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Abstract

In this paper a method is presented to fair the limit surface of a subdivision algorithm locally around an extraordinary point. The
dominant six eigenvalues of the subdivision matrix have to satisfy linear and quadratic equality- and inequality-constraints in order
to guarantee normal-continuity and bounded curvature at the extraordinary point. All other eigenvalues can be chosen arbitrarily
within certain intervals and therefore can be used to optimize the shape of the subdivision surface by minimizing quadratic energy
functionals. Additionally, if the sub- and subsub-dominant eigenvalues vary within predefined intervals, C1-regularity of the surface
and locality of the stencils can be guaranteed, although eigenvectors are changed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A subdivision algorithm is an iterative technique to generate a sequence of ever finer control nets that converges
to a so-called subdivision surface of arbitrary topology. Despite their simplicity subdivision surfaces are not widely
used in CAD applications partially because they can have artifacts (Sabin and Barthe, 2003; Karciauskas et al., 2004).
Although most subdivision surfaces are proved to be regular and normal-continuous everywhere, their shape may
still be unsatisfactory. For example, the subdivision algorithms of Catmull–Clark (Catmull and Clark, 1978) or Loop
(Loop, 1987) cannot generate surfaces with convex extraordinary points for large valences (Karciauskas et al., 2004).
Even worse, naive approaches to overcome this situation may generate so-called hybrid surfaces where positive and
negative Gauss curvatures appear in every infinitesimal small neighborhood of an extraordinary point.

For linear subdivision algorithms a subdivision matrix maps coarse to fine control nets. It was already observed
in Doo and Sabin (1978) that the eigenvalues and eigenvectors of the subdivision matrix control the continuity of
the subdivision surface around extraordinary points. This was later made precise in Reif (1995), Prautzsch (1998),
Zorin (1998). The linear combinations encoded in the rows of the subdivision matrix are conveniently represented by
stencils. They show graphically which points of a coarse control net are linearly combined to compute a point of a
fine control net. For example the stencils of the algorithm of Loop (Loop, 1987) are shown in Fig. 1.
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Fig. 1. The stencils of the algorithm of Loop with α6 = 5/8 and 1 − c < 4αn < 4 + c, c := cos(2π/n).

The simplest approach to improve the shape of a subdivision surface is to use the free parameters in the stencils
(cf. Fig. 1). This was already done in the first publications about subdivision surfaces (see e.g. Catmull and Clark,
1978; Loop, 1987). The next approach to tune the behavior of the curvature at extraordinary points aimed at bounded
or zero Gauss curvature at extraordinary points (Holt, 1996; Loop, 2002; Ni et al., 2007; Prautzsch and Umlauf, 1998;
Prautzsch and Umlauf, 2000; Sabin, 1991). Here, the eigenvalues of the subdivision matrix are changed such that the
necessary conditions for bounded or zero Gauss curvature are satisfied while the number and size of affected stencils
stays small.

For subdivision surfaces with bounded Gauss curvature of arbitrary sign, i.e. allowing for hyperbolic and elliptic
shapes, more advanced techniques must be used. In Barthe and Kobbelt (2004) also the eigenvectors are considered
by computing the stencils in an optimization process. The resulting subdivision algorithms approximate the desired
eigenvector behavior. Based on the analysis in Karciauskas et al. (2004), Peters and Reif (2004) a different approach
is presented in Augsdörfer et al. (2005). Here, the eigenvalues are determined such that the necessary conditions for
bounded Gauss curvature are satisfied and the variation of curvature of the central surfaces in the shape chart (cf.
Peters and Reif, 2004) is minimized. This is a non-linear optimization process which can only be approximated. It
leads to subdivision algorithms with eigenvalues that approximately minimize variation of Gauss curvature. Instead of
changing the eigenstructure of the subdivision algorithm also the eigencoefficients of the control nets can be changed.
This is done in Ginkel and Umlauf (2006) yielding a subdivision method for subdivision surfaces with bounded Gauss
curvature of arbitrarily prescribed sign.

