Biblio

Export 147 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2018
Siegismund, D., Tolkachev V., Heyse S., Sick B., Dürr O., & Steigele S. (2018).  Developing deep learning applications for life science and pharma industry. Drug research. 68, 305–310.
Siegismund, D., Tolkachev V., Heyse S., Sick B., Dürr O., & Steigele S. (2018).  Developing deep learning applications for life science and pharma industry. Drug research. 68, 305–310.
Siegismund, D., Tolkachev V., Heyse S., Sick B., Dürr O., & Steigele S. (2018).  Developing deep learning applications for life science and pharma industry. Drug research. 68, 305–310.
Dürr, O., Murina E., Siegismund D., Tolkachev V., Steigele S., & Sick B. (2018).  Know When You Don't Know: A Robust Deep Learning Approach in the Presence of Unknown Phenotypes. Assay and drug development technologies. 16, 343–349.PDF icon adt.2018.859.pdf (711.06 KB)
Dürr, O., Murina E., Siegismund D., Tolkachev V., Steigele S., & Sick B. (2018).  Know When You Don't Know: A Robust Deep Learning Approach in the Presence of Unknown Phenotypes. Assay and drug development technologies. 16, 343–349.PDF icon adt.2018.859.pdf (711.06 KB)
Dürr, O., Murina E., Siegismund D., Tolkachev V., Steigele S., & Sick B. (2018).  Know When You Don't Know: A Robust Deep Learning Approach in the Presence of Unknown Phenotypes. Assay and drug development technologies. 16, 343–349.PDF icon adt.2018.859.pdf (711.06 KB)
Meier, B. Bruno, Elezi I., Amirian M., Dürr O., & Stadelmann T. (2018).  Learning Neural Models for End-to-End Clustering. IAPR Workshop on Artificial Neural Networks in Pattern Recognition. 126–138.PDF icon ANNPR_2018a.pdf (3.43 MB)
Meier, B. Bruno, Stadelmann T., & Dürr O. (2018).  Learning to Cluster. PDF icon learning_to_cluster.pdf (1.82 MB)
Schall, M., Buehrig H. P., Schambach M-P., & Franz M. O. (2018).  LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries.pdf (145.78 KB)
Schall, M., Buehrig H. P., Schambach M-P., & Franz M. O. (2018).  LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries.pdf (145.78 KB)
Schall, M., Schambach M-P., & Franz M. O. (2018).  Multi-Dimensional Connectionist Classification: Reading Text in One Step. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 Multi-Dimensional Connectionist Classification Reading Text in One Step.pdf (485.57 KB)
Schall, M., Schambach M-P., & Franz M. O. (2018).  Multi-Dimensional Connectionist Classification: Reading Text in One Step. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 Multi-Dimensional Connectionist Classification Reading Text in One Step.pdf (485.57 KB)
Schall, M., Sacha D., Stein M., Franz M. O., & Keim D. A. (2018).  Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition. Visualization in Data Science (VDS at IEEE VIS) 2018. PDF icon Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition.pdf (1.03 MB)
Schall, M., Sacha D., Stein M., Franz M. O., & Keim D. A. (2018).  Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition. Visualization in Data Science (VDS at IEEE VIS) 2018. PDF icon Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition.pdf (1.03 MB)
Schall, M., Sacha D., Stein M., Franz M. O., & Keim D. A. (2018).  Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition. Visualization in Data Science (VDS at IEEE VIS) 2018. PDF icon Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition.pdf (1.03 MB)
2017
Hermann, M., Madrid N., & Seepold R. (2017).  Detection of variations in holter ECG recordings based on dynamic cluster analysis. International Conference on Intelligent Decision Technologies.
Lukic, Y. X., Vogt C., Dürr O., & Stadelmann T. (2017).  Learning embeddings for speaker clustering based on voice equality. Machine Learning for Signal Processing (MLSP), 2017 IEEE 27th International Workshop on. 1–6.PDF icon MLSP_2017.pdf (1.34 MB)
Grunwald, M., Laube P., Schall M., Umlauf G., & Franz M. O. (2017).  Radiometric calibration of digital cameras using neural networks. Optics and Photonics for Information Processing XI.
2016
Seepold, R., Dermati C., Kostka A., Pfeil L., Lange R., Hermann M., et al. (2016).  Analyzing environmental conditions and vital signs to increase healthy living. Mobile Networks for Biometric Data Analysis.
Schall, M., Schambach M-P., & Franz M. O. (2016).  Improving gradient-based LSTM training for offline handwriting recognition by careful selection of the optimization method. Conference: BW-CAR Symposium on Information and Communication Systems (SInCom). PDF icon 2016-12 Improving gradient-based LSTM training for offline handwriting recognition by careful selection of the optimization method.pdf (803.54 KB)
Schall, M., Schambach M-P., & Franz M. O. (2016).  Improving gradient-based LSTM training for offline handwriting recognition by careful selection of the optimization method. Conference: BW-CAR Symposium on Information and Communication Systems (SInCom). PDF icon 2016-12 Improving gradient-based LSTM training for offline handwriting recognition by careful selection of the optimization method.pdf (803.54 KB)
Schall, M., Schambach M-P., & Franz M. O. (2016).  Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 12th IAPR International Workshop on Document Analysis Systems. PDF icon Schall et al_2016_Increasing robustness of handwriting recognition using character n-gram decoding on large lexica.pdf (440.82 KB)
Schall, M., Schambach M-P., & Franz M. O. (2016).  Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 12th IAPR International Workshop on Document Analysis Systems. PDF icon Schall et al_2016_Increasing robustness of handwriting recognition using character n-gram decoding on large lexica.pdf (440.82 KB)
Dürr, O., & Sick B. (2016).  Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks. Journal of biomolecular screening. 21, 998–1003.
Lukic, Y., Vogt C., Dürr O., & Stadelmann T. (2016).  Speaker Identification and Clustering using Convolution Neural Networks. IEEE International workshop on Machine Learning for Signal Processing.

Pages