has a closed one-ring, the
face pointing the most inside the triangulated area is removed, which is
e.g. the triangle of the one-ring of vl intersected by the bisector of e1 and
e2 in the local estimated tangent plane, see Figure 4 (right).

Finally, if there are two vertices vl1 and vl2 from ∂Tj that are connected
by an edge e that does not belong to Tj and lies inside of the polygon
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αα
ββ

∂Tj

Fig. 5. Border ∂Tj (black) with edges (red)
not connected by faces to the border.

spanned by ∂Tj , the correspond-
ing triangles are removed. To test
if such an edge is inside the poly-
gon spanned by ∂Tj the angle β,
the inner angle of the polygon at
vl1 , must be larger than the an-
gle α between the incoming bor-
der edge at vl1 and e, see Figure 5.

Remark 3. This also changes the
global topology of the surface.

7 The octree

To support the geometric neighborhood searches in Sections 5 and 6.1 effi-
ciently we use an octree data structure to manage the neighborhood balls.

o

o1 o2

o3 o4

o5 o6

o7 o8

Fig. 6. The cube o of an octree node and its
child-node’s sub-cubes o1, . . . , o8.

The root node of the octree rep-
resents the cube O. Every node
in the tree represents a sub-cube

o = [x, x+δ]×[y, y+δ]×[z, z+δ]

of O and has no or exactly
eight child-nodes holding the
eight sub-cubes o1, . . . , o8 with
side length δ/2, see Figure 6. To
accelerate searches in the local
neighborhood, every node stores
additional links to the 26 face-, edge- and corner-neighbor nodes on1 , . . . , on26

on the same level, as in [5].

Remark 4. The main advantage of using an octree instead of a grid as in [5]
is the use of different levels of detail corresponding to the levels of the octree
to create a finer triangulation in regions with higher point density.

Every neighborhood ball bi belongs to one cube in the octree which con-
tains its center point ci. The radius ri equals the edge length of the cube.
Every cube in the octree has a list of the neighborhood balls it contains.

Every data point dj = (pj , hj) is inserted into the octree by searching
for the neighborhood ball bi containing the raw point pj ∈ βi and, if bi is
found, inserting it to that ball as in Section 4. To search for bi the octree is
descended from the root node O traversing on any level of the octree the cube
o containing pj . For the traversal all 26 neighbor cubes are tested to find the
ball with ci closest to pj . If no bi is found, the search descends one level in
the tree and repeats the neighbor traversal. This is repeated until a ball is
found or the leaf nodes are searched unsuccessfully. In the latter case a new
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neighborhood ball b containing dj is created in leaf node cube containing pj ,
see Section 4.

To make b as large as possible the highest level in the octree with sufficient
space is determined, such that the ball βi does not contain the center of any
other ball of B. These centers can only be in the siblings of the 26 indirect
neighbor cubes, which share at least one corner with the actual cube o. The
set of these cubes is denoted by S(o). In S(o) the center ck that is closest to
pj is determined with ∆ := ‖ck − pj‖.

1. If ∆ is smaller than the radius of b, i.e. the edge length ` of o, the cube
o is split into sub-cubes until the radius of b is small than ∆. Thus, b is
added to a sub-cube o′ that is dlog2(`/∆)e levels below the node of o in
the octree.

2. If ∆ is larger than the radius of b, it can be added to the cube o or one
of its ancestors. Thus, the ancestors o′ of o are tested if their siblings of
S(o′) contain a center too close to pj . Finally, b is added to the highest
ancestor above o for which this test is negative.

8 Improving the Approximation

For every neighborhood ball bi a least square fit fi for its raw points is com-
puted to smooth the triangulation and to reduce noise in the raw points. The
fit fi is a cubic approximation of the raw points of bi parametrized over the
estimated tangent plane of bi as in [2] computed by a singular value decom-
position. It serves two purposes:

• correction of vertex positions and
• curvature dependent ball sizes.

8.1 Correction of mesh points

The position of a vertex v corresponding to a neighborhood ball bi is approxi-
mated by the arithmetic mean of all its raw points bi. On curved surfaces this
results in a displaced position. In local coordinates of the estimated tangent
plane bi has coordinates (0, 0, 0)T . Thus, the point b̃i with local coordinates
(0, 0, fi(0, 0))T is a better approximation of the raw points. In order to guar-
antee that the vertices of T are within scanner precision the raw point pj

closest to b̃i is determined. If ε is the scanner precision and b̃i is not contained
in β(pj , ε), b̃i is projected onto β(pj , ε) in direction pj − b̃i. This new point is
the position of the corresponding vertex vi.