Of a different type are the approaches taken in Halstead et al. (1993), Kobbelt (1996). They do not tune the re-
spective subdivision algorithms but also integrate optimization into the subdivision algorithm. The points of the fine
control nets are computed such that a local or global energy functional is minimized. This requires the solution of a
global system of linear equations.

In this paper we take an approach briefly mentioned in Prautzsch and Umlauf (2000). The eigenvalues of any
stationary, linear and symmetric subdivision algorithm can be changed to satisfy the necessary conditions for bounded
Gauss curvature using the technique described in Prautzsch and Umlauf (2000). This imposes equality- and inequality-
constraints on the dominant six eigenvalues of the subdivision matrix. The remaining eigenvalues can be chosen
arbitrarily and may be used for optimization as long as they have smaller modulus than the dominant six eigenvalues.
Additionally, the inequality constraints allow the sub- and subsub-dominant eigenvalues to vary within predefined
intervals. Then, a quadratic equation with linear and quadratic constraints is minimized to locally adapt the eigenvalues
to the data, because the stencils depend linearly on the eigenvalues and a quadratic energy functional like the thin-plate
energy depends quadratically on the control points. An example of this approach is presented in Ginkel and Umlauf
(2007b), where the technique is briefly outlined for the algorithm of Catmull–Clark.

In this paper we describe the general technique, applicable to any stationary, linear and symmetric subdivision
algorithm. This technique results in an algorithm which is non-stationary during a finite number of subdivision steps
where the stencils generate the new control points such that the corresponding surface rings minimize a quadratic
energy functional. When the energy improvement is below a pre-defined value the algorithm becomes stationary. The
choice for the sub- and subsub-dominant eigenvalue of the last optimization step is then chosen for all subsequent
subdivision steps, resulting in a stationary algorithm similar to the bounded curvature variant of the algorithm of Loop
in Ginkel and Umlauf (2006).

In the following six sections we first outline the general setting and notation of subdivision surfaces and their
analysis (Section 2). In Section 3 the tuning method and its relation to the Fourier analysis of the subdivision matrix
are presented. This is used for energy minimization in Section 4. In Section 5 locality is proved, the effects of the min-
imization on the characteristic map are discussed and bounds for the sub-dominant eigenvalue are given guaranteeing
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Fig. 2. Sequence of spline rings xr for triangular meshes (left) and quadrilateral meshes (right).

a regular, injective characteristic map. The results of our method applied to the algorithms of Loop and Catmull–Clark
are shown in Sections 6 and 7.

2. The subdivision setting

A linear subdivision algorithm computes from a coarse initial net of control points C0, where a central point c0 of
valence n is surrounded by k rings of regular control points, a refined net of control points C1 of the same topology
and with the same fixed number of points. This process is iterated to generate a sequence of control nets (Cr) with
central point cr , where each control net Cr defines a spline ring xr . For subdivision algorithms such as the algorithms
of Loop and Catmull–Clark, in the vicinity of an extraordinary point with valence n � 3 the subdivision surface x is
the union of the extraordinary point s and the sequence of the spline rings⋃

r∈N0

xr (Ωn) ∪ s = x

with xr :Ωn → R
3 and Ωn := Σ × Zn, where Σ := {(u, v) | u,v � 0,1 � u + v � 2} for triangular nets and Σ :=

[0,2]2 \ [0,1)2 for quadrilateral nets, as illustrated in Fig. 2. Each surface ring is a linear combination of real valued
functions f0, . . . , fl defined on Ωn with spatial control points c0

r , . . . , cl
r ∈ R3. Collecting the functions in a row vector

f, the sequence of control points is generated by iterated application of a square subdivision matrix S such that

Cr = SrC0, and xr = fSrC0.

