Biblio

Export 56 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2018
Siegismund, D., Tolkachev V., Heyse S., Sick B., Dürr O., & Steigele S. (2018).  Developing deep learning applications for life science and pharma industry. Drug research. 68, 305–310.
Meier, B. Bruno, Stadelmann T., & Dürr O. (2018).  Learning to Cluster. PDF icon learning_to_cluster.pdf (1.82 MB)
Schall, M., Buehrig H. P., Schambach M-P., & Franz M. O. (2018).  LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries.pdf (145.78 KB)
Schall, M., Buehrig H. P., Schambach M-P., & Franz M. O. (2018).  LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 LSTM Networks for Edit Distance Calculation with Exchangeable Dictionaries.pdf (145.78 KB)
Schall, M., Schambach M-P., & Franz M. O. (2018).  Multi-Dimensional Connectionist Classification: Reading Text in One Step. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 Multi-Dimensional Connectionist Classification Reading Text in One Step.pdf (485.57 KB)
Schall, M., Schambach M-P., & Franz M. O. (2018).  Multi-Dimensional Connectionist Classification: Reading Text in One Step. 13th IAPR International Workshop on Document Analysis Systems. PDF icon 2018-04 Multi-Dimensional Connectionist Classification Reading Text in One Step.pdf (485.57 KB)
Schall, M., Sacha D., Stein M., Franz M. O., & Keim D. A. (2018).  Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition. Visualization in Data Science (VDS at IEEE VIS) 2018. PDF icon Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition.pdf (1.03 MB)
Schall, M., Sacha D., Stein M., Franz M. O., & Keim D. A. (2018).  Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition. Visualization in Data Science (VDS at IEEE VIS) 2018. PDF icon Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition.pdf (1.03 MB)
Schall, M., Sacha D., Stein M., Franz M. O., & Keim D. A. (2018).  Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition. Visualization in Data Science (VDS at IEEE VIS) 2018. PDF icon Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition.pdf (1.03 MB)
2019
Stadelmann, T., Tolkachev V., Sick B., & Dürr O. (2019).  Beyond ImageNet: Deep Learning in Industrial Practice. Applied Data Science. 205-232.
Stadelmann, T., Tolkachev V., Sick B., & Dürr O. (2019).  Beyond ImageNet: Deep Learning in Industrial Practice. Applied Data Science. 205-232.
Rohrbach, J., Rainhard T., Sick B., & Dürr O. (2019).  Bone erosion scoring for rheumatoid arthritis with deep convolutional neural networks.
Schall, M., Schambach M-P., & Franz M. O. (2019).  Dissecting Multi-Line Handwriting for Multi-Dimensional Connectionist Classification. 15th IAPR International Conference on Document Analysis and Recognition. PDF icon Dissecting Multi-Line Handwriting for Multi-Dimensional Connectionist Classification.pdf (553.24 KB)
Schall, M., Schambach M-P., & Franz M. O. (2019).  Dissecting Multi-Line Handwriting for Multi-Dimensional Connectionist Classification. 15th IAPR International Conference on Document Analysis and Recognition. PDF icon Dissecting Multi-Line Handwriting for Multi-Dimensional Connectionist Classification.pdf (553.24 KB)
Schambach, M-P., von der Nüll S., & Schall M. (2019).  Fast and Reliable Acquisition of Truth Data for Document Analysis using Cyclic Suggest Algorithms. ICDAR-OST: The 2nd International Workshop on Open Services and Tools for Document Analysis. PDF icon Fast and Reliable Acquisition of Truth Data for Document Analysis using Cyclic Suggest Algorithms.pdf (776.45 KB)
Schambach, M-P., von der Nüll S., & Schall M. (2019).  Fast and Reliable Acquisition of Truth Data for Document Analysis using Cyclic Suggest Algorithms. ICDAR-OST: The 2nd International Workshop on Open Services and Tools for Document Analysis. PDF icon Fast and Reliable Acquisition of Truth Data for Document Analysis using Cyclic Suggest Algorithms.pdf (776.45 KB)
2021
Scharpf, P., Hong C. Lap, & Dürr O. (2021).  Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations. 2021 International Conference on Data Mining Workshops (ICDMW). 398–404.
Scharpf, P., Hong C. Lap, & Duerr O. (2021).  Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations. 2021 International Conference on Data Mining Workshops (ICDMW). 398-404.
Sick, B., Hothorn T., & Dürr O. (2021).  Deep transformation models: Tackling complex regression problems with neural network based transformation models. Accepted for Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan/Online, 2021.

Pages