Remark 5. Because the laser scanner has different precisions in different direc-
tions, i.e. along the scan line, between scan lines, and in laser beam direction,
b̃i is projected onto an ellipsoid around pj .
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8.2 Curvature dependent ball size

The fits fi are also used to estimate the curvature of T in the vertex vi. Then
the size of the neighborhood balls is controlled by the curvature measure
Ci := (|κ1|+ |κ2|)/2 at vi, where κ1 and κ2 are the principle curvatures of fi

at b̃i before the projection onto β(pj , ε). A small value of Ci indicates that
the region is rather flat. So, for each neighborhood ball with a valid normal
the curvature Ci is computed and the neighborhood ball is split if

arctan (4rjCj) · 2nj/π ≥ nsplit.

This results in larger triangles in flat regions.

9 Uncertainty visualization

Regions with a high uncertainty in the triangulation should be highlighted,
to enable the operator of the laser scanner to increase the point density by
multiple scan passes. To measure the uncertainty, the stability of the normal
estimation is used. It can be calculated for each neighborhood ball bi by the
two smallest eigenvalues e1 and e2 of the principal component analysis in
Section 5. The uncertainty ui is defined as

ui = arctan ((e2/e1 − 2) /20) · 2/π.

It is restricted to [0, 1] and visualized by coloring the vertices using a transition
from red (ui = 0), yellow (ui = 0.25), green (ui = 0.5) to white (ui ≥ 0.75).

10 Level of Detail

For very complex or large objects it may be necessary to use a further reduced
mesh for fast rendering on low cost graphics hardware. The octree contains
different levels, each containing neighborhood balls bj of a certain size. These
levels can be used for a reduced level of detail on the mesh.

To make use of the levels in the octree, the data points di are also added
to so-called LOD balls bLOD

k on the levels above the enclosing neighborhood
ball. These LOD balls bLOD

k are modified neighborhood balls containing all
data points di of the neighborhood balls bi on the levels below. Each data
point di belongs to one neighborhood ball bj = (cj , 2−lR,Dj) on the level l
and one LOD ball bLOD

k = (ck, 2−λR,Dk) for all 0 ≤ λ < l in each level above.
The global level of detail lLOD is the depth of the deepest level in the

octree used to determine T . If lLOD changes, the complete mesh has to be re-
triangulated. First all faces of the mesh are deleted. Then the neighborhood
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l
LOD

= 1

l
LOD

= 2

Fig. 7. Schematic illustration of the level of
detail re-triangulation in the octree.

balls or LOD balls necessary for
re-triangulation are selected ac-
cording to their depth in the
octree. An ordinary neighbor-
hood ball is used if its depth
is less or equal to lLOD. If the
depth of a neighborhood ball is
larger than lLOD its correspond-
ing LOD ball on level lLOD is
used. With these balls the tri-
angulation is computed as de-
scribed above. Figure 7 shows a
schematic illustration of neigh-
borhood balls (white) and LOD balls (gray) used for re-triangulation on dif-
ferent levels of detail.

11 Results

Fig. 8. The measuring arm “FaroArm” with
laser scanner “Laser Line Probe” [11].

We used a hand-held laser scan-
ner “Laser ScanArm” from Faro
[11] (Figure 8). That is a mea-
surement arm with seven joints
and an assembled laser scanner
“Laser Line Probe”. The scanner
driver provides 3d point data rel-
ative to the foot of the measure-
ment arm. Lines of up to 640
points can be scanned up to 30 times per second. For each of these lines
the position and the viewing direction of the laser scanner is tracked.

In Figure 1 a scanned piggy bank is shown, while Figure 11 shows the result
of scanning the bronze bust “Bildnis Theodor Heuss” by Gerhard Marcks. The
uncertainty visualization in the wire-frame and smooth shaded representations
reveal the regions that can be improved by additional scan passes.

The reduction of the input points is demonstrated in Figure 2, where
Figure 2(b) shows the data generated by the scanner, and Figure 2(c) shows
the averages bj of the neighborhood balls, together with the estimated normal
for every ball.