The eigenvalues λ0, . . . , λl of the subdivision matrix S are assumed to be real and ordered by modulus such that

1 = λ0 > λ1 = λ2︸ ︷︷ ︸
=: λ

> λ3 = λ4 = λ5︸ ︷︷ ︸
=: μ

> |λ6| � · · · � |λl | (i)

with corresponding eigenvectors v0, . . . ,vl . For the subdivision surface to be C1-regular with bounded Gauss curva-
ture at s the following conditions are sufficient (see e.g. Reif, 1995; Peters and Umlauf, 2000):

(ii) μ = λ2, and
(iii) the characteristic map f · [v1v2] is regular and injective.

Note that μ > 0 is demanded by (i), so that the surface does not oscillate below and above the tangent plane, which
is implied by (ii). If the subdivision algorithm is rotationally symmetric, the subdivision matrix S is block-circulant
and similar to a block-diagonal matrix.

S = (Fn ⊗ Im) ·
⎡
⎣ Ŝ0

. . .

Ŝn−1

⎤
⎦ · (F−1

n ⊗ Im

)
,

where Im is the m × m identity matrix with m · n = l, Fn = [ω−ij
n ]n−1

i,j=0 the n × n Fourier matrix and ⊗ denotes
the Kronecker product of two matrices A = [aνμ]ν,μ and B which is defined as A ⊗ B := [aνμB]. Thus, spec(S) =
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⋃
i spec(Ŝi) and an eigenvalue ν of S is said to have Fourier index f ∈ F(ν) if ν ∈ spec(Ŝf ). Under conditions

(i)–(iii) the Gauss curvature of a subdivision surface in the vicinity of s can have arbitrary sign if, see Peters and Reif
(2004):

(iv) F(μ) = {0,2, n − 2}.

Condition (i) and (ii) impose linear and quadratic equality- and inequality-constraints on the eigenvalues λ0, . . . , λ5.
Thus, the remaining eigenvalues λi can be chosen arbitrarily as long as λ5 > |λi | for i = 6, . . . , l. We will refer to the
other constraints (iii) and (iv) as hard constraints.

3. The tuning method

The principle of the tuning method is based on the diagonalization of the Fourier blocks Ŝi and their internal
block structure, see Prautzsch and Umlauf (1998, 2000). Assuming that the stencils for the vertices in the k1-ring
neighborhood of cr+1 use only vertices in the k2-ring neighborhood of cr for k2 � k1 � k, with 1 + k(k + 1)/2 = m

for triangular and 1 + k(k + 1) = m for quadrilateral nets, the blocks Ŝi are lower block-triangular matrices

Ŝi =
[

Ŝi
1

Ŝi
2 Ŝi

3

]
.

The blocks Ŝi
1 are of size m1 × m1 and the blocks Ŝi

3 of size m2 × m2 with m1 + m2 = m. Now, only Ŝi
1 will be

diagonalized in order to keep the number of affected stencils as small as possible. Let V̂ i
1 be the matrix of eigenvectors

of Ŝi
1 and Ŵ i

1 := (V̂ i
1 )−1 its inverse, then

Ŵ i
1 · Ŝi

1 · V̂ i
1 = diag

(
λi

1, . . . , λ
i
m1

) =: Λi
1, i = 0, . . . , n − 1.

Changing the eigenvalues λi
j to λ̃i

j for j = 0, . . . ,m1, changes Λi
1 to Λ̃i

1 := diag(λ̃i
1, . . . , λ̃

i
m1

), and in the sequel we

will identify all variables that depend on λ̃i
1, . . . , λ̃

i
m1

with a tilde. So, this also changes Ŝi to ˜̂
Si . Separating the stencils

encoded in Ŝi
1 from the stencils encoded in [Ŝi

2Ŝ
i
3] splits ˜̂

Si into

˜̂
Si = ˜̂

Ai + B̂i with ˜̂
Ai =

[ ˜̂
Si

1 0
0 0

]
and B̂i =

[
0 0
Ŝi

2 Ŝi
3

]
, (1)

where ˜̂
Ai is assumed to be diagonalizable by

˜̂
Ai =

[
V̂ i

1 0
0 Im2

]
·
[

Λ̃i
1 0

0 0

]
·
[

Ŵ i
1 0

0 Im2

]
.

