Export 33 results:
Author Title Type [ Year(Asc)]
Filters: Author is Dürr, Oliver  [Clear All Filters]
Scharpf, P., Hong C. Lap, & Dürr O. (2021).  Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations. 2021 International Conference on Data Mining Workshops (ICDMW). 398–404.
Sick, B., Hothorn T., & Dürr O. (2021).  Deep transformation models: Tackling complex regression problems with neural network based transformation models. Accepted for Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan/Online, 2021.
Arpogaus, M., Voß M., Sick B., Nigge-Uricher M., & Dürr O. (2021).  Probabilistic short-term low-voltage load forecasting using bernstein-polynomial normalizing flows. ICML 2021, Workshop Tackling Climate Change with Machine Learning, June 26, 2021, virtual.
Lukic, Y. X., Vogt C., Dürr O., & Stadelmann T. (2017).  Learning embeddings for speaker clustering based on voice equality. Machine Learning for Signal Processing (MLSP), 2017 IEEE 27th International Workshop on. 1–6.PDF icon MLSP_2017.pdf (1.34 MB)
Dürr, O., & Sick B. (2016).  Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks. Journal of biomolecular screening. 21, 998–1003.
Lukic, Y., Vogt C., Dürr O., & Stadelmann T. (2016).  Speaker Identification and Clustering using Convolution Neural Networks. IEEE International workshop on Machine Learning for Signal Processing.