Figure 9 shows how the triangulation is adaptively refined for several scan
passes of the same region. The edge of the protruded digit becomes more pre-
cise after each scan pass. Furthermore, the wire-frame representation (bottom
row) shows that the triangles near the protruded edge are smaller, because
the neighborhood balls are dissolved earlier in this region of higher curvature.

Another example of increasing accuracy for multiple scan passes is shown
in Figure 10. The reconstructed surface of a piece of paper with holes of
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Fig. 9. Flat shading (top) and wire-frame (bottom) of triangulation of a license
plate after 250, 2000, 5000, 9000 scan lines with uncertainty visualization.

Fig. 10. Smooth shading and wire-frame representation of triangulation of a sheet
of paper with holes after 585, 1895, and 3149 scan lines.

different size is shown after the first, the second and the third scan pass. While
after the first scan pass two small holes are still closed by the triangulation
procedure, after the third scan pass all holes are correctly detected.

Four levels of detail of a scan of a mug are shown in Figure 12. The number
of triangles is 20,758 for the finest level of detail (left), 17,678 for the next
coarser level, and 11,277 and 3,584 triangles for the two subsequent levels.
Choosing a coarser level of detail reduces the complexity of the triangulation,
but can result in more reconstruction errors, especially at sharp edges.

All examples are computed on an Intel Core2 Quad Q6600, 2.4 GHz com-
puter with 4 GB RAM. To demonstrate the efficiency of the proposed method
we list in Table 1 the sizes of the models on the fines level in terms of data
points di and vertices vi and the times spend for the different computations:
number of data points processed per second, number of vertices processed
per second, and the overall times for the computation of the triangulation
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Fig. 11. Gerhard Marcks - Bildnis Theodor Heuss, [17]. Original object (left), wire-
frame (center), smooth shaded triangulation with uncertainty visualization (right).

Fig. 12. Flat shaded mug with different levels of detail (top row) and wire-frame
(bottom row).

and the scanning process. The times for the scanning process do not include
the pauses between scan passes. It is apparent from Table 1 that our method
works in real time even for complex objects. A video of a live scanning process
is available at [8].

12 Conclusion and Outlook

Our experiments show that the proposed method is suitable to assist the op-
erator of a hand-held laser scanner to produce fast and complete high quality
triangulations satisfying all constraints A.–G. of the Introduction. The online
visualization helps to reduce the time for the scanning process significantly.
The final surface mesh is a correct triangulation that can be used without fur-
ther postprocessing for measurement, surface analysis or reverse engineering.
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Table 1. Table of number of data points di and vertices vi in the final triangulation,
times for processing data points and vertices, overall time for the computation of
the triangulation and the scanning process for all models presented in this paper.

Data Vertices Data points Vertices CPU time Scan time
Fig. points per second per sec. [sec] [sec]

Piggy bank 1 1280387 30130 4198 98.9 304.6 318
Bronze bird 2 181731 6247 4432 152.0 41.1 143
License plate 9 1866413 29703 4392 69.9 424.8 504
Sheet of paper 10 478900 2538 7483 39.9 63.6 105
Theodor Heuss 11 2451014 35412 4300 62.1 570.0 623
Mug 12 358232 8866 5778 143.7 61.7 105

The robustness of our method is derived from the fact that the human op-
erator can increase the point density by additional scan passes in regions that
are not yet reconstructed topologically correct, or where important features
are still missing.

Nevertheless, there are some requirements for the proposed method to
work satisfactorily. Only those parts of the object that are covered by scan
lines can be reconstructed. Because of the interactive rendering the human
operator can easily detect uncovered regions, fill the remaining holes and scan
a topologically correct reconstruction of the target object. Regions of the
object that cannot be scanned, because of occlusions or limitations of the
scan arm, cannot be reconstructed and remain as holes in the triangulation.

Some extensions to improve the usability are worth further investigation.
The detection of sharp features and surface borders could improve the final
mesh. The method of [12] can be used to detect sharp features within the scan
and move the vertices onto these features.

Experiments show that the orientation of the scanning device during the
scan has an impact on the quality of the input data. Scanning the same region
with different orientations improves the stability of the computation signifi-
cantly. Additionally to the uncertainty visualization the optimal orientation
for the next scan of an uncertain region could be visualized to aid the operator
to achieve better and faster results.
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