Note that ˜̂
Ai depends linearly on λ̃i

1, . . . , λ̃
i
m1

if V̂ i
1 does not change, while B̂i does not depend on λ̃i

1, . . . , λ̃
i
m1

(see

Section 5). Denote by vi
j,1 the columns of V̂ i

1 and by wi
j,1 the rows of Ŵ i

1, j = 1, . . . ,m1. The corresponding right

and left eigenvectors âi
j and b̂i

j of ˜̂
Ai are given by âi

j = [(v̂i
j,1)

t ,0t ]t and b̂i
j = [(ŵi

j,1)
t ,0t ]. Because of the block

structure of ˜̂
Si , its eigenvalues include λ̃i

1, . . . , λ̃
i
m1

with corresponding left eigenvectors b̂i
1, . . . , b̂i

m1
. However, the

right eigenvectors v̂i
j = [(v̂i

1)
t , ( ˜̂vi

2)
t ]t of ˜̂

Si change. This will be discussed in detail in Section 5.

If only the eigenvalues λ̃i
1, . . . , λ̃

i
m1

are used for optimization, we can use a local optimization that will only affect

the stencils encoded in ˜̂
Si

1. Applying the discrete inverse Fourier transform we obtain the modified subdivision matrix
S̃ such that S̃ = Ã + B with

Ã = (Fn ⊗ Im) · diag
( ˜̂
A0, . . . ,

˜̂
An−1) · (F−1

n ⊗ Im

)
,

B = (Fn ⊗ Im) · diag
(
B̂0, . . . , B̂n−1) · (F−1

n ⊗ Im

)
.

The matrix Ã now contains the stencils that are used for optimization and B contains the unchanged part of S.
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4. Energy optimization

For the purpose of energy optimization the labeling of the control points Cr is changed such that the eigenvalues
λ̃i

1, . . . , λ̃
i
m1

, i = 0, . . . , n−1, of Ã correspond to the first m′ = m1 ·n rows and columns of the subdivision matrix. This

is achieved by a permutation P such that Cr := PCr , S̃′ := P S̃P t , Ã := P ÃP t and B := PBP t . Then, denote by

R the matrix of eigenvectors of Ã, by L its inverse with rows w0, . . . ,wl and by D = diag(λ̃0, . . . , λ̃m′,0, . . . ,0) the
diagonal matrix of the corresponding eigenvalues. For the optimization only the first m′ eigenvalues will be modified.
The matrices R, L and the remaining zero-eigenvalues of A are not changed.

For the optimization of a spline surface x : R2 → R
3 with control points p1, . . . ,pq ∈ R

3 quadratic functionals are
used, see e.g. Kallay (1993), such that

F(x) =
3∑

c=1

[
pc

1, . . . ,pc
q

] · E · [pc
1, . . . ,pc

q

]t
,

where pc
j denotes the c-th coordinate of control point pj . For an example see Eq. (6). The matrix E contains the

energies of the spline basis functions. If f consists of b-spline or box-spline functions, the surface rings xr consist of
s polynomial patches. The energy F(xr ) can then be computed as

F(xr ) =
3∑

c=1

s∑
j=1

(
Cc

r

)t
P t

j EPjC
c
r =

3∑
c=1

(Cc
r )

t ·
(

s∑
j=1

P t
j EPj

)
︸ ︷︷ ︸

=: G

·Cc
r ,

where Cc
r denotes the column vector of cth coordinates of the control points of Cr . The matrices Pj select those points

from Cr that define the j th patch of xr . Thus, the energy of xr+1 is given by

F̃ (xr+1) =
3∑

c=1

(
Cc

r

)t
S̃tGS̃Cc

r =
3∑

c=1

(
Cc

r

)t(
Ã

t + Bt
)
G(Ã + B)Cc

r . (2)

