Biblio
Export 77 results:
Author Title Type [ Year
Filters: First Letter Of Last Name is U [Clear All Filters]
A G^2 subdivision algorithm.
Computing. 13, 217-224.
g2algorithm.pdf (196.14 KB)
(1998). 
Improved triangular subdivision schemes.
(Wolter, F.-E., & Patrikalakis N.M., Ed.).Proceedings of the CGI '98.
TriSub.pdf (1.73 MB)
(1999). 
Triangular G^2 splines.
(Laurent, P.-L., Sablonniere P., & Schumaker L.L., Ed.).Curve and Surface Design.
TriG2Splines.pdf (393.87 KB)
(1999). 
Analyzing the characteristic map of triangular subdivision schemes.
Constructive Approximation. 16, 145-155.
LoopCharMap.pdf (431.79 KB)
(2000). 
A G^1 and a G^2 subdivision scheme for trinagular nets.
International Journal on Shape Modelling. 6, 21-35.
G1G2TriAlgo.pdf (2.61 MB)
(2000). 
Gaussian and mean curvature of subdivision surfaces.
(Cipolla, R., & Martin R., Ed.).The Mathematics of Surfaces IX.
SubCurvat.pdf (112.52 KB)
(2000). 
Computing curvature bounds for bounded curvature subdivision.
Computer Aided Geometric Design. 18, 455-462.
CurvatBnd.pdf (179.48 KB)
(2001). 
Constraints measures and reproduction of style in robot imitation learning.
(Bülthoff, H. H., Gegenfurtner K. R., Mallot H. A., Ulrich R., & Wichmann F. A., Ed.).{Proc. 6. Tübinger Wahrnehmungskonferenz (TWK 2003)}. 70.
(2003). A representation of complex movement sequences based on hierarchical spatio-temporal correspondence for imitation learning in robotics.
(Bülthoff, H. H., Gegenfurtner K. R., Mallot H. A., Ulrich R., & Wichmann F. A., Ed.).{Proc. 6. Tübinger Wahrnehmungskonferenz (TWK 2003)}. 74.
(2003). Robots with cognition?.
(Bülthoff, H. H., Gegenfurtner K. R., Mallot H. A., Ulrich R., & Wichmann F. A., Ed.).{Proc. 6. Tübinger Wahrnehmungskonferenz (TWK 2003)}.
(2003). Learning depth.
(Bülthoff, H. H., Mallot H. A., Ulrich R., & Wichmann F. A., Ed.).{Proc. 7. Tübinger Wahrnehmungskonferenz (TWK 2004)}. 68.
Sinz et al Learning depth 2004.pdf (197 KB)
(2004). 
A technique for verifying the smoothness of subdivision schemes.
(Lucian, M.L., & Neamtu M., Ed.).Geometric Modeling and Computing: Seattle 2003.
subSchemes.pdf (110.4 KB)
(2004). 
Analysis and tuning of subdivision schemes.
(Jüttler, B., Ed.).Proceedings of Spring Conference on Computer Graphics SCCG 2005.
ATSubSchemes.pdf (765.94 KB)
(2005). 
On normals and control nets.
(Martin, R., Bez H., & M. 233-239 S. pages =, Ed.).Mathematics of Surfaces XI.
NormalsControlNets.pdf (117.42 KB)
(2005). 
Comparison of Voronoi based scatterd data interpolation schemes.
(Villanueva, J.J., Ed.).Proceedings of the Internationl Conference on Visualization, Imaging and Image Processing.
VoronoiInterp.pdf (4.63 MB)
(2006). 
Controlling a subdivision tuning method.
(Cohen, A., Merrien J.-L., & Schumaker L.L., Ed.).Curve and Surface Fitting.
SubTuning.pdf (553.79 KB)
(2006). 
Issues and implementation of C^1 and C^2 natural neighbor interpolation.
(G. al., B. et, Ed.).Advances in Visual Computing. Part II.
C1C2NeighborInterp.pdf (3.87 MB)
(2006). 
Loop subdivision with curvature control.
(Polthier, K., & Sheffer A., Ed.).Eurographics Symposium on Geometry Processing.
LoopSubCurv.pdf (6.03 MB)
(2006). 
Natural neighbor interpolation and order of continuity.
(Hagen, H., Kerren A., & Dannenmann P., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets.
NatNeighborInterp.pdf (1.47 MB)
(2006). 
Parametrizations for triangular G^k spline surfaces of low degree.
ACM Transactions on Graphics. 24, 1281-1293.
GkSplineSurf.pdf (539.25 KB)
(2006). 
Topographic distance functions for interpolation of meteorological data.
(Hagen, H., Kerren A., & Dannenmann P., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets.
TopoDistFunc.pdf (2.27 MB)
(2006). 
Topographic distance functions for interpolation of meteorological data.
(Hagen, H., Kerren A., & Dannenmann P., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets.
TopoDistFunc.pdf (2.27 MB)
(2006). 
Analyzing a generalized Loop subdivision scheme.
Computing. 79, 353-363.
AnalyzeSubScheme.pdf (190.38 KB)
(2007). 
Discrete harmonic functions from local coordinates.
(Martin, R., Sabin M., & Winkler J., Ed.).Mathematics of Surfaces XII.
HarmonicFunc.pdf (835.96 KB)
(2007). 
Embedded vertex shader in FPGA.
(A. al., R. et, Ed.).Embedded System Design: Topics, Techniques and Trends.
(2007).