Biblio

Export 77 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is U  [Clear All Filters]
2007
Kienzle, W., Wichmann F. A., Schölkopf B., & Franz M. O. (2007).  Learning the influence of spatio-temporal variations in local image structure on visual saliency. (Bülthoff, H. H., Chatziastros A., Mallot H. A., & Ulrich R., Ed.).{Proc. 10. Tübinger Wahr\-neh\-mungs\-konferenz (TWK 2007)}. 63.
Bobach, T., & Umlauf G. (2007).  Natural neighbor concepts in scattered data interpolation and discrete function approximation. (Hagen, H., Hering-Bertram M., & Garth C., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets. PDF icon NatNeighborConcepts.pdf (1.21 MB)
Ginkel, I., Peters J., & Umlauf G. (2007).  Normals of subdivision surfaces and their control polyhedra. Computer Aided Geometric Design. 24, 112-116.PDF icon SubSurfContrPoly.pdf (272.28 KB)
Lehner, B., Umlauf G., & Hamann B. (2007).  Survey of techniques for data-dependent triangulations. (Hagen, H., Hering-Bertram M., & Garth C., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets. PDF icon TriangColorImg.pdf (3.64 MB)
Ginkel, I., & Umlauf G. (2007).  Tuning subdivision algorithms using constrained energy minimization. (Martin, R., Sabin M., & Winkler J., Ed.).Mathematics of Surfaces XII. PDF icon SubEnergyOpt.pdf (828.98 KB)
2006
Bobach, T., Bertram M., & Umlauf G. (2006).  Comparison of Voronoi based scatterd data interpolation schemes. (Villanueva, J.J., Ed.).Proceedings of the Internationl Conference on Visualization, Imaging and Image Processing. PDF icon VoronoiInterp.pdf (4.63 MB)
Ginkel, I., & Umlauf G. (2006).  Controlling a subdivision tuning method. (Cohen, A., Merrien J.-L., & Schumaker L.L., Ed.).Curve and Surface Fitting. PDF icon SubTuning.pdf (553.79 KB)
Bobach, T., Bertram M., & Umlauf G. (2006).  Issues and implementation of C^1 and C^2 natural neighbor interpolation. (G. al., B. et, Ed.).Advances in Visual Computing. Part II. PDF icon C1C2NeighborInterp.pdf (3.87 MB)
Ginkel, I., & Umlauf G. (2006).  Loop subdivision with curvature control. (Polthier, K., & Sheffer A., Ed.).Eurographics Symposium on Geometry Processing. PDF icon LoopSubCurv.pdf (6.03 MB)
Bobach, T., & Umlauf G. (2006).  Natural neighbor interpolation and order of continuity. (Hagen, H., Kerren A., & Dannenmann P., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets. PDF icon NatNeighborInterp.pdf (1.47 MB)
Prautzsch, H., & Umlauf G. (2006).  Parametrizations for triangular G^k spline surfaces of low degree. ACM Transactions on Graphics. 24, 1281-1293.PDF icon GkSplineSurf.pdf (539.25 KB)
Lehner, B., Umlauf G., Hamann B., & Ustin S. (2006).  Topographic distance functions for interpolation of meteorological data. (Hagen, H., Kerren A., & Dannenmann P., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets. PDF icon TopoDistFunc.pdf (2.27 MB)
Lehner, B., Umlauf G., Hamann B., & Ustin S. (2006).  Topographic distance functions for interpolation of meteorological data. (Hagen, H., Kerren A., & Dannenmann P., Ed.).GI Lecture Notes in Informatics, Visualization of Large and Unstructured Data Sets. PDF icon TopoDistFunc.pdf (2.27 MB)
2005
Umlauf, G. (2005).  Analysis and tuning of subdivision schemes. (Jüttler, B., Ed.).Proceedings of Spring Conference on Computer Graphics SCCG 2005. PDF icon ATSubSchemes.pdf (765.94 KB)
Ginkel, I., Peters J., & Umlauf G. (2005).  On normals and control nets. (Martin, R., Bez H., & M. 233-239 S. pages =, Ed.).Mathematics of Surfaces XI. PDF icon NormalsControlNets.pdf (117.42 KB)
2004
Sinz, F., & Franz M. O. (2004).  Learning depth. (Bülthoff, H. H., Mallot H. A., Ulrich R., & Wichmann F. A., Ed.).{Proc. 7. Tübinger Wahrnehmungskonferenz (TWK 2004)}. 68.PDF icon Sinz et al Learning depth 2004.pdf (197 KB)
Umlauf, G. (2004).  A technique for verifying the smoothness of subdivision schemes. (Lucian, M.L., & Neamtu M., Ed.).Geometric Modeling and Computing: Seattle 2003. PDF icon subSchemes.pdf (110.4 KB)
2001
Peters, J., & Umlauf G. (2001).  Computing curvature bounds for bounded curvature subdivision. Computer Aided Geometric Design. 18, 455-462.PDF icon CurvatBnd.pdf (179.48 KB)
2000
Umlauf, G. (2000).  Analyzing the characteristic map of triangular subdivision schemes. Constructive Approximation. 16, 145-155.PDF icon LoopCharMap.pdf (431.79 KB)
Prautzsch, H., & Umlauf G. (2000).  A G^1 and a G^2 subdivision scheme for trinagular nets. International Journal on Shape Modelling. 6, 21-35.PDF icon G1G2TriAlgo.pdf (2.61 MB)
Peters, J., & Umlauf G. (2000).  Gaussian and mean curvature of subdivision surfaces. (Cipolla, R., & Martin R., Ed.).The Mathematics of Surfaces IX. PDF icon SubCurvat.pdf (112.52 KB)
1999
Prautzsch, H., & Umlauf G. (1999).  Improved triangular subdivision schemes. (Wolter, F.-E., & Patrikalakis N.M., Ed.).Proceedings of the CGI '98. PDF icon TriSub.pdf (1.73 MB)

Pages