Biblio

Export 53 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is D  [Clear All Filters]
2021
Scharpf, P., Hong C. Lap, & Dürr O. (2021).  Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations. 2021 International Conference on Data Mining Workshops (ICDMW). 398–404.
Scharpf, P., Hong C. Lap, & Duerr O. (2021).  Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations. 2021 International Conference on Data Mining Workshops (ICDMW). 398-404.
Sick, B., Hothorn T., & Dürr O. (2021).  Deep transformation models: Tackling complex regression problems with neural network based transformation models. Accepted for Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan/Online, 2021.
Arpogaus, M., Voß M., Sick B., Nigge-Uricher M., & Dürr O. (2021).  Probabilistic Short-Term Low-Voltage Load Forecasting using Bernstein-Polynomial Normalizing Flows. ICML 2021, Workshop Tackling Climate Change with Machine Learning, June 26, 2021, virtual. PDF icon Arpogaus2021_Probabilistic_Forecasting.pdf (427.35 KB)
Arpogaus, M., Voß M., Sick B., Nigge-Uricher M., & Dürr O. (2021).  Probabilistic short-term low-voltage load forecasting using bernstein-polynomial normalizing flows. ICML 2021, Workshop Tackling Climate Change with Machine Learning, June 26, 2021, virtual.
Hörtling, S., Dold D., Dürr O., & Sick B. (2021).  Transformation models for flexible posteriors in variational bayes. arXiv preprint. 2106.00528.PDF icon 2106.00528.pdf (1.03 MB)
Hörtling, S., Dold D., Dürr O., & Sick B. (2021).  Transformation models for flexible posteriors in variational bayes. arXiv preprint. 2106.00528.PDF icon 2106.00528.pdf (1.03 MB)
2022
Berlin, C., Adomeit S., Grover P., Dreischarf M., Dürr O., & Obid P. (2022).  140. Automated measurement technique for coronal parameters using a novel artificial intelligence algorithm: an independent validation study on 100 preoperative AP spine X-rays. The Spine Journal. 22, S74.
Berlin, C., Adomeit S., Grover P., Dreischarf M., Dürr O., & Obid P. (2022).  140. Automated measurement technique for coronal parameters using a novel artificial intelligence algorithm: an independent validation study on 100 preoperative AP spine X-rays. The Spine Journal. 22, S74.
Kook, L., Herzog L., Hothorn T., Dürr O., & Sick B. (2022).  Deep and interpretable regression models for ordinal outcomes. Pattern Recognition. 122, 108263.
Hermann, M., Dold D., Umlauf G., & Dürr O. (2022).  DeepDoubt - Improving uncertainty measures in machine learning to improve explainability and transparency. 2022 All-Hands-Meeting of the BMBF-funded AI Research Projects at Munich Center for Machine Learning. PDF icon AHM2022_DeepDoubt.pdf (238.98 KB)
Hermann, M., Dold D., Umlauf G., & Dürr O. (2022).  DeepDoubt - Improving uncertainty measures in machine learning to improve explainability and transparency. 2022 All-Hands-Meeting of the BMBF-funded AI Research Projects at Munich Center for Machine Learning. PDF icon AHM2022_DeepDoubt.pdf (238.98 KB)
Hermann, M., Griesser D., Gundel B., Dold D., Umlauf G., & Franz M. O. (2022).  Targetless Lidar-camera registration using patch-wise mutual information. International Conference on Information Fusion. PDF icon mir_reg_patch.pdf (9.58 MB)
Adomeit, S., Berlin C., Grover P., Dreischarf M., Halm H., Dürr O., et al. (2022).  Validation study of an algorithm based on artificial intelligence for automated computation of coronal parameters on preoperative AP X-rays. Brain and Spine. 2, 101156.
Adomeit, S., Berlin C., Grover P., Dreischarf M., Halm H., Dürr O., et al. (2022).  Validation study of an algorithm based on artificial intelligence for automated computation of coronal parameters on preoperative AP X-rays. Brain and Spine. 2, 101156.

Pages