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Symmetry of shape charts
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Abstract

For subdivision surfaces, the so-called shape chart can be used to characterize the curvature behavior at an extraordinary point
a priori from the initial control net. Of late, it has been used in different approaches to tune subdivision algorithms to handle the
so-called hybrid shapes. For this the shape charts are computed numerically. In this paper, symmetries of shape charts are analyzed
that can be used to simplify the computations and to reduce the computation costs significantly.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Tuning has always been part of developing subdivision algorithms. The choice of suitable parameters for the
first algorithms (Catmull and Clark, 1978; Loop, 1987) already improved the surfaces. Recently more sophisticated
approaches that focus on shape improvement were made, see e.g. Barthe and Kobbelt (2004), Holt (1996), Loop
(2003), Prautzsch and Umlauf (2000), Sabin (1991). Nevertheless, all these approaches lead to surfaces that still
can have artifacts due to hybrid shapes (Karciauscas et al., 2004; Peters and Reif, 2004). This means that in any
neighborhood of an extraordinary point positive and negative Gauss curvature might occur. To detect this behavior a
priori the so-called shape charts (Karciauscas et al., 2004) can be used. They represent all possible shapes of surfaces
a subdivision algorithm can generate in terms of the initial control net. Therefore, shape charts can also be used to
tune subdivision algorithms.

In order to decrease the number of hybrid shapes in Augsdöerfer et al. (2005, 2006) a tuning of the eigenvalues
was used to minimize the variation of Gauss curvature near extraordinary points. Using this approach it is not possible
to guarantee non-hybrid shapes. In Ginkel and Umlauf (2006a, 2006b) a technique is presented that can often avoid
hybrid shapes. It consists of an eigenvalue and eigencoefficient tuning to allow for surfaces with bounded Gauss
curvature of arbitrary constant sign. Thus, given an arbitrary initial control net an elliptic or a hyperbolic shape at the
extraordinary points can be achieved, if there are non-hybrid points in the shape chart.

For both approaches the shape charts need to be computed numerically. This is computationally expensive limiting
the accuracy of the computed shape charts. To enhance the computation of shape charts their symmetries can be
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used to speed up the computation and improve their accuracy. Related results have independently been discovered by
Hartmann (2005).

For this we recall in Section 2 the basic principles of subdivision analysis and sufficient conditions for subdivision
algorithms with bounded curvature of arbitrary sign. In Section 3 the symmetry properties of the shape charts are
presented, which allow a more efficient analysis of possible shape behavior.

2. Basic subdivision analysis techniques

For the standard analysis techniques consider a stationary, linear and symmetric subdivision algorithm generalizing
box spline subdivision (Reif and Peters, 2006). In the neighborhood of an irregular vertex of valence n �= 6 for
triangular nets, a subdivision surface is the union of the extraordinary point q and a sequence of spline rings xm, that are
linear combinations of real valued functions ϕ0(s, t), . . . , ϕl(s, t) with control points B0

m, . . . ,Bl
m ∈ R

3. Collecting the
functions in a row vector ϕ(s, t) and the control points in a column vector Bm we have xm = ϕBm = ϕAmB0, where
the sequence of control nets Bm is generated by iterated multiplication of B0 with a square subdivision matrix A. It has
eigenvalues λ0, . . . , λl with |λ0| � |λ1| � · · · � |λl |, corresponding to right eigenvectors v0, . . . ,vl , and eigenfunctions
ψi(s, t) = ϕ(s, t)vi , which are the limit functions of vi under box spline subdivision. Then, the initial control net can
be written as

B0 =
l∑

i=0

divi .

We assume that the d1, . . . ,d5 are generic (Peters and Reif, 2004), i.e. det(di ,dj ,dk) �= 0 for all sets {i, j, k} ⊂
{1, . . . ,5}.

For a symmetric subdivision algorithm A is block circulant (Reif and Peters, 2006) and can be transformed into a
similar block diagonal matrix Â with diagonal blocks Âk by a discrete Fourier transformation F

Â = F−1AF = diag(Â0, . . . , Ân−1).

An eigenvalue ν ∈ spec(Âk) is said to have Fourier index F(ν) = k. Then, sufficient conditions for regular subdivision
surfaces to have continuous normal and bounded Gauss curvature of arbitrary sign are given by:

(i) All rows of A sum to one, i.e. λ0 = 1 > |λ1|.
(ii) The sub-dominant eigenvalue λ is positive and has algebraic and geometric multiplicity two λ := λ1 = λ2 > |λ3|.

(iii) The characteristic map �(s, t) := (ψ1(s, t),ψ2(s, t)), which is the planar spline ring built from the sub-dominant
eigenfunctions ψ1,ψ2 is injective and regular (Reif, 1995).

(iv) The subsub-dominant eigenvalue μ satisfies μ = λ2.
(v) The subsub-dominant eigenvalue μ = λ3 = λ4 = λ5 > |λ6| is positive and has equal algebraic and geometric

multiplicity three with Fourier indices 0, 2 and n − 2 (Peters and Reif, 2004).

