Biblio
 
 (2020).  Deep and interpretable regression models for ordinal outcomes.  
arXiv preprint.  2010.08376.
 
 (2020).  Ordinal neural network transformation models: deep and interpretable regression models for ordinal outcomes.  
arXiv e-prints.  2010.08376.
 
 (2020).  Single Shot MC Dropout Approximation.  
ICML Workshop on Uncertainty and Robustness in Deep Learning.  
 
 (2021).  Probabilistic Short-Term Low-Voltage Load Forecasting using Bernstein-Polynomial Normalizing Flows.  
ICML 2021, Workshop Tackling Climate Change with Machine Learning, June 26, 2021, virtual.  
 Arpogaus2021_Probabilistic_Forecasting.pdf (427.35 KB)
 
 (2021).  Transformation models for flexible posteriors in variational bayes.  
arXiv preprint.  2106.00528.
 2106.00528.pdf (1.03 MB)

]