The size of the matrices Pj and the number s depend on the number of polynomial patches that are affected by the
optimized stencils. If for example for the algorithm of Loop the stencils for the edge points adjacent to an irregular
vertex of valence n are used for optimization, two spline rings have to be considered by F(xr+1) and thus s = 8n. The

right-hand side of Eq. (2) contains terms Ã · Cc
r which are of the form

Ã · Cc
r = R · D · L · Cc

r = R · D ·
⎡
⎢⎣

dc
0
...

dc
l

⎤
⎥⎦ = R · diag

(
dc

0, ·,dc
l

)︸ ︷︷ ︸
=: Mc

·λ̃,

where dc
i is the cth coordinate of the so-called eigencoefficient di = wiCr and λ̃ := [λ̃0, . . . , λ̃m′,0, . . . ,0]t . Thus,

F̃ (xr+1) = λ̃
t

(
3∑

c=1

Mt
cGMc

)
λ̃ + 2

(
3∑

c=1

(
Cc

r

)t
BtGMc

)
λ̃ +

3∑
c=1

(
Cc

r

)t
BtGBCc

r (3)

is quadratic in λ̃ since Mc does not depend on λ̃, because R and L are unchanged. Subject to the constraints (i) and
(ii) the quadratic equation (3) is minimized to compute the new stencils, while the hard constraints (iii) and (iv) are
not changed.

It makes sense to leave the sub- and subsub-dominant eigenvalues unchanged, if we apply the energy optimization
technique to a bounded curvature algorithm like the modified algorithm of Loop in Ginkel and Umlauf (2006). Then
only eigenvalues smaller than μ are used to optimize the shape while bounded curvature is guaranteed by construction
of the original algorithm. Then it is possible to minimize the equation by quadratic programming, because the non-
linear constraint μ = λ2 is not affected by the minimizations and only linear constraints remain.
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Remark 1. The fact that the unmodified eigenvalues in Ã are zero can be used to decrease the size of the matrices in
Eq. (3) by deleting the corresponding rows and columns. This makes further equality constraints for the unchanged
eigenvalues unnecessary and simplifies the equation.

Remark 2. A symmetric modification such that λ̃i
j = λ̃n−i

j is desirable, since it produces real-valued weights for
the optimized stencils. The corresponding equality constraints can be avoided by further decreasing the size of the
matrices in (3), adding up the corresponding rows and columns.

A functional that can be used for optimization, is given in Eq. (6). A large collection of other possible functionals
can be found in Westgaard (2000). The evaluation of parametrization invariant measures is complex and time consum-
ing. Therefore we focus on parameterization dependent measures as reasonable approximations for fairing purposes.
First order fairness measures, which lead to minimal surface area are not well suited for the construction of fair sur-
faces. Curvature related second order measures are used to design approximately minimal curvature surfaces. Third
order measures are related to variation of curvature and lead approximately to spherical or cylindrical shapes. Since
second order measures may lead to flat surfaces, minimizing variation of curvature rather than its magnitude leads to
fairer, more pleasing surfaces (Moreton and Séquin, 1994).

5. Analysis of the modified subdivision matrix

The purpose of diagonalizing only Ŝi
1 and using only its eigenvalues λi

1, . . . , λ
i
m1

for the optimization is to modify

only few stencils. But this has an impact on the eigenvectors of the complete matrix Ŝi as noted in Section 3. This
deserves attention since the sub-dominant eigenvectors define the characteristic map, whose properties are related
to C1 regularity of the subdivision surface.