Condition (i) ensures convergence, (ii) and (iii) C1 regularity, (iv) bounded curvature and (v) allows for arbitrary
quadratic shapes. Unfortunately, the standard algorithms like the algorithm of Loop or Catmull/Clark do not meet
these conditions and have to be modified accordingly Karciauscas et al. (2004).

To analyze higher order behavior of subdivision algorithms, the central surface depending on the initial control net
is defined as the spline ring

xc :=
(

�L,

5∑
i=3

ψi〈di ,n〉
)

, n := (d1 × d2)/‖d1 × d2‖,

where L is the matrix that orthonormalizes (d1,d2). Its Gauss curvature Kxc (s, t) can be used to characterize, a priori,
the behavior of the Gauss curvature of x at an extraordinary point q, see Peters and Reif (2004),

q is

{ elliptic in the limit, if Kxc (s, t) > 0 for all s, t,

hyperbolic in the limit, if Kxc (s, t) < 0 for all s, t,
hybrid, otherwise.



I. Ginkel, G. Umlauf / Computer Aided Geometric Design 25 (2008) 131–136 133
Furthermore, for every q the shape characteristic can be pre-computed. Expressing the third coordinate function ψ of
xc in polar coordinates yields

ψr,ϑ :=
5∑

i=3

ψi〈di ,n〉 = (1 − r)ψ3 + r cos(ϑ)ψ4 + r sin(ϑ)ψ5,

where r ∈ [0,1] and ϑ ∈ [0,2π]. Without loss of generality this allows only for central surfaces with the same orien-
tation. This can be achieved by

r =
√〈d4,n〉2 + 〈d5,n〉2√〈d4,n〉2 + 〈d5,n〉2 + 〈d3,n〉 , ϑ = arccos

〈d4,n〉√〈d4,n〉2 + 〈d5,n〉2
,

which implies a different scaling of v3, v4, v5 for every point in the shape chart. Denote by Kr,ϑ(s, t) the Gauss
curvature of the central surface xc defined by (r,ϑ) at parameter (s, t). Then, the shape chart map s is defined as

s(r,ϑ) =
⎧⎨
⎩

0 if Kr,ϑ(s, t) < 0 for all s, t,

1 if Kr,ϑ(s, t) > 0 for all s, t,
1
2 otherwise.

The mapping of s(r,ϑ) to the colors blue, red and green yields the so-called shape chart (Karciauscas et al., 2004).
Examples of shape charts are shown in Figs. 1 and 2.1

3. Properties of the shape charts

To enhance the computation of the shape charts its rotational and mirror symmetries can be utilized.
First we analyze the regular case. For a regular control net the control points of the one-ring of the characteristic

map for the algorithm of Loop form a regular 6-gon. So, due to linear precision, the characteristic map is linear and
the central surface is quadratic, since subdivision of quartic box splines yields C2 surfaces (Prautzsch and Reif, 1999).
For a quadratic polynomial function the Gauss curvature has a constant sign, because L ·N−M2 is constant, where L,
M, N represent the second fundamental form. Thus, to find the shape chart characterization it suffices to evaluate the
curvature of the central surface at an arbitrary parameter.

Theorem 1. For box spline subdivision with directions
[ 1 1 0 0 1 1

0 0 1 1 1 1

]
all central surfaces with Kr,ϑ ≡ 0 correspond to a

constant r .

Proof. For these box spline the eigenfunctions are given by ψ1(s, t) = s, ψ2(s, t) = t , ψ3(s, t) = 1
2 (s2 + t2),

ψ4(s, t) = 1
2 (s2 − t2) and ψ5(s, t) = st , which are only unique up to scaling. Scaling such that ψ3(s, t) ∈ [0,1]

and ψ4(s, t) + ψ5(s, t) ∈ [−1,1] for s, t ∈ [−1,1], yields for the third coordinate function ψ of the central surfaces
at (s, t)

ψr,ϑ = (1 − r)
1

2
(s2 + t2) + r cos(ϑ)

1

2
(s2 − t2) + r sin(ϑ)st.

So, at the origin the second fundamental from is L = 1 − r − r cos(ϑ), M = r sin(ϑ), N = 1 − r + r cos(ϑ). Solving
L · N − M2 = 0 for r , yields r = 1

2 .

Remark 2. For an arbitrary subdivision algorithm, which generates C2 surfaces for regular nets, a linear characteristic
map implies that no hybrid shapes are created for points corresponding to regular vertices. This is consistent with the
fact that the surfaces are C2 in these points.

For subdivision algorithms for meshes with irregular vertices the area in the shape chart of parabolic configurations
is in general not a circle, but the respective shape charts still have similar symmetry properties.

1 For interpretation of the references to color, the reader is referred to the web version of this article.
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Fig. 1. Three segments of shape charts for the modified algorithm of Loop in Ginkel and Umlauf (2006b) for n = 5 (top) and n = 8 (bottom).

