Export 33 results:
Author Title Type [ Year(Asc)]
Filters: Author is Dürr, Oliver  [Clear All Filters]
Scharpf, P., Hong C. Lap, & Dürr O. (2021).  Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations. 2021 International Conference on Data Mining Workshops (ICDMW). 398–404.
Sick, B., Hothorn T., & Dürr O. (2021).  Deep transformation models: Tackling complex regression problems with neural network based transformation models. Accepted for Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan/Online, 2021.
Arpogaus, M., Voß M., Sick B., Nigge-Uricher M., & Dürr O. (2021).  Probabilistic short-term low-voltage load forecasting using bernstein-polynomial normalizing flows. ICML 2021, Workshop Tackling Climate Change with Machine Learning, June 26, 2021, virtual.
Casanova, R., Murina E., Haberecker M., Honcharova-Biletska H., Vrugt B., Dürr O., et al. (2018).  Automatic classification of non-small cell lung cancer histologic sub-types by deep learning. VIRCHOWS ARCHIV. 108-108.
[Anonymous] (2018).  Capturing Suprasegmental Features of a Voice with RNNs for Improved Speaker Clustering. IAPR Workshop on Artificial Neural Networks in Pattern Recognition. 333–345.PDF icon ANNPR_2018b.pdf (692.47 KB)
Siegismund, D., Tolkachev V., Heyse S., Sick B., Dürr O., & Steigele S. (2018).  Developing deep learning applications for life science and pharma industry. Drug research. 68, 305–310.
[Anonymous] (2018).  Know When You Don't Know: A Robust Deep Learning Approach in the Presence of Unknown Phenotypes. Assay and drug development technologies. 16, 343–349.PDF icon adt.2018.859.pdf (711.06 KB)
[Anonymous] (2018).  Learning Neural Models for End-to-End Clustering. IAPR Workshop on Artificial Neural Networks in Pattern Recognition. 126–138.PDF icon ANNPR_2018a.pdf (3.43 MB)
[Anonymous] (2017).  Learning embeddings for speaker clustering based on voice equality. Machine Learning for Signal Processing (MLSP), 2017 IEEE 27th International Workshop on. 1–6.PDF icon MLSP_2017.pdf (1.34 MB)
[Anonymous] (2016).  Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks. Journal of biomolecular screening. 21, 998–1003.
[Anonymous] (2016).  Speaker Identification and Clustering using Convolution Neural Networks. IEEE International workshop on Machine Learning for Signal Processing.
[Anonymous] (2014).  JOINT\_FORCES: Unite Competing Sentiment Classifiers with Random Forest.. SemEval@ COLING. 366–369.