Calculating the eigenvectors v̂i
1, . . . , v̂i

m of Ŝi yields the following diagonalization:

Ŝi =
[

V̂ i
1 0

V̂ i
2 V̂ i

3

]
·
[

Λi
1 0

0 Λi
2

]
·
[

Ŵ i
1 0

Ŵ i
2 Ŵ i

3

]
,

where the right and left eigenvectors corresponding to eigenvalues of Ŝi
1 are encoded in the columns of [(V̂ i

1 )t , (V̂ i
2 )t ]t

and the rows of [Ŵ i
1,0], respectively. Changing Λi

1 to Λ̃i
1 means changing V̂ i

2 to

˜̂
V i

2 = −[(
Ŝi

3 − λ̃i
1Im2

)−1
Ŝi

2v̂i
1,1, . . . ,

(
Ŝi

3 − λ̃i
m1

Im2

)−1
Ŝi

2v̂i
m1,1

]
= −[

L̃i
1Ŝ

i
2v̂i

1,1, . . . , L̃
i
m1

Ŝi
2v̂i

m1,1

]
with L̃i

j := (Ŝi
3 − λ̃i

j Im2)
−1 for j = 1, . . . ,m1. This changes also Ŵ i

2 to

˜̂
Wi

2 = −Ŵ i
3 · ˜̂

V i
2 · Ŵ i

1,

but does not change the stencils encoded in the rows of [Ŝi
2, Ŝ

i
3], because

˜̂
Si

2 = ˜̂
V i

2 · Λ̃i
1 · Ŵ i

1 + V̂ i
3 · Λi

2 · ˜̂
Wi

2 = ( ˜̂
V i

2 · Λ̃i
1 − V̂ i

3 · Λi
2 · Ŵ i

3 · ˜̂
V i

2

)
Ŵ i

1

= ( ˜̂
V i

2 · Λ̃i
1 − Ŝi

3 · ˜̂
V i

2

)
Ŵ i

1

= [
Ŝi

3L̃
i
1Ŝ

i
2v̂i

1,1, . . . , Ŝ
i
3L̃

i
m1

Ŝi
2v̂i

m1,1

]
Ŵ i

1 − [
λ̃i

1L̃
i
1Ŝ

i
2v̂i

1,1, . . . , λ̃
i
m1

L̃i
m1

Ŝi
2v̂i

m1,1

]
Ŵ i

1

= [(
L̃i

1

)−1
L̃i

1Ŝ
i
2v̂i

1,1, . . . , (L̃
i
m1

)−1L̃i
m1

Ŝi
2v̂i

m1,1

]
Ŵ i

1 = Ŝi
2,

with Λi
2 := diag(λi

m1+1, . . . , λ
i
m). So, the blocks of S̃ are given by

S̃j = 1

n

n−1∑
i=0

ω
ij
n ·

[
V̂ i

1 0
˜̂
V i

2 V̂ i
3

]
·
[

Λ̃i
1 0

0 Λi
2

]
·
[

Ŵ i
1 0

˜̂
Wi

2 Ŵ i
3

]
= 1

n

n−1∑
i=0

ω
ij
n ·

[ ˜̂
Si

1 0
Ŝi

2 Ŝi
3

]
.

This shows that although the stencils encoded by Ŝi
2 and Ŝi

3 are not changed, the entries in ˜̂
V i

2 depend on λ̃i
j , j =

1, . . . ,m1.
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For the standard algorithms such as the algorithm of Loop or the algorithm of Catmull–Clark the sub-dominant
eigenvalue λ is located in Ŝ1

1 . Therefore, the eigenvalue λ is used for optimization. The new eigenvalue λ̃ is still sub-
dominant since (i) contains the corresponding constraints for the optimization. This means that for the characteristic
map depending on λ̃ the analysis of regularity and injectivity is no longer valid.

However, for the algorithm of Loop, using the technique described in Umlauf (2004), Ginkel and Umlauf (2007a),
the characteristic map is regular and injective if for n � 6 condition (i), and

1

8
< λ̃ � 7 + 8 cos(2π/n)

8 + 16 cos(2π/n)
(4)

are satisfied. This provides an interval for λ̃, which can be incorporated into the optimization as additional linear
inequality constraint. For the Catmull–Clark algorithm similar bounds can be found for n � 5

1

3
� λ̃ � 3

4
. (5)

6. Tuning the algorithm of Loop

In this section the results of the tuning method applied to the algorithm of Loop are presented. For this subdivision
algorithm the Fourier blocks Ŝi of the discrete Fourier transform of S have the form

Ŝi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αnδi (1 − αn)δi

3δi/8 3/8 + ci
n/4

δi/8 3/8 + 3ωi
n/8 1/8 0

δi/16 5/8 + ci
n/8 1/16 + ω−i

n /16 1/16

0 3/8 1/8 + ω−i
n /8 3/8 0 0 0

0 3/8 + ωi
n/8 3/8 1/8 0 0 0

0 1/8 + 3ωi
n/8 3/8 ωi

n/8 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=:
⎡
⎢⎣

Âi

B̂i Ĉi

Êi F̂i 0

⎤
⎥⎦ ,

where ci
n := cos(2iπ/n) and δ0 = 1 and δi = 0 for i �= 0. The blocks Ŝi consist of sub-blocks Âi , B̂i , Ĉi ∈ C

2×2 and
Êi , F̂i ∈ C3×2 and the 3 × 3 zero-matrix 0. Thus, in multi-set notation the eigenvalues are

{λ0
1, . . . , λ

0
7} = {1,μ0,1/8,1/16,0,0,0}, μ0 := nαn − 3/8,

{λi
1, . . . , λ

i
7} = {0,μi,1/8,1/16,0,0,0}, μi := 3/8 + ci

n/4

for i = 1, . . . , n − 1. Using only λi
1 and λi

2 , i = 0, . . . , n − 1, for optimization involves just the diagonal block Âi .
The constraints are

λ0
1 = 1, μ0 = μ2 = μn−2 = (μ1)

2,

|μi | < μ2 for i = 3, . . . , 	n/2
,
|λi

1| < μ2 for i = 1, . . . , 	n/2
.
Combining the bound (4) with μ2 > 1/8 to fulfill the hard constraint (iv), and adding symmetry results in

1/
√

8 < μ1 <
7 + 8c

8 + 16c
,

μi = μn−i and λi
1 = λn−i

1 for i = 1, . . . , 	n/2
.
The functional that has been used for the optimization is

F(x) =
∫

[0,1]2

(
x2
uuu + 3x2

uuv + 3x2
uvv + x2

vvv

)
dudv, (6)

where xu and xv denote the partial derivatives of x with respect to u and v. The result of the optimization applied to
the control mesh of Fig. 3 using the library (Meza, 1994) is shown in Fig. 5(a) and Table 1. In order to eliminate hybrid
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Fig. 3. Control mesh with an irregular vertex of valence 10.

Table 1
Optimized values for μ0, μ2, μn−2 and comparison of the energies of the innermost two spline rings at the corresponding subdivision level r with
and without optimization for the algorithm of Loop

r μ0 μ2, μn−2 F(x) without
optimization

F(x) with
optimization

1 0.307500 0.311715 895.8735 860.4878
2 0.301400 0.306100 261.2685 244.7951
3 0.298294 0.304780 78.15931 72.64843
4 0.292570 0.304387 23.62526 21.90483
5 0.280587 0.304272 7.171128 6.643781
6 0.264509 0.304232 2.180006 2.019213
7 0.195087 0.304220 0.663041 0.614092
8 0.169850 0.304214 0.201692 0.186796
9 0.172812 0.304213 0.061355 0.056824
10 0.166834 0.304214 0.018665 0.017286

shapes, we replace the constraints μ2 = μn−2 = (μ1)
2 by |μ2| = |μn−2| < (μ1)

2 for elliptic and μ0 = (μ1)
2 by |μ0| <

(μ1)
2 for hyperbolic shapes. The influence of the optimization is visible in the visualization of the Gauss curvature.

This data set shows that slight hybrid behavior of the original surface can be removed by the tuning technique.
Additionally, we document the tendency towards a hyperbolic configuration in Table 1. It shows the optimized values
for μ0, μ2 and μn−2 for the first 10 subdivision steps and compares the energies of the innermost two spline rings at
the corresponding subdivision level with and without optimization.

7. Tuning the algorithm of Catmull–Clark

The proposed technique can similarly be applied to modify the algorithm of Catmull–Clark. Based on the Fourier
blocks Ŝi , i = 0, . . . , n−1, the eigenvalues of the subdivision matrix S for the algorithm of Catmull–Clark in multi-set
notation are:{

λ0
1, . . . , λ

0
7

} = {1,μ+
α ,μ−

α ,1/8,1/16,1/32,1/64,0,0,0,0,0,0},

Fig. 4. Control mesh with an irregular vertex of valence 11.
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(a) Visualization of the Gauss curvature of Loop subdivision surfaces.

(b) Visualization of the Gauss curvature of Catmull–Clark subdivision surfaces.

Fig. 5. (a) Visualization of the Gauss curvature of the subdivision surface (left) computed by the modified algorithm of Loop (Ginkel and Umlauf,
2006) (top row) and the optimized subdivision algorithm (bottom row), zoom after 12 steps (middle) and 20 steps (right). (b) Comparison of three
different subdivision surfaces after 12 subdivision steps. Left: Modified Catmull–Clark algorithm (Prautzsch and Umlauf, 1998) with bounded
curvature of arbitrary sign. Middle: Optimized Catmull–Clark algorithm with triple subsub-dominant eigenvalue. Right: Optimized Catmull–Clark
algorithm with single subsub-dominant eigenvalue for elliptic shape. The top row shows the surface and the bottom row shows the corresponding
zoom at the extraordinary point.

μ±
α := (

4α − 1 ±
√

(4α − 1)2 + 8β − 4
)
/8{

λi
1, . . . , λ

i
7

} = {0,μ+
i ,μ−

i ,1/8,1/16,1/32,1/64,0,0,0,0,0,0},
μ± := (

5 + ci ± √
(ci + 9)(ci + 1)

)
/16 for i = 1, . . . , n − 1,
i
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Fig. 6. The limit surfaces corresponding to the subdivision surfaces in Fig. 5(b).

with α = 1 − 7/(4n), β = 3/(2n) and ci = cos(2πi/n). The upper left 3 × 3 block of Ŝi corresponds to the extraor-
dinary vertex and its one-ring neighborhood. Diagonalizing this block, its eigenvalues can be used for optimization
subject to the following constraints:

λ0
1 = 1,

1/
√

8 < μ+
1 < 3/4,

μ+
α = μ+

2 = (μ+
1 )2,

μ+
i = μ+

n−i and μ−
i = μ−

n−i for i = 1, . . . , 	n/2
,
|μ−

α |, |μ±
i |, |μ−

1 |, |μ−
2 | < μ+

2 for i = 3, . . . , 	n/2
.
The results of an optimization with these constraints are shown in Figs. 5(b) and 6. The control mesh shown in

Fig. 4 has an irregular vertex of valence 11. The functional that has been used for the optimization is

F(x) =
∫

[0,1]2

(
x2
uuu + 3x2

uuv + 3x2
uvv + x2

vvv

)
dudv, (7)

where xu and xv denote the partial derivatives of x with respect to u and v, �x = xuu + xvv the Laplace operator and
∇x = (xu,xv) the gradient of x.

Fig. 5(b) shows that strong hybrid behavior can be decreased, but is not necessarily removed by the optimization
technique using a triple subsub-dominant eigenvalue. Hybrid shapes can for example be eliminated, if we replace the
constraints μ2 = μn−2 = (μ1)

2 by |μ2| = |μn−2| < (μ1)
2. Then a surface is produced, which is elliptic in the vicinity

of the extraordinary point, if the eigenvector corresponding to μ is non-hybrid and generates an elliptic central surface
(Ginkel and Umlauf, 2008), see Fig. 5(b) bottom right.
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