Theorem 3. For a symmetric subdivision algorithm the shape chart map s is rotationally and mirror symmetric, i.e.

s
(

r,
2πk

n
+ ϑ

)
= s(r,ϑ) for

{
k ∈ N0, if n is odd,

k ∈ 2N0, if n is even,
(1)

s
(

r,
2πk

n
+ ϑ

)
= s

(
r,

2πk

n
− ϑ

)
for

{
k ∈ 1

2N0, if n is odd,

k ∈ N0, if n is even.
(2)

Proof. To prove (2) compare the ranges of Kr,2πk/n+ϑ and Kr,2πk/n−ϑ . The control points of the respective central
surfaces are defined by the eigenvectors v1, . . . ,v5 and the polar coordinates of the respective point in the shape chart.
The abscissae of these control points are those of the characteristic map � which is rotationally and mirror symmetric,
because F(λ) ∈ {1, n − 1} and the subdivision algorithm is assumed to be symmetric. Furthermore, the eigenvector
v3 has Fourier index 0, i.e. ψ3 is the same for every segment and it is rotationally and mirror symmetric. Thus, it
suffices to analyze the hyperbolic components of ψ depending only on ψ4 and ψ5. Denote by v̂ the eigenvector of
Â2 corresponding to μ, then v4 and v5 are given as the real and imaginary parts of [v̂t ,ω2v̂t , . . . ,ω2(n−1)v̂t ]t , with
ω = exp(2π

√−1/n). This yields for the hyperbolic components of ψ

cos

(
2πk

n
+ ϑ

)
ψ4 + sin

(
2πk

n
+ ϑ

)
ψ5

= ϕ

⎡
⎢⎣

cos( 2πk
n

+ ϑ − 0 · 4π
n

)Re(v̂) + sin( 2πk
n

+ ϑ − 0 · 4π
n

) Im(v̂)

...
2πk 4π 2πk 4π

⎤
⎥⎦
cos(
n

+ ϑ − (n − 1) ·
n

)Re(v̂) + sin(
n

+ ϑ − (n − 1) ·
n

) Im(v̂)
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Fig. 2. Single segments of shape charts for the modified algorithm of Loop in Ginkel and Umlauf (2006b) for n = 7 (top left), n = 9 (top right),
n = 10 (bottom left) and n = 12 (bottom right).

= ϕ

⎡
⎢⎣

cos( 2πk
n

− ϑ + (0 − k) · 4π
n

)Re(v̂) − sin( 2πk
n

− ϑ + (0 − k) · 4π
n

) Im(v̂)

...

cos( 2πk
n

− ϑ + (n − 1 − k) · 4π
n

)Re(v̂) − sin( 2πk
n

− ϑ + (n − 1 − k) · 4π
n

) Im(v̂)

⎤
⎥⎦

= cos

(
2πk

n
− ϑ

)
ϕ Re

⎡
⎣ ω−2(0−k)v̂

...

ω−2(n−1−k)v̂

⎤
⎦ + sin

(
2πk

n
− ϑ

)
ϕ Im

⎡
⎣ ω−2(0−k)v̂

...

ω−2(n−1−k)v̂

⎤
⎦ .

Due to Reif and Peters (2006, Section 6) this is a mirroring of the indexing of the control points. So, the ordinates of
the central surfaces are mirrored and the range of the curvature of the central surfaces does not change. So, (2) follows
for all n and k ∈ N0. Since two successive mirrorings equal a rotation, (1) follows for arbitrary n and even k. Rotating
by more than 2π , yields (1) for odd n and arbitrary k ∈ N0 and (2) for odd n and k ∈ 1

2N0. �
Thus, to compute a shape chart one segment ϑ ∈ [0,2π/n] for even valences and half a segment ϑ ∈ [0,π/n] for

odd valences suffices. Examples for the modified algorithm of Loop in Ginkel and Umlauf (2006b) of three segments
of the shape charts for n = 5 and n = 8 are shown in Fig. 1 to emphasize the different symmetries. In Fig. 2 single
segments of the shape charts for n ∈ {7,9,10,12} are shown.

The hybrid areas in Figs. 1 and 2 grow with the valence. For high valences the hybrid area covers the complete
shape chart. For example the central surfaces (�L,ψ3) and (�L,ψ4) for the modified algorithm of Loop in Ginkel
and Umlauf (2006b) have hybrid curvature behavior for high valences, see Fig. 3. We checked the sign of the curvature
also symbolically for (�L,ψ3) for n = 64 and for (�L,ψ4) for n = 24. In both cases a change of sign proved the
hybrid behavior.



136 I. Ginkel, G. Umlauf / Computer Aided Geometric Design 25 (2008) 131–136
Fig. 3. Hybrid central surfaces (�L,ψ3) (n = 32, F(μ) = 0, left) and (�L,ψ4) (n = 24, F(μ) = 2, right) of the modified algorithm of Loop in
Ginkel and Umlauf (